230 research outputs found

    Mapping adaptation of barley to droughted environments

    Get PDF
    Identifying barley genomic regions influencing the response of yield and its components to water deficits will aid in our understanding of the genetics of drought tolerance and the development of more drought tolerant cultivars. We assembled a population of 192 genotypes that represented landraces, old, and contemporary cultivars sampling key regions around the Mediterranean basin and the rest of Europe. The population was genotyped with a stratified set of 50 genomic and EST derived molecular markers, 49 of which were Simple Sequence Repeats (SSRs), which revealed an underlying population sub-structure that corresponded closely to the geographic regions in which the genotypes were grown. A more dense whole genome scan was generated by using Diversity Array Technology (DArT®) to generate 1130 biallelic markers for the population. The population was grown at two contrasting sites in each of seven Mediterranean countries for harvest 2004 and 2005 and grain yield data collected. Mean yield levels ranged from 0.3 to 6.2 t/ha, with highly significant genetic variation in low-yielding environments. Associations of yield with barley genomic regions were then detected by combining the DArT marker data with the yield data in mixed model analyses for the individual trials, followed by multiple regression of yield on markers to identify a multi-locus subset of significant markers/QTLs. QTLs exhibiting a pre-defined consistency across environments were detected in bins 4, 6, 6 and 7 on barley chromosomes 3H, 4H, 5H and 7H respectivel

    Imprinting, honeymooning, or maturing: Testing three theories of how interfirm social bonding impacts suppliers’ allocations of resources to business customers

    Get PDF
    In business markets, does strength of social bonds that a supplier perceives with a specific customer influence the supplier’s allocations of resources relative to other customers? If social bonding does uniquely impact supplier allocation of resources to customers, does the impact vary by relationship duration? Relationship marketing and Homans’ framework for social behavior are the theoretical bases for the study, which uses survey data to examine three alternative models that indicate how suppliers’ perceptions of social bonds with customers influence the suppliers’ allocations of resources over time. Analysis of data from sales and marketing managers confirms that two of these models, the imprinting theory and the maturity theory, are relevant. The findings indicate that relationship managers need to take into account the clear effect that creation of strong social bonds in buyer–seller relationships, as distinct from financial bonds, has on the way in which suppliers allocate resources to those relationships and how relationship duration affects the way in which they do so. The study strengthens the argument, on a strong theoretical base, to adopt a collaborative, as opposed to a transactional, approach to buyer–seller relationships

    Relativistic models of two low-luminosity radio jets: B2 0326+39 and B2 1553+24

    Full text link
    We apply the intrinsically symmetrical, decelerating relativistic jet model developed by Laing & Bridle for 3C 31 to deep, full-synthesis 8.4-GHz VLA imaging of the two low-luminosity radio galaxies B2 0326+39 and B2 1553+24. After some modifications to the functional forms used to describe the geometry, velocity, emissivity and magnetic-field structure, these models can accurately fit our data in both total intensity and linear polarization. We conclude that the jets in B2 0326+39 and B2 1553+24 are at angles of 64 +/- 5 deg and 7.7 +/- 1.3 deg to the line of sight, respectively. In both objects, we find that the jets decelerate from 0.7 - 0.8c to <0.2c over a distance of approximately 10 kpc, although in B2 1553+24 this transition occurs much further from the nucleus than in B2 0326+39 or 3C 31. The longitudinal emissivity profiles can be divided into sections, each fit accurately by a power law; the indices of these power laws decrease with distance from the nucleus. The magnetic fields in both objects are dominated by the longitudinal component in the high-velocity regions close to the nucleus and by the toroidal component further out, but B2 0326+39 also has a significant radial component at large distances, whereas B2 1553+24 does not. Simple adiabatic models fail to fit the emissivity variations in the regions of high velocity but provide good descriptions of the emissivity after the jets have decelerated. Given the small angle to the line of sight inferred for B2 1553+24, there should be a significant population of similar sources at less extreme orientations. Such objects should have long (>200 kpc), straight, faint jets and we show that their true sizes are likely to have been underestimated in existing images. (Slightly abridged.)Comment: 27 pages, 21 figures, accepted for publication in MNRA

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Next-to-Leading Order QCD Analysis of Polarized Deep Inelastic Scattering Data

    Full text link
    We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions g1p,g1ng_1^p, g_1^n, and g1dg_1^d, including the new experimental information on the Q2Q^2 dependence of g1ng_1^n. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the Q2Q^2 dependence of the ratio g1/F1g_1/F_1 and evolve the experimental data to a constant Q2=5GeV2Q^2 = 5 GeV^2. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.Comment: 21 pages, 4 figures; final version to be published in Phys. Lett. B. References updated. Uses elsart.cls version 1996/04/22, 2e-1.4

    Measurement of the xx- and Q2Q^2-Dependence of the Asymmetry A1A_1 on the Nucleon

    Get PDF
    We report results for the virtual photon asymmetry A1A_1 on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton (15^{15}NH3_3) and deuteron (15^{15}ND3_3) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for A1(x,Q2)A_1(x,Q^2) and the related ratio g1/F1(x,Q2)g_1/F_1(x,Q^2) in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer Q2Q^2 from 0.05 to 5.0 GeV2^2 and in final-state invariant mass WW up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong Q2Q^2--dependence of A1(x,Q2)A_1(x,Q^2) for WW below 2 GeV. At higher WW, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but A1(x,Q2)A_1(x,Q^2) is not strictly Q2Q^2--independent. We add significantly to the world data set at high xx, up to x=0.6x = 0.6. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative dd-quark polarization up to our highest xx. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.Comment: 7 pages LaTeX, 5 figure
    • …
    corecore