11 research outputs found
Geodetic evidence for shallow creep along the Quito fault, Ecuador
International audienceQuito, the capital city of Ecuador hosting ∼2 million inhabitants, lies on the hanging wall of a ∼60-km-long reverse fault offsetting the Inter-Andean Valley in the northern Andes. Such an active fault poses a significant risk, enhanced by the high density of population and overall poor building construction quality. Here, we constrain the present-day strain accumulation associated with the Quito fault with new Global Positioning System (GPS) data and Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) analysis. Far field GPS data indicate 3–5 mm yr–1 of horizontal shortening accommodated across the fault system. In the central segment of the fault, both GPS and PS-InSAR results highlight a sharp velocity gradient, which attests for creep taking place along the shallowest portion of the fault. Smoother velocity gradients observed along the other segments indicate that the amount of shallow creep decreases north and south of the central segment. 2-D elastic models using GPS horizontal velocity indicate very shallow (<1 km) locking depth for the central segment, increasing to a few kilometres south and north of it. Including InSAR results in the inversion requires locking to vary both along dip and along strike. 3-D spatially variable locking models show that shallow creep occurs along the central 20-km-long segment. North and south of the central segment, the interseismic coupling is less resolved, and data still allows significant slip deficit to accumulate. Using the interseismic moment deficit buildup resulting from our inversions and the seismicity rate, we estimate recurrence time for magnitude 6.5 + earthquake to be between 200 and 1200 yr. Finally, PS-InSAR time-series identify a 2 cm transient deformation that occurred on a secondary thrust, east of the main Quito fault between 1995 and 1997
Partitioning of oblique convergence in the Norther Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador
International audienceAlong the Ecuadorian margin, oblique subduction induces deformation of the overriding continental plate. For the last 15 Ma, both exhumation and tectonic history of Ecuador suggest that the northeastward motion of the North Andean Sliver (NAS) was accompanied by an eastward migration of its eastern boundary and successive progressively narrowing restraining bends. Here we present geologic data, earthquake epicenters, focal mechanisms, GPS results, and a revised active fault map consistent with this new kinematic model. All data sets concur to demonstrate that active continental deformation is presently localized along a single major fault system, connecting fault segments from the Gulf of Guayaquil to the eastern Andean Cordillera. Although secondary faults are recognized within the Cordillera, they accommodate a negligible fraction of relative motion compared to the main fault system. The eastern limit is then concentrated rather than distributed as first proposed, marking a sharp boundary between the NAS, the Inca sliver, and the Subandean domain overthrusting the South American craton. The NAS limit follows a northeast striking right-lateral transpressional strike-slip system from the Gulf of Guayaquil (Isla Puná) to the Andean Cordillera and with the north-south striking transpressive faults along the eastern Andes. Eastward migration of the restraining belt since the Pliocene, abandonment of the sutures and reactivation of north-south striking ancient fault zones lead to the final development of a major tectonic boundary south and east of the NAS, favoring its extrusion as a continental sliver, accommodating the oblique convergence of the Nazca oceanic plate toward South America
Interplay of seismic and a-seismic deformation during the 2020 sequence of Atacama, Chile
International audienceAn earthquake sequence occurred in the Atacama region of Chile throughout September 2020. The sequence initiated by a mainshock of magnitude = 6.9, followed 17 hours later by a = 6.4 aftershock. The sequence lasted several weeks, during which more than a thousand events larger than = 1 occurred, including several larger earthquakes of magnitudes between 5.5 and 6.4. Using a dense network that includes broad-band, strong motion and GPS sites, we study in details the seismic sources of the mainshock and its largest aftershock, the afterslip they generate and their aftershock, shedding light of the spatial temporal evolution of seismic and aseismic slip during the sequence. Dynamic inversions show that the two largest earthquakes are located on the subduction interface and have a stress drop and rupture times which are characteristics of subduction earthquakes. The mainshock and the aftershocks, localized in a 3D velocity model, occur in a narrow region of interseismic coupling (ranging 40%-80%), i.e. between two large highly coupled areas, North and South of the sequence, both ruptured by the great 8.5 1922 megathrust earthquake. High rate GPS data (1 Hz) allow to determine instantaneous coseismic displacements and to infer coseismic slip models, not contaminated by early afterslip. We find that the total slip over 24 hours inferred from precise daily solutions is larger than the sum of the two instantaneous coseismic slip models. Differencing the two models indicates that rapid aseismic slip developed up-dip the mainshock rupture area and down-dip of the largest aftershock. During the 17 hours separating the two earthquakes, micro-seismicity migrated from the mainshock rupture area up-dip towards the epicenter of the 6.4 aftershocks and continued to propagate upwards at ∼ 0.7 km/day. The bulk of the afterslip is located up-dip the mainshock and down-dip the largest aftershock, and is accompanied with the migration of seismicity, from the mainshock rupture to the aftershock area, suggesting that this aseismic slip triggered the = 6.4 aftershock. Unusually large post-seismic slip, equivalent to = 6.8 developed during three weeks to the North, in low coupling areas located both up-dip and downdip the narrow strip of higher coupling, and possibly connecting to the area of the deep Slow Sleep Event detected in the Copiapo area in 2014. The sequence highlights how seismic and aseismic slip interacted and witness short scale lateral variations of friction properties at the megathrust
The contribution of the IAG Intercommission Project WEGENER to TOPO-Europe
WEGENER is the acronym for Working group of European Geoscientists for the Establishment of Networks for Earth-science Research. At present it is established as the Inter-commission Project 3.2, between Commission 1 and Commission 3, of the International Association of Geodesy (IAG). The WEGENER Project, has promoted the development of scientific space-geodetic activities in the Mediterranean and European area for the last twenty years and has contributed to the establishment of geodetic networks designed particularly for Earth science research. The mission of WEGENER is the development of interdisciplinary work for the integration of space and terrestrial techniques in the study of the Eurasian/African plate boundary deformation zone and adjacent areas, including the establishment of an European velocity field, by promoting international cooperation and by being a Forum for European and other Earth-Scientists interested in the Eurasian/African plate boundary zone. WEGENER activities cover substantial parts of the scientific objectives of TOPO-Europe and WEGENER can contribute particularly in the anticipated monitoring of the 4-D evolution of the topography of the European continent and adjacent parts of North Africa, Asia and the Middle East by space geodetic and remote sensing techniques, in particular, by supporting the acquisition, processing and interpretation of satellite gravity and geodetic data, including exploitation of airborne multi-sensor data. TOPO-Europe involves very many geophysicists and geologists and it promotes modeling activities. These may perfectly be supported by the observational expertise of the geo-scientists of WEGENER. The amount and heterogeneity of the data to be expected from the TOPO-Europe program asks for dedicated data and product centers. One useful product that WEGENER, through its members, is already producing and which will be made available is a reliable and accurate vector velocity field map and a strain-map. Via the involvement of the GEODAC, the WEGENER GEOdynamic Data and Analysis Center, WEGENER will take care of a homogeneous and state-of-the-art GPS analysis. WEGENER will also address the important issue of the realization of an integrated multi-purpose network for the acquisition and availability of long-term, continuous, high-quality spatial and in situ measurements
Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions: Application to Central Europe and Rock Sites
International audienceA vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region