3 research outputs found

    Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems

    Full text link
    [EN] This study was carried out to compare the results obtained using potential step voltammetry and linear sweep voltammetry with a rotating gold disc electrode (RDE), when models based on equivalent circuits (EC) were used. The results lead to an equivalent circuit model that allows us to interpret the electrochemical behavior of aqueous solutions containing Fe(CN)(6)(-4) and Fe(CN)(6)(-3). With this model, we determined the values of the electrical resistance of the medium (R-s) as well as its polarization resistance (R-p), and established correlations between these values and the kinetic parameters of the system. The proposal highlights the need to introduce a new component for modeling using EC, which we have called the electrochemical diode. (C) 2019 Elsevier Ltd. All rights reserved.The authors gratefully acknowledge the financial support of BIA2016-78460-C3-3-R, MAT2015-64139-C4-3-R and RTI2018-100910-B-C43 (MINECO/FEDER) projects. We would also like to extend our appreciation for the pre-doctoral FPU scholarships (University Teacher Training scholarship) granted to Ana Martinez Ibernon (FPU 16/00723) and Jose Enrique Ramon Zamora (FPU13/00911) by the Spanish Ministry of Science and Innovation.Martínez-Ibernón, A.; Ramón Zamora, JE.; Gandía-Romero, JM.; Gasch, I.; Valcuende Payá, MO.; Alcañiz Fillol, M.; Soto Camino, J. (2019). Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochimica Acta. 328:1-10. https://doi.org/10.1016/j.electacta.2019.135111S11032

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~ 0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung
    corecore