283 research outputs found

    An adaptive variable order quadrature strategy

    Get PDF
    In this article we propose a new adaptive numerical quadrature procedure which includes both local subdivision of the integration domain, as well as local variation of the number of quadrature points employed on each subinterval. In this way we aim to account for local smoothness properties of the function to be integrated as effectively as possible, and thereby achieve highly accurate results in a very efficient manner. Indeed, this idea originates from so-called hp-version finite element methods which are known to deliver high-order convergence rates, even for nonsmooth functions

    Dynamical electron transport through a nanoelectromechanical wire in a magnetic field

    Full text link
    We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which electric current and mechanical oscillation are treated fully quantum mechanically on an equal footing. Quantum mechanically fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial contribution to mechanical vibration and electrical conduction of the wire. We demonstrate our theory by calculating the admittance of the wire which are influenced by the multiple interplay between the mechanical and the electrical energy scales, magnetic field strength, and the electron-electron interaction

    Carbon Nanotubes as Nanoelectromechanical Systems

    Full text link
    We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.Comment: 8 pages, 5 eps figures included. Major changes; new material adde

    Gravitomagnetism and the Clock Effect

    Get PDF
    The main theoretical aspects of gravitomagnetism are reviewed. It is shown that the gravitomagnetic precession of a gyroscope is intimately connected with the special temporal structure around a rotating mass that is revealed by the gravitomagnetic clock effect. This remarkable effect, which involves the difference in the proper periods of a standard clock in prograde and retrograde circular geodesic orbits around a rotating mass, is discussed in detail. The implications of this effect for the notion of ``inertial dragging'' in the general theory of relativity are presented. The theory of the clock effect is developed within the PPN framework and the possibility of measuring it via spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS, CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27 August 1999; Bad Honnef, Germany

    Unusual C35 to C38 alkenones in mid-Holocene sediments from a restricted estuary (Charlotte Harbor, Florida)

    Full text link
    Unusual C35 to C38 alkenones were identified in mid-Holocene (8-3.5kyr BP) sediments from a restricted estuary in southwest Florida (Charlotte Harbor). The distribution was dominated by a C36 diunsaturated (ω15,20) ethyl ketone, identical to the one present in Black Sea Unit 2 sediments. Other unus ual alkenones were tentatively assigned as a C35:2 (ω15,20) methyl ketone, a C37:2 (ω17,22) methyl ketone and a C38:2 (ω17,22) ethyl ketone. In late Holocene sediments<3.5kyr BP, the common C37 to C39 alkenones were found. Compound-specific 14C, 13C, and D isotope measurements were used to constrain the possible origin of the alkenones. Conventional radiocarbon ages of alkenones and higher plant-derived long chain n-alcohols indicated no significant difference in age between mid-Holocene alkenones and higher plant n-alcohols. Both alcohols and alkenones were offset vs. calibrated ages of shell fragments in the same sediment core, which suggests they were pre-aged by 500-800yr, implying resuspension and redistribution of the fine-grained sedimentary particles with which they are associated. The hydrogen isotopic (δD) composition (-190‰ to -200‰) of the C37 and C38 alkenones in the late Holocene sediments is in line with values for coastal haptophytes in brackish water. However, the unusual C36 and C38 alkenones from the mid Holocene sediments were enriched in D (by ca. 100‰) vs. the late Holocene alkenones. Also, δ13C values of mid-Holocene alkenones were consistently offset compared with late Holocene alkenones (-21‰ to -22‰ and -22‰ to -23‰, respectively). We suggest that the alkenones in Charlotte Harbor were produced by unknown alkenone-producing haptophyte

    An alternative electric-field spectrum for laser-driven atomic systems

    Get PDF
    We adopt an open systems perspective to calculate the power spectrum associated with the electric field generated by an atomic dipole moment undergoing resonant laser-driving. This spectrum has a similar triplet shape to the Mollow spectrum and contains a similar amount of information. This is surprising, since the Mollow triplet derives from the Glauber two-time correlation function, which represents the average energy-intensity of a superposition of waves taken at different times. In contrast, our spectrum derives from a correlation function defined in terms of single-time expectation values of the electric source-field. Although they are derived from very different correlation functions, both spectra reflect the quantum-mechanical level-structure of the atomic source

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
    corecore