4,269 research outputs found
A remotely-operated facility for evaluation of post-combustion CO2 capture technologies on industrial sites
ACTTROM (Advanced Capture Testing in a Transportable Remotely-Operated Minilab) is a transportable test facility for bench-scale evaluation of postcombustion CO2 capture technologies using real industrial flue gases. It is designed to be remote-operable, requiring visits only once per month for maintenance and sample collection. ACTTROM is the first facility of its kind, owned and operated by academia for collaborative research in an industrial environment, and this has resulted in a number of unique developments to facilitate remote operation at an industrial host site. Specifically, it has been necessary to design the unit to automatically correct or mitigate the effects of fault conditions, and to be remotely-monitored via a user interface at 24 hour intervals
Near tip strain evolution under cyclic loading
The concept of ratchetting strain as a crack driving force in controlling crack growth has previouslybeen explored at Portsmouth using numerical approaches for nickel-based superalloys. In this paper, we reportthe first experimental observations of the near-tip strain evolution as captured by the Digital Image Correlation(DIC) technique on a compact tension specimen of stainless steel 316L. The evolution of the near-tip strainswith loading cycles was studied whilst the crack tip was maintained stationary. The strains were monitored overthe selected distances from the crack tip for a given number of cycles under an incremental loading regime. Theresults show that strain ratchetting does occur with load cycling, and is particularly evident close to the crack tipand under higher loads. A finite element model has been developed to simulate the experiments and thesimulation results are compared with the DIC measurements
Determination of micro-scale plastic strain caused by orthogonal cutting
An electron beam lithography technique has been used to produce microgrids in order to measure local plastic strains, induced during an orthogonal cutting process, at the microscopic scale in the shear zone and under the machined surface. Microgrids with a 10 μm pitch and a line width less than 1 μm have been printed on the polished surface of an aluminium alloy AA 5182 to test the applicability of the technique in metal cutting operations. Orthogonal cutting tests were carried out at 40 mm/s. Results show that the distortion of the grids could successfully be used to compute plastic strains due to orthogonal cutting with higher accuracy compared to other techniques reported in the literature. Strain maps of the machined specimens have been produced and show high-strain gradients very close to the machined surface with local values reaching 2.2. High-resolution strain measurements carried out in the primary deformation zone also provide new insight into the material deformation during the chip formation process
Higgsino Dark Matter in a SUGRA Model with Nonuniversal Gaugino Masses
We study a specific SUGRA model with nonuniversal gaugino masses as an
alternative to the minimal SUGRA model in the context of supersymmetric dark
matter. The lightest supersymmetric particle in this model comes out to be a
Higgsino dominated instead of a bino dominated lightest neutralino. The thermal
relic density of this Higgsino dark matter is somewhat lower than the
cosmologically favoured range, which means it may be only a subdominant
component of the cold dark matter. Nonetheless, it predicts favourable rates of
indirect detection, which can be seen in square-km size neutrino telescopes.Comment: Version to appear in Phys. Rev. D. A few references added in the
bibliography and a comment added in Section 2. LaTex, 16 pages, 4 figure
Small BGK waves and nonlinear Landau damping
Consider 1D Vlasov-poisson system with a fixed ion background and periodic
condition on the space variable. First, we show that for general homogeneous
equilibria, within any small neighborhood in the Sobolev space W^{s,p}
(p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial
travelling wave solutions (BGK waves) with arbitrary minimal period and
traveling speed. This implies that nonlinear Landau damping is not true in
W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period.
Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long
time dynamics is very rich, including travelling BGK waves, unstable
homogeneous states and their possible invariant manifolds. Second, it is shown
that for homogeneous equilibria satisfying Penrose's linear stability
condition, there exist no nontrivial travelling BGK waves and unstable
homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore,
when p=2,we prove that there exist no nontrivial invariant structures in the
H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results
suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in
the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be
relatively simple. We also demonstrate that linear damping holds for initial
perturbations in very rough spaces, for linearly stable homogeneous state. This
suggests that the contrasting dynamics in W^{s,p} spaces with the critical
power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to
the linear level
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach
We present an approach to solid-state electronic-structure calculations based
on the finite-element method. In this method, the basis functions are strictly
local, piecewise polynomials. Because the basis is composed of polynomials, the
method is completely general and its convergence can be controlled
systematically. Because the basis functions are strictly local in real space,
the method allows for variable resolution in real space; produces sparse,
structured matrices, enabling the effective use of iterative solution methods;
and is well suited to parallel implementation. The method thus combines the
significant advantages of both real-space-grid and basis-oriented approaches
and so promises to be particularly well suited for large, accurate ab initio
calculations. We develop the theory of our approach in detail, discuss
advantages and disadvantages, and report initial results, including the first
fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
Molecular dynamic simulation of a homogeneous bcc -> hcp transition
We have performed molecular dynamic simulations of a Martensitic bcc->hcp
transformation in a homogeneous system. The system evolves into three
Martensitic variants, sharing a common nearest neighbor vector along a bcc
direction, plus an fcc region. Nucleation occurs locally, followed by
subsequent growth. We monitor the time-dependent scattering S(q,t) during the
transformation, and find anomalous, Brillouin zone-dependent scattering similar
to that observed experimentally in a number of systems above the transformation
temperature. This scattering is shown to be related to the elastic strain
associated with the transformation, and is not directly related to the phonon
response.Comment: 11 pages plus 8 figures (GIF format); to appear in Phys. Rev.
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
The physics of a two-component cold fermi gas is now frequently addressed in
laboratories. Usually this is done for large samples of tens to hundreds of
thousands of particles. However, it is now possible to produce few-body systems
(1-100 particles) in very tight traps where the shell structure of the external
potential becomes important. A system of two-species fermionic cold atoms with
an attractive zero-range interaction is analogous to a simple model of nucleus
in which neutrons and protons interact only through a residual pairing
interaction. In this article, we discuss how the problem of a two-component
atomic fermi gas in a tight external trap can be mapped to the nuclear shell
model so that readily available many-body techniques in nuclear physics, such
as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the
study of these systems. We demonstrate an application of the SMMC method by
estimating the pairing correlations in a small two-component Fermi system with
moderate-to-strong short-range two-body interactions in a three-dimensional
harmonic external trapping potential.Comment: 13 pages, 3 figures. Final versio
Pulsating flow and convective heat transfer in a cavity with inlet and outlet sections
This paper deals with the study of 2-D, laminar, pulsating flow inside a heated rectangular cavity with different aspect ratios. The cooling liquid (water with temperature dependent viscosity and thermal conductivity) comes and leaves the cavity via inlet and outlet ports. The flow topology is characterised by the large recirculation regions that exist at inner corners of the cavity. These low velocity regions cause the heat transfer to be small when compared, for instance, to that of a straight channel. We study the effect that a prescribed pulsation at the inlet port has on the cavity heat transfer. This pulsating boundary condition, of the unsteady Poiseuille type, is described by its frequency and the amplitude of the pressure gradient. The time averaged Reynolds number of the flow, based on the hydraulic diameter of the inlet channel, is 100 and we consider that the dimensionless pulsation frequency (Strouhal number) varies in the range from 0.0 to 0.4. We show that the prescribed pulsation enhances heat transfer in the cavity and that the mechanism that causes this enhancement appears to be the periodic change in the recirculation flow pattern generated by the pulsation. Regarding the quantitative extent of heat transfer recovery, we find that appropriate selection of the pulsation parameters allows for the cavity to behave like a straight channel that is the configuration with the highest Nusselt number
- …
