231 research outputs found

    Cartan subalgebras in C*-algebras of Hausdorff etale groupoids

    Full text link
    The reduced CC^*-algebra of the interior of the isotropy in any Hausdorff \'etale groupoid GG embeds as a CC^*-subalgebra MM of the reduced CC^*-algebra of GG. We prove that the set of pure states of MM with unique extension is dense, and deduce that any representation of the reduced CC^*-algebra of GG that is injective on MM is faithful. We prove that there is a conditional expectation from the reduced CC^*-algebra of GG onto MM if and only if the interior of the isotropy in GG is closed. Using this, we prove that when the interior of the isotropy is abelian and closed, MM is a Cartan subalgebra. We prove that for a large class of groupoids GG with abelian isotropy---including all Deaconu--Renault groupoids associated to discrete abelian groups---MM is a maximal abelian subalgebra. In the specific case of kk-graph groupoids, we deduce that MM is always maximal abelian, but show by example that it is not always Cartan.Comment: 14 pages. v2: Theorem 3.1 in v1 incorrect (thanks to A. Kumjain for pointing out the error); v2 shows there is a conditional expectation onto MM iff the interior of the isotropy is closed. v3: Material (including some theorem statements) rearranged and shortened. Lemma~3.5 of v2 removed. This version published in Integral Equations and Operator Theor

    Puf3p induces translational repression of genes linked to oxidative stress

    Get PDF
    In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the RNA-binding protein Puf3p, a known regulator of cellular mRNAs encoding proteins targeted to mitochondria. Under oxidative stress, a PUF3 deleted strain exhibits more robust growth than wild-type cells and the shift in translation from polysomes to monosomes is attenuated, suggesting puf3Δ cells perceive less stress. In agreement, the ratio of reduced:oxidized glutathione, a major antioxidant and indicator of cellular redox state, is increased in unstressed puf3Δ cells but remains lower under stress. In untreated conditions, Puf3p migrates with polysomes rather than ribosome-free fractions, but this is lost under stress. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) of Puf3p targets following affinity purification shows Puf3p-mRNA associations are maintained or increased under oxidative stress. Collectively, these results point to Puf3p acting as a translational repressor in a manner exceeding the global translational response, possibly by temporarily limiting synthesis of new mitochondrial proteins as cells adapt to the stress

    An Interactive EA for Multifractal Bayesian Denoising

    Get PDF
    International audienceWe present in this paper a multifractal bayesian denoising technique based on an interactive EA. The multifractal denoising algorithm that serves as a basis for this technique is adapted to complex images and signals, and depends on a set of parameters. As the tuning of these parameters is a difficult task, highly dependent on psychovisual and subjective factors, we propose to use an interactive EA to drive this process. Comparative denoising results are presented with automatic and interactive EA optimisation. The proposed technique yield efficient denoising in many cases, comparable to classical denoising techniques. The versatility of the interactive implementation is however a major advantage to handle difficult images like IR or medical images

    Archetypal transcriptional blocks underpin yeast gene regulation in response to changes in growth conditions

    Get PDF
    The transcriptional responses of yeast cells to diverse stresses typically include gene activation and repression. Specific stress defense, citric acid cycle and oxidative phosphorylation genes are activated, whereas protein synthesis genes are coordinately repressed. This view was achieved from comparative transcriptomic experiments delineating sets of genes whose expression greatly changed with specific stresses. Less attention has been paid to the biological significance of 1) consistent, albeit modest, changes in RNA levels across multiple conditions, and 2) the global gene expression correlations observed when comparing numerous genome-wide studies. To address this, we performed a meta-analysis of 1379 microarray-based experiments in yeast, and identified 1388 blocks of RNAs whose expression changes correlate across multiple and diverse conditions. Many of these blocks represent sets of functionally-related RNAs that act in a coordinated fashion under normal and stress conditions, and map to global cell defense and growth responses. Subsequently, we used the blocks to analyze novel RNA-seq experiments, demonstrating their utility and confirming the conclusions drawn from the meta-analysis. Our results provide a new framework for understanding the biological significance of changes in gene expression: ‘archetypal’ transcriptional blocks that are regulated in a concerted fashion in response to external stimuli

    The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation

    Get PDF
    Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5’cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3’ UTR motif. Caf20p binds all tested motif-containing 3’ UTRs. Caf20p and the 3’UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3’UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E

    Gastrointestinal Symptoms in 2- to 5-Year-Old Children in the Study to Explore Early Development

    Get PDF
    Gastrointestinal symptoms (GIS) are commonly reported in children with autism spectrum disorder (ASD). This multi-site study evaluated the prevalence of GIS in preschool-aged children with ASD/(n = 672), with other developmental delays (DD)/(n = 938), and children in the general population (POP)/(n = 851). After adjusting for covariates, children in the ASD group were over 3 times more likely to have parent-reported GIS than the POP group, and almost 2 times more likely than the DD group. Children with GIS from all groups had more behavioral and sleep problems. Within the ASD group, children with developmental regression had more GIS than those without; however, there were no differences in autism severity scores between children with and without GIS. These findings have implications for clinical management

    Health Status and Health Care Use Among Adolescents Identified With and Without Autism in Early Childhood — Four U.S. Sites, 2018–2020

    Get PDF
    Persons identified in early childhood as having autism spectrum disorder (autism) often have co-occurring health problems that extend into adolescence (1–3). Although only limited data exist on their health and use of health care services as they transition to adolescence, emerging data suggest that a minority of these persons receive recommended guidance* from their primary care providers (PCPs) starting at age 12 years to ensure a planned transition from pediatric to adult health care (4,5). To address this gap in data, researchers analyzed preliminary data from a follow-up survey of parents and guardians of adolescents aged 12–16 years who previously participated in the Study to Explore Early Development (https://www.cdc.gov/ncbddd/autism/seed.html). The adolescents were originally studied at ages 2–5 years and identified at that age as having autism (autism group) or as general population controls (control group). Adjusted prevalence ratios (aPRs) that accounted for differences in demographic characteristics were used to compare outcomes between groups. Adolescents in the autism group were more likely than were those in the control group to have physical difficulties (21.2% versus 1.6%;aPR = 11.6;95% confidence interval [CI] = 4.2–31.9), and to have additional mental health or other condition

    Follow-up of loci from the International Genomics of Alzheimer's Disease Project identifies TRIP4 as a novel susceptibility gene

    Get PDF
    To follow-up loci discovered by the International Genomics of Alzheimer's Disease Project, we attempted independent replication of 19 single nucleotide polymorphisms (SNPs) in a large Spanish sample (Fundació ACE data set; 1808 patients and 2564 controls). Our results corroborate association with four SNPs located in the genes INPP5D, MEF2C, ZCWPW1 and FERMT2, respectively. Of these, ZCWPW1 was the only SNP to withstand correction for multiple testing (P=0.000655). Furthermore, we identify TRIP4 (rs74615166) as a novel genome-wide significant locus for Alzheimer's disease risk (odds ratio=1.31; confidence interval 95% (1.19-1.44); P=9.74 × 10 - 9)

    Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds

    Full text link
    [EN] This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Vikingsson, L.; Antolinos Turpín, CM.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds. Materials Science and Engineering: C. 61:651-658. https://doi.org/10.1016/j.msec.2015.12.068S6516586
    corecore