2,086 research outputs found

    An Analytical Overview of Urban Information Systems in the United States

    Get PDF
    Urban governments are becoming increasingly interested in modern management techniques such as computerized information systems. This paper presents an analytical state-of-the-art review of the uses, impacts and problems of computer technology in local governments in the United States. It reports the results of a questionnaire survey conducted by URBIS (Urban Information System) Research Group, University of California at Irvine to determine the uses of computer technology and the policies governing those uses within local governments. The organization and research strategy of the URBIS Project is presented by way of introduction and is followed by a discussion of the role IIASA might play in the study of Urban Information Systems

    Courtship Behavior and Detection of Female Receptivity in the Parasitoid Wasp Urolepis rufipes

    Get PDF
    Once a Urolepis rufipes male mounted, the female beat her antennae against his mouth and clypeus. Immediately after he swept his antennae rapidly downward and extruded his mouthparts, her abdomen rose as she opened her genital orifice. Almost simultaneously he backed up for copulation and she folded her antennae against her head. Neither her abdomen rising nor her antennal folding were essential to his backing up as determined from their timing and from experiments in which her abdomen was sealed or her antennae were removed. Females did not open their genital orifice if with a sealed-mouth male; and antennae-removed females did not open even in the few cases where untreated males extruded their mouthparts. Unlike a closely related species, females mounted by sealed-mouth males did not open in response to air from containers of mating pairs.This article is made openly accessible in part by an award from the Northern Illinois University Libraries’ Open Access Publishing Fund

    Spatial variability in mass change of glaciers in the Everest region, central Himalaya, between 2000 and 2015

    Get PDF
    The mass balance of the majority of Himalayan glaciers is currently negative, and has been for several decades. Region wide averaging of mass change estimates has masked any catchment or glacier scale variability in glacier recession, thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify surface lowering and mass loss rates for the ablation areas of 32 glaciers in different catchments across the Everest region, and specifically examine the role of glacial lakes in glacier mass change. We then assess how future ice loss is likely to differ depending on glacier hypsometry. Spatially variable ice loss is observed within and between the Dudh Koshi and Tama Koshi catchments and glaciers that flow onto the Tibetan Plateau. Surface lowering rates on glaciers flowing onto the Tibetan Plateau are 54 and 19 % greater than those flowing southward into the Dudh Koshi and Tama Koshi catchments, respectively. Surface lowering rates of up to −3.78 ± 0.26 m a-1 occurred on some lacustrine terminating glaciers, although glaciers with small lakes showed rates of lowering comparable with those that terminate on land. We suggest that such a range reflects glacial lakes at different stages of development, and that rates of mass loss are likely to increase as glacial lakes expand and deep water calving begins to occur. Hypsometric data reveal a coincidence of the altitude of maximum surface lowering and the main glacier hypsometry in the Dudh Koshi catchment, thus a large volume of ice is readily available for melt. Should predicted CMIP5 RCP 4.5 scenario warming (0.9–2.3 °C by 2100) occur in the study area, 19–30, 17–50 and 14–37 % increases in the total glacierised area below the Equilibrium Line Altitude will occur in the Dudh Koshi and Tama Koshi catchments, and on the Tibetan Plateau. Comparison of our data with a conceptual model of Himalayan glacier shrinkage confirms the presence of three distinct process regimes, with all glaciers in our sample now in a state of accelerating mass loss and meltwater storage

    A Standard Input Format for Computer Codes Which Solve Stochastic Programs with Recourse and a Library of Utilities to Simplify its Use

    Get PDF
    We explain our suggestions for standardizing input formats for computer codes which solve stochastic programs with recourse. The main reason to set some conventions is to allow programs implementing different methods of solution to be used interchangeably. The general philosophy behind our design is a) to remain fairly faithful to the de facto standard for the statement of LP problems established by IBM for use with MPSX and subsequently adopted by the authors of MINOS, b) to provide sufficient flexibility so that a variety of problems may be expressed in the standard format, c) to allow problems originally formulated as deterministic LP to be converted to stochastic problems with a minimum of effort, d) to permit new options to be added as the need arises, and e) to provide some routines to facilitate the task of reading files specified in the standard format

    Air-snow transfer of nitrate on the East Antarctic plateau – Part 2: An isotopic model for the interpretation of deep ice-core records

    Get PDF
    Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a~quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a~novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 \unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a~few~‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a~framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core, may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 could then be determined. Therefore, information about the past variations in the local and long range processes operating on reactive nitrogen species could be obtained from ice cores collected in low accumulation regions such as the Antarctic plateau

    Revealing the Competition between Peeled-Ssdna, Melting Bubbles and S-DNA during DNA Overstretching using Fluorescence Microscopy

    Get PDF
    Understanding the structural changes occurring in double-stranded (ds)DNA during mechanical strain is essential to build a quantitative picture of how proteins interact and modify DNA. However, the elastic response of dsDNA to tension is only well-understood for forces < 65 pN. Above this force, torsionally unconstrained dsDNA gains ∼70% of its contour length, a process known as overstretching. The structure of overstretched DNA has proved elusive, resulting in a rich and controversial debate in recent years. At the centre of the debate is the question of whether overstretching yields a base-paired elongated structure, known as S-DNA, or instead forms single-stranded (ss)DNA via base-pair cleavage. Here, we show clearly, using a combination of fluorescence microscopy and optical tweezers, that both S-DNA and base-pair melted structures can exist, often concurrently, during overstretching. The balance between the two models is affected strongly by temperature and ionic strength. Moreover, we reveal, for the first time, that base-pair melting can proceed via two entirely different processes: progressive strand unpeeling from a free end in the backbone, or by the formation of ‘bubbles' of ssDNA, nucleating initially in AT-rich regions. We demonstrate that the mechanism of base-pair melting is governed by DNA topology: strand unpeeling is favored when there are free ends in the DNA backbone. Our studies settle a long running debate, and unite the contradictory dogmas of DNA overstretching. These findings have important implications for both medical and biological sciences. Force-induced melting transitions (yielding either peeled-ssDNA or melting bubbles) may play active roles in DNA replication and damage repair. Further, the ability to switch easily from DNA containing melting bubbles to S-DNA may be particularly advantageous in the cell, for instance during the formation of RNA within transcription bubbles. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved

    Revealing the Competition between Peeled-Ssdna, Melting Bubbles and S-DNA during DNA Overstretching using Fluorescence Microscopy

    Get PDF
    Understanding the structural changes occurring in double-stranded (ds)DNA during mechanical strain is essential to build a quantitative picture of how proteins interact and modify DNA. However, the elastic response of dsDNA to tension is only well-understood for forces < 65 pN. Above this force, torsionally unconstrained dsDNA gains ∼70% of its contour length, a process known as overstretching. The structure of overstretched DNA has proved elusive, resulting in a rich and controversial debate in recent years. At the centre of the debate is the question of whether overstretching yields a base-paired elongated structure, known as S-DNA, or instead forms single-stranded (ss)DNA via base-pair cleavage. Here, we show clearly, using a combination of fluorescence microscopy and optical tweezers, that both S-DNA and base-pair melted structures can exist, often concurrently, during overstretching. The balance between the two models is affected strongly by temperature and ionic strength. Moreover, we reveal, for the first time, that base-pair melting can proceed via two entirely different processes: progressive strand unpeeling from a free end in the backbone, or by the formation of ‘bubbles' of ssDNA, nucleating initially in AT-rich regions. We demonstrate that the mechanism of base-pair melting is governed by DNA topology: strand unpeeling is favored when there are free ends in the DNA backbone. Our studies settle a long running debate, and unite the contradictory dogmas of DNA overstretching. These findings have important implications for both medical and biological sciences. Force-induced melting transitions (yielding either peeled-ssDNA or melting bubbles) may play active roles in DNA replication and damage repair. Further, the ability to switch easily from DNA containing melting bubbles to S-DNA may be particularly advantageous in the cell, for instance during the formation of RNA within transcription bubbles. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved

    On the fraction of dark matter in charged massive particles (CHAMPs)

    Full text link
    From various cosmological, astrophysical and terrestrial requirements, we derive conservative upper bounds on the present-day fraction of the mass of the Galactic dark matter (DM) halo in charged massive particles (CHAMPs). If dark matter particles are neutral but decay lately into CHAMPs, the lack of detection of heavy hydrogen in sea water and the vertical pressure equilibrium in the Galactic disc turn out to put the most stringent bounds. Adopting very conservative assumptions about the recoiling velocity of CHAMPs in the decay and on the decay energy deposited in baryonic gas, we find that the lifetime for decaying neutral DM must be > (0.9-3.4)x 10^3 Gyr. Even assuming the gyroradii of CHAMPs in the Galactic magnetic field are too small for halo CHAMPs to reach Earth, the present-day fraction of the mass of the Galactic halo in CHAMPs should be < (0.4-1.4)x 10^{-2}. We show that redistributing the DM through the coupling between CHAMPs and the ubiquitous magnetic fields cannot be a solution to the cuspy halo problem in dwarf galaxies.Comment: 21 pages, 2 figures. To appear in JCA

    Synthesis and characterization of an f‑block terminal parent imido [U=NH] complex: a masked uranium(IV) nitride

    Get PDF
    Deprotonation of [U(TrenTIPS)(NH2)] (1) [TrenTIPS = N(CH2CH2NSiPri3)3] with organoalkali metal reagents MR (M = Li, R = But; M = Na−Cs, R = CH2C6H5) afforded the imido-bridged dimers [{U-(TrenTIPS)(μ-N[H]M)}2] [M = L −Cs (2a−e)]. Treatmentof 2c (M = K) with 2 equiv of 15 crown-5 ether (15C5) afforded the uranium terminal parent imido complex [U(TrenTIPS)(NH)][K(15C5)2] (3c), which can also be viewed as a masked uranium(IV) nitride. The uranium−imido linkage was found to be essentially linear, and theoretical calculations suggested σ2π4 polarized U−N multiple bonding. Attempts to oxidize 3c to afford the neutral uranium terminal parent imido complex [U(TrenTIPS)(NH)] (4) resulted in spontaneous disproportionation to give 1 and the uranium−nitride complex [U(TrenTIPS)(N)] (5); this reaction is a new way to prepare the terminal uranium−nitride linkage and was calculated to be exothermic by −3.25 kcal mol−1

    Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis

    Full text link
    In this work we study examples of hierarchical neutrino mass matrices inspired by family symmetries, compatible with experiments on neutrino oscillations, and for which there is a connection among the low energy CP violation phase associated to neutrino oscillations, the phases appearing in the amplitude of neutrinoless double beta decay, and the phases relevant for leptogenesis. In particular, we determine the predictions from a texture based on an underlying SU(3) family symmetry together with a GUT symmetry, and a strong hierarchy for the masses of the heavy right handed Majorana masses. We also give some examples of inverted hierarchies of neutrino masses, which may be motivated in the context of U(1) family symmetries.Comment: 34 pages. Replaced with published version -typos, corrections and references adde
    • …
    corecore