127 research outputs found

    Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Get PDF
    Combining information derived from satellitebased passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E) and active (ASCAT) microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3) from AMSR-E and degree of saturation (%) from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 (“transitional regions”), merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied Correspondence to: Y. Y. Liu ([email protected]) to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles

    Front Crawl Is More Efficient and Has Smaller Active Drag Than Backstroke Swimming: Kinematic and Kinetic Comparison Between the Two Techniques at the Same Swimming Speeds.

    Get PDF
    The purpose of this study was to investigate differences in Froude efficiency (η F ) and active drag (D A ) between front crawl and backstroke at the same speed. η F was investigated by the three-dimensional (3D) motion analysis using 10 male swimmers. The swimmers performed 50 m swims at four swimming speeds in each technique, and their whole body motion during one upper-limb cycle was quantified by a 3D direct linear transformation algorithm with manually digitized video footage. Stroke length (SL), stroke frequency (SF), the index of coordination (IdC), η F , and the underwater body volume (UWV body ) were obtained. D A was assessed by the measuring residual thrust method (MRT method) using a different group of swimmers (six males) due to a sufficient experience and familiarization required for the method. A two-way repeated-measures ANOVA (trials and techniques as the factors) and a paired t-test were used for the outcomes from the 3D motion analysis and the MRT method, respectively. Swimmers had 8.3% longer SL, 5.4% lower SF, 14.3% smaller IdC, and 30.8% higher η F in front crawl than backstroke in the 3D motion analysis (all p < 0.01), which suggest that front crawl is more efficient than backstroke. Backstroke had 25% larger D A at 1.2 m⋅s-1 than front crawl (p < 0.01) in the MRT trial. A 4% difference in UWV body (p < 0.001) between the two techniques in the 3D motion analysis also indirectly showed that the pressure drag and friction drag were probably larger in backstroke than in front crawl. In conclusion, front crawl is more efficient and has a smaller D A than backstroke at the same swimming speed

    Incipient Separation in Shock Wave Boundary Layer Interactions as Induced by Sharp Fin

    Full text link
    The incipient separation induced by the shock wave turbulent boundary layer interaction at the sharp fin is the subject of present study. Existing theories for the prediction of incipient separation, such as those put forward by McCabe (1966) and Dou and Deng (1992), can have thus far only predicting the direction of surface streamline and tend to over-predict the incipient separation condition based on the Stanbrook's criterion. In this paper, the incipient separation is firstly predicted with Dou and Deng (1992)'s theory and then compared with Lu and Settles (1990)' experimental data. The physical mechanism of the incipient separation as induced by the shock wave/turbulent boundary layer interactions at sharp fin is explained via the surface flow pattern analysis. Furthermore, the reason for the observed discrepancy between the predicted and experimental incipient separation conditions is clarified. It is found that when the wall limiting streamlines behind the shock wave becomes\ aligning with one ray from the virtual origin as the strength of shock wave increases, the incipient separation line is formed at which the wall limiting streamline becomes perpendicular to the local pressure gradient. The formation of this incipient separation line is the beginning of the separation process. The effects of Reynolds number and the Mach number on incipient separation are also discussed. Finally, a correlation for the correction of the incipient separation angle as predicted by the theory is also given.Comment: 34 pages; 9 figure

    High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    Get PDF
    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Global long-term passive microwave satellite based retrievals of vegetation optical depth

    No full text
    Vegetation optical depth (VOD) retrievals from three satellite-based passive microwave instruments were merged to produce the first long-term global microwave-based vegetation product. The resulting VOD product spans more than two decades and shows seasonal cycles and inter-annual variations that generally correspond with those observed in the Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI). Some notable differences exist in the long-term trends: the NDVI, operating in the optical regime, is sensitive to chlorophyll abundance and photosynthetically active biomass of the leaves, whereas the microwave-based VOD is an indicator of the vegetation water content in total above-ground biomass, i.e., including wood and leaf components. Preliminary analyses indicate that the fluctuations in VOD typically correlated to precipitation variations, and that the mutually independent VOD and NDVI do not necessarily respond in identical manners. Considering both products together provides a more robust structural characterization and assessment of long-term vegetation dynamics at the global scale. © 2011 by the American Geophysical Union
    corecore