100 research outputs found

    Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations

    Get PDF
    Anaerobic fermentation of organic wastes using microbial mixed cultures is a promising avenue to treat residues and obtain added-value products. However, the process has some important limitations that prevented so far any industrial application. One of the main issues is that we are not able to predict reliably the product spectrum (i.e. the stoichiometry of the process) because the complex microbial community behaviour is not completely understood. To address this issue, in this work we propose a new metabolic network of glucose fermentation by microbial mixed cultures that incorporates electron bifurcation and homoacetogenesis. Our methodology uses NADH balances to analyse published experimental data and evaluate the new stoichiometry proposed. Our results prove for the first time the inclusion of electron bifurcation in the metabolic network as a better description of the experimental results. Homoacetogenesis has been used to explain the discrepancies between observed and theoretically predicted yields of gaseous H2 and CO2 and it appears as the best solution among other options studied. Overall, this work supports the consideration of electron bifurcation as an important biochemical mechanism in microbial mixed cultures fermentations and underlines the importance of considering homoacetogenesis when analysing anaerobic fermentations

    Spectral density for a hole in an antiferromagnetic stripe phase

    Full text link
    Using variational trial wave function based on the string picture we study the motion of a single mobile hole in the stripe phase of the doped antiferromagnet. The holes within the stripes are taken to be static, the undoped antiferromagnetic domains in between the hole stripes are assumed to have alternating staggered magnetization, as is suggested by neutron scattering experiments. The system is described by the t-t'-t''-J model with realistic parameters and we compute the single particle spectral density.Comment: RevTex-file, 9 PRB pages with 15 .eps and .gif files. To appear in PRB. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    Quasiparticles and c-axis coherent hopping in high T_c superconductors

    Full text link
    We study the problem of the low-energy quasiparticle spectrum of the extended t-J model and analyze the coherent hopping between weakly coupled planes described by this model. Starting with a two-band model describing the Cu-O planes and the unoccupied bands associated to the metallic atoms located in between the planes, we obtain effective hopping matrix elements describing the c-axis charge transfer. A computational study of these processes shows an anomalously large charge anisotropy for doping concentrations around and below the optimal doping.Comment: 4 pages, 3 figure

    Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops

    Get PDF
    This study aims to evaluate the environmental consequences and energy requirements of a biogas production system and its further conversion into bioenergy by means of the Life Cycle Assessment (LCA) methodology. To do so, an Italian biogas plant operating with pig slurry and two energy crops (maize and triticale silages) as feedstock was assessed in detail in order to identify the environmental hotspots. The environmental pro\ufb01le was estimated through six impact categories: abiotic depletion potential (ADP), acidi\ufb01cation potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone layer depletion potential (ODP) and photochemical oxidation potential (POFP). An energy analysis related to the cumulative non-renewable fossil and nuclear energy demand (CED) was also performed, considering this indicator as an additional impact category. According to the results, the biomass production subsystem was identi\ufb01ed as the main environmental key issue in terms of ADP, AP, EP, ODP and CED, with contributions ranging from 26% to 61% of the total impact. Regarding ADP, ODP and CED, these results are mainly related with diesel requirements in agricultural machinery, derived combustion emissions and mineral fertilizers production. Concerning AP and EP the production \ufb01eld emissions derived from fertilizers application was observed as the main contributor. Concerning GWP, this step presents an environmental credit due to the uptake of CO2 during crop growth, which contributes to offset the GHG emissions. The bioenergy production plant signi\ufb01- cantly contributes to the environmental impact in categories such as GWP (43%) and POFP (59%), mostly related with emissions produced in the gas engine and biogas losses. Emissions derived from digestate storage contribute to AP (52%) and EP (41%). The use of the digestate as an organic fertilizer has a bene\ufb01cial role because this action avoids the production and use of mineral fertilizers. A sensitivity analysis was also conducted to assess the in\ufb02uence of variations in important parameters of biogas systems. The environmental pro\ufb01le of the biogas system turned out to be highly dependent on the selection of system boundaries and the allocation method. To sum up, this study aims to assess the environmental performance of a biogas technology available not only in Italy but also in other European countries. The environmental analysis of the process under study highlights the environmental bene\ufb01ts of the co-digestion processes, which not only produces biofuel but also reduces the disposal of solid wastes and produces digestate, with special value in the fertilization of agricultural soil

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

    Get PDF
    Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.

    The NEXT White (NEW) detector

    Get PDF
    Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation

    Mitigation of backgrounds from cosmogenic 137Xe in xenon gas experiments using 3He neutron capture

    Get PDF
    136Xe is used as the target medium for many experiments searching for 0¿ßß. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of 137Xe created by the capture of neutrons on 136Xe. This isotope decays via beta decay with a half-life of 3.8 min and a Q ß of ~4.16 MeV. This work proposes and explores the concept of adding a small percentage of 3He to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from 137Xe activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory

    Measurement of radon-induced backgrounds in the NEXT double beta decay experiment

    Get PDF
    The measurement of the internal 222Rn activity in the NEXT-White detector during the so-called Run-II period with 136Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222Rn and its alpha-emitting progeny. The specific activity is measured to be (38.1 ± 2.2 (stat.) ± 5.9 (syst.)) mBq/m3. Radon-induced electrons have also been characterized from the decay of the 214Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.1 counts/yr in the neutrinoless double beta decay sample

    Tissue culture of ornamental cacti

    Get PDF
    Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family
    corecore