
A Standard Input Format for
Computer Codes Which Solve
Stochastic Programs with Recourse
and a Library of Utilities to Simplify
its Use

Edwards, J., Birge, J.R., King, A.J. and Nazareth, J.L.

IIASA Working Paper

WP-85-003

January 1985

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Edwards, J., Birge, J.R., King, A.J. and Nazareth, J.L. (1985) A Standard Input Format for Computer Codes Which Solve

Stochastic Programs with Recourse and a Library of Utilities to Simplify its Use. IIASA Working Paper. WP-85-003

Copyright © 1985 by the author(s). http://pure.iiasa.ac.at/2697/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

A STANDARD INPUT M)R16AT FDR COMPUTER CODES
WDCH SOLVE SrOCHASIlC PROGRAMS WITH RECOURSE
AND A LIBRARY OF WILITES TO SIKPIJFY ITS USE

Jonathan Edwards
John Birge
Alan King
Larry Nazareth

January 1985
WP-85-03

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of i ts National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg. Austria

We explain our suggestions for standardizing input formats for computer
codes which solve stochastic programs with recourse. The main reason
to set some conventions is to allow programs implementing different
methods of solution to be used interchangeably. The general philosophy
behind our design is a) to remain fairly faithful to the de f a c t o standard
for the statement of LP problems established by IBM for use with M P S X
and subsequently adopted by the authors of MINOS, b) to provide
sufficient flexibility so that a variety of problems may be expressed in the
standard format, c) to allow problems originally formulated as deter-
ministic LP to be converted to stochastic problems with a minimum of
effort, d) to permit new options to be added as the need arises, and e) to
provide some routines to facilitate the task of reading files specified in
the standard format.

Developing methodology and tools for optimal decision making under
uncertainty was always a major part of research in System and Decision
Sciences Area. For the last two years, the Adaptation and Optimization
Project was involved in developing methods and computer implementa-
tions for one of the important parts of such methodology -- stochastic
programming.

This paper is among those which describes one of the results of
these efforts -- the collection of routines designed t o solve stochastic
programming problems. It contains a description of standardized input
formats for some of the routines of this collection, and a l ibrary of utili-
t ies to simplify i ts use.

AB. Kurzhanski
Chairman
System and Decision Sciences
Program

Introduction

Over the past six months, the Adaptive Optimization project of the Systems
and Decision Sciences program at the International Institute for Applied Sys-
tems Analysis has collected a number of computer programs written to solve
various problems in stochastic programming. Our goal has been to organize
these codes so that they may be distributed on magnetic tape to researchers,
who might benefit from having several algorithms with which to experiment.
However, we have come to realize that the process of tinkering with the various
methods will be greatly complicated because each program has its own format
for input ,data. We have therefore developed a standard input format for sto-
chastic programs with recourse. To encourage and simplify i ts use, we have
based i t on the input format developed by IBM for the extended Mathematical
Programming Subsystem (MPSX) (IBM, 1972) and adopted by the authors of the
Modular In-core Nonlinear Optimization System (MINOS) (Murtagh and
Saunders, 1977) and we have written a number of low level subroutines to read
files written in the standard format.

The Problem
The general form of the stochastic program with recourse is taken to be

minimize cx + Q(z) (1)

subject to

where

x and y denote the decision and recourse variables, respectively, chi
denotes an event, T(chi) and W(chi) denote the technology and recourse
matrices, respectively. and $ roman E sub chi $ denotes expectation. In subse-
quent references to the technology matrix, the recourse matrix, the stochastic
right hand side, $p(chi)$, and the penalty function, $q(y, chi)$, we omit the
arguments y and chi.

Organization of the Data: Control, Core. and Stochastics Files
The data required by a program written to solve the stochastic program in

(1) can be divided logically into three files: a control file, a "core" file, and a
"stochastics" file. Roughly speaking, the control file contains any data particu-
lar to the program and the core and stochastics files contain the data that
define the problem.

As its name implies, the control file contains any information that is used
to guide the execution of the program. For example, the control file might
include a limit on the number of steps permitted and a tolerance for conver-
gence if the algorithm implemented in the program were iterative in nature,
file name and unit number assignments if the program required several files, or
upper limits on the amount of storage needed if the program allocated array
space "dynamically." The control file also contains any information that must
be read before the program profitably can read the contents of the matrices

and vectors that appear in the problem, e.g., the dimensions of those struc-
tures. Because the contents of the control file depend heavily on the algorithm
employed and the manner in which i t is implemented, we have not included a
standard format for control files. Indeed, the rigid structure of the format we
propose (particularly its strict use of specific columns as field delimiters)
makes it unsuitable for application to files whose contents are liable to change
frequently.

The core flle contains the bounds on the decision vector, x, the contents
of the matrices by which it is multiplied, and the contents and ranges of the
rows of the deterministic right hand side vector, b. The core file for a sto-
chastic LP thus corresponds in large measure to the data file that MPSX or
MINOS would require to solve the equivalent nonstochastic LP (i.e., the same
problem with $Q(x)$ removed).

The stochastics file defines the technology matrix, T, the distribution of
the rows of the stochastic right hand side vector, p, the contents of the
recourse matrix, W, and the function q. We have chosen to partition the
input in this fashion so that a problem originally formulated as a linear pro-
gram and expressed in standard MPSX format may be augmented later by a sto-
chas t i c~ file, thereby permitting certain elements (e.g., the right hand side) to
be stochastic.

Overview of the Standard Input Format
The proposed format is quite similar to the MPSX format, which is

described on pages 199 through 209 of (IBM, 1972), although there are some
differences. As in the MPSX format. each data file contains a number of sec-
tions, some of which are optional. A "header line" (or "header") marks the
beginning of each sectiont. Most sections contain data lines. A data line is
divided into six fields, some of which may be empty. Specific columns delineate
field boundaries. There are three name fields, two numeric field., and a code
field- The columns that constitute these fields are

- columns 2 and 3: code field

- columns 5 through 12: &st name field

- columns 15 through 22: second name field

- columns 25 through 36: flrst numeric field

- columns 40 through 47: third name field

- columns 50 through 61: second numeric field

(all column ranges are inciusive). Comment lines contain an asterisk (*) in the
first column and may appear anywhere.

Unlike the MPSX format, names may contain imbedded blanks or leading
blanks (although this last is not recommended). The contents of the name
fields are interpreted as character strings, so names may begin with a digit. All
lower case letters in the code and name fields are translated to their upper
case equivalents. Values in the numeric fields must contain a decimal point.
The MPSX convention concerning comments following a dollar sign ($) in the
first column of the second or third name fields has not been adopted as part of
the standard format.

Following are descriptions of each of the data files. Each description con-
tains a list of the sections that constitute the corresponding data file. These

t (IBM. 1972, p. 199) uses the term "indicator card" rather than header.

sections must appear in the data 6le in the same order as they appear in the
list, although sections marked "optional" need not appear a t all.

The Core me
The core file specifies

- the linear portion of the objective, c ,
- the contents of the constraint matrix, A, and possibly the contents of the

technology matrix, T, and of the recourse matrix, W,
- the deterministic right hand side, b ,
- the bounds on the decision vector, z, and
- the ranges on the r ight hand side.

The core file contains the following sections: "NAME." "ROWS," "COLUMNS,"
"RHS," "RANGES," "BOUNDS," and "ENDATA" These sections assume more or less
the same role in the standard format as they do in the MPSX format. Therefore,
we give only an abbreviated description of these sections and note differences
between the standard format and the MPSX format.

1. NAME - This is an informative header line (the section contains no data
lines). The user may en ter any characters desired in columns 15 through
72 (the MPSX format restr icts names to eight alphanumeric characters).

2. ROWS - As in the MPSX format, this section specifies the names of t h e rows
of A, the name of the row in the COLUMNS section tha t contains the ele-
ments of c , and the type of constraint (equality or inequality) represented
by each row. In some cases, this section also specifies the names of the
rows of T. Rows formed by a l inear combination of two other rows (type "Do
rows) and scaling of rows (use of the "'SCALE"' keyword) a re supported in
t he MPSX format but are not permit ted in the standard format.

3. COLUMNS - As in the MPSX format, this section specifies the names of t he
columns of A and of c and contains the values of the nonzero elements of A
and of c . In some cases, th is section also specifies t he names of the
columns of W, contains the nonzero elements of W, and/or contains the
nonzero elements of T. Scaling of columns (use of t he "'SCALE"' keyword)
is supported in the MPSX format but is not permit ted in the standard for-
mat.

4. RHS - This section specifies the names of the rows of b and contains the
values of the nonzero elements of b . This section is identical t o i ts coun-
terpart in the MPSX format.

5. RANGES (optional) - This section specifies the ranges on the rows of b . This
section is identical to i ts counterpart in the MPSX format.

6. BOUNDS (optional) - This section specifies the bounds on the rows of the
decision vector, z. This section is identical to i ts counterpart in t he MPSX
format.

7. ENDATA - This line marks the end of the core file (the section contains no
data lines) and is identical to i t s counterpart in t h e MPSX format.

The Stochastics Kle
The stochastics file specifies

- the contents of the technology matrix, T,

- the distribution of the stochastic r ight hand side, p ,
- the contents of the recourse matrix, W, and
- the form of the penalty function, q .

The stochastics file contains the following sections: "NAME," "TECHNOLOGY,"
"DISTRIBUTIONS," "RECOURSE," "OBJECTIVES," and "ENDATA." After the "OBJEC-
TIVES" section additional sections may appear containing data particular to a
given algorithm. A program should read only those sections i t needs from the
file and should ignore the rest.

Most sections may take one of several forms, and the user must enter the
name of one of them beginning in column 15 of the header line. A description
of each of the sections, the forms they may assume, and their contents follows.

1. NAME - This is an informative header line (the section contains no data
lines). The user may enter any characters desired in columns 15 through
72.

2. TECHNOLOGY - This section specifies the contents of T. The section may
take one of the forms whose names follow:

DETERMINISTIC (the elements of T follow) - The technology matrix is given
by the data following the section header. The format of the data is identi-
cal to that of the COLUMNS section of the core file, i.e., the contents of the
matrix are specified in column order. The first name field on a line
(columns 5 through 12) contains the name of the column. The remaining
name/numeric field pairs (columns 15 through 22/25 through 36 and 40
through 47/50 through 61) specify a row name and the contents of the
matrix a t the position given by the row and column names. The row names
form a subset of the row names in the ROWS section of the core file.

CORE (the elements of T appear in the core file) - The data consists of a list
of names which form a subset of the names specified in the ROWS section of
the core file. The contents of these rows (as specified in the COLUMNS sec-
tion of the core file) constitute the technology matrix. One name appears
per line, in the first name field (columns 5 through 12).

STOCHASTIC (the elements of T are supplied by a subroutine) - The data
consists of a list of the names of the rows of the technology matrix. Each
row name has associated with it one or more column names. The column
names specify the active columns within the given row and form a subset
of the column names specified in the COLUMNS section of the core file. The
values for the technology matrix do not appear in ei ther data file but are
supplied by a subroutine written by the user. The row names appear in the
first name field of a line (columns 5 through 12) and the other two name
fields (columns 15 through 22 and 40 through 47) are available for the
column narnes.

NONE (no data) - There is no data. The user must decide where and how to
obtain the necessary values.

3. DmRIBUTIONS - This section specifies the distribution of the rows of p.
The section may take one of the forms whose names follow:

DISCRETE (each row is independently distributed) - Each row of p may take
one of a fixed number of values. The data for this form consists of a
number of "definitions," which are analogous to the "vectors" in the

RANGES and BOUNDS sections of the core file (see IBM, 1972). Each
definition specifies the distribution of every row of p and consists of a
number of sets of entr ies of the form "defname rowname value probabil-
ity." Within a given definition, there is one such set for each of the rows
named in the TECHNOLOGY section. "defname" is the name of the definition
to which the entry belongs; i t occupies the first name field on a line
(columns 5 through 12). "rowname" is the name of the row associated with
the entry; i t occupies the second name field on a line (columns 15 through
22). "value" and "probability" are a value for the row and its likelihood,
respectively. They occupy the first and second numeric fields (columns 25
through 36 and 50 through 61), respectively.

The sum of the probabilities for a given row must be unity. The values
specified for a given row must be distinct. Entries for different rows or
different definitions must not be mixed together in the input file.

As an example, let the T matrix have two rows, TROW1 and TROW2, and
define two distributions for the rows of p as follows:

with probability

Row 2 = 9 with probability 0.3 t 1::
with probability

Row 2 = 2 with probability 1.0 .

The contents of the name and numeric fields for these distributions are
shown in table 1. The user specifies which is the desired definition (our
definition names "DIST1" and "DIST2" were chosen arbitrarily) when the
appropriate input utility is called. Note that every value contains a
decimal point.

Table 1. Contents of a sample DISCRETE DISTRIBUTIONS section.

SIMULATION (the rows are supplied by a subroutine) - There are no data
lines in th is case. The program obtains i ts values from a subroutine writ-
ten by the user.

First
Name
Field

DISTl

DISTl

DISTl

DISTl

DISTl

DISTl

DISTl

DIST2

DIST2

DIST2

PIECEWISE (piecewise constant pdf) - Each row of p takes a value within
one of a finite number of ranges. Within a range, all values are equally
likely. However. within a se t of ranges. all ranges are n o t equally likely.
The data for this form consists of a number of "definitions," which are
analogous to the "vectors" in the RANGES and BOUNDS sections of the core
file (see IBM. 1972). Each definition specifies the distribution of every row
of p and consists of a number of se ts of entr ies of three lines each. Within a
given definition, there is one such set for each of the rows named in the
TECHNOLOGY section. Each three line ent ry within a se t describes a range
for the row associated with the set. The first line in an en t ry contains the
let ters "PC" in the code field (columns 2 and 3), the name of the definition
to which the entry belongs in the first name field (columns 5 through 12),
the name of the row with which th is range is associated in the second
name field (columns 15 through 22), and the probability t ha t the row takes
a value within the range in the first numeric field (columns 25 through 36).
The second and third lines in an en t ry specify the upper and lower bounds
of the range. For both bounds, the code field contains the let ters "BD", the
first name field contains the name of the definition to which the ent ry
belongs, the second name field contains the name of the row with which
the range is associated, and the f irst numeric field contains the bound
value.

Second
Name
Field

TROW1

TROW1

TROW1

TROW1

TROW2

TROW2

TROW2

TROW1

TROW1

TROW2

First
Numeric

Field

1.0

2.0

3.0

4.0

8.0

9.0

0.0

2.0

4.0

2.0

The sum of the probabilities for the ranges for a given row must be unity.
Entries for different rows, different ranges, o r different definitions m u s t
not be mixed together in the input file.

Second
Numeric I

Field 1

0.4

0.2

0.2

0.2

0.6

0.3

0.1

0.5

0.5

1.0

As an example, le t the T matrix have two rows, TROWl and TROW2, and
define two distributions for the rows of p as follows:

Row 1 in with probability

[5,71 0.7
[1,3] with probability

[o I 11

[2141
Row ' in [[5,9] with probability

Row 2 in [2,3] with probability 1.0 .

The contents of the code, name and numeric fields for these distributions
are shown in table 2. The user specifies which is the desired definition (our
definition names "DIST1" and "DISTZ" were chosen arbitrarily) when the
appropriate input utility is called. Note that every value contains a decimal
point.

Table 2. Contents of a sample PIECEWISE DISTRIBUTIONS section.

BD

BD

PC

BD

BD

PC

BD

BD

PC

BD

BD

PC

BD

BD

SCENARIOS (the value of p is defined by a sample of vectors) - The p vector
may take one of a finite number of values. The data for this form consists
of a number of "definitions," which are analogous to the "vectors" in the
RANGES and BOUNDS sections of the core file (see IBM, 1972). Each
definition provides a sample of vectors and consists of sets of entr ies giving
a value for p and t h e probability that p takes that value. The first line in
each entry contains the let ters "SC" in the code field (columns 2 and 3),
t he name of the definition to mrhich the entry belongs in the first name
field (columns 5 through 12), a name identifying the scenario in the second
name field (columns 15 through 22), and the probability t ha t p takes the
value associated with this scenario in the first numeric field (columns 25
through 36). Subsequent l ines specify the values tha t the rows of p
assume under the scenario. There must be one of these lines for each row

DISTl

DISTl

DISTl

DISTl

DISTl

DIST2

DIST2

DIST2

DIST2

DIST2

DIST2

DIST2

DIST2

DIST2

TROW2

TROW2

TROW2

TROW2

TROW2

TROW1

TROW1

TROW1

TROW1

TROW1

TROW1

TROW2

TROW2

TROW2

1.0

3.0

0.2

0.0

1.0

0.5

2.0

4.0

0.5

5.0

9.0

1.0

2.0

3.0

named in the TECHNOLOGY section. The code field of these lines contains
the letters "RV", the first name field contains the name of t he defninition
to which the ent ry belongs, the second name field contains the name of the
row whose value the line specifies, and the first numeric field contains the
value.

The sum of the probabilities for the scenarios in a given definition must be
unity. Entries for different scenarios or different definitions must not be
mixed together in the input file.

As an example. let the T matr ix have two rows, TROW1 and TROW2, and
define two distributions of the vector p as follows:

Vector = {[3 41 with probability 10.3

and

Vector = with probability

The contents of the code, name and numeric fields for these distributions
are shown in table 3. The user specifies which is t he desired definition (our
definition names "SAMPI" and "SAMP2" were chosen arbitrarily) when the
appropriate input util ity is called. The scenario names "SCEN1," "SCEN2,"
and "SCEN3" where chosen arbitrarily. Note tha t every value contains a
decimal point.

NONE (no data) - There is no data. The user must decide where and how to
obtain the necessary values.

4. RECOURSE - This section specifies the contents of W. The section may take
one of the forms whose names follow:

SIMPLE (simple recourse) - There are no data lines in th is case. The
recourse matrix is assumed to be [I,-I], where I has ra:lk equal to the
number of rows in the technology matrix.

DETERMINISTIC (the elements of W follow) - The recourse matr ix is given by
the data following the section header. The format of the data is identical
to that of the COLUMNS section of the core file, i.e.. the contents of the
matrix are specified in column order. The first name field on a line
(columns 5 through 12) contains the name of the column. The remaining
narne/numeric field pairs (columns 15 through 22/25 through 36 and 40
through 47/50 through 61) specify a row name and the contents of the
matrix a t the position given by the row and column names. The row names
form a subset of the row names in the TECHNOLOGY section.

CORE (the elements of W appear in the core file) - The data consists of a list
of names which form a subset of the column names specified in the
COLUMNS section of t he core file. The contents of those columns (as
specified in t h e COLUMNS section of the core file) consti tute t he recourse
matrix. One name appears per line, in the first name field (columns 5

Table 3. Contents of a sample SCENARIOS DISTRIBUTIONS section.

Code
Field

SC

RV

RV

SC

RV

RV

SC

RV

RV

through 12).

STOCHASTIC (the elements of W are supplied by a subroutine) - The data
consists of a list of the names of the rows of the recourse matrix. Associ-
ated with each name is one or more column names. These column names
specify the active columns within t he given row and form a subset of the
column names specified in the COLUMNS section of the core file. The
values for the recourse matr ix do not appear in either data file but a re sup-
plied by a subroutine written by the user. The row names appear in the
first name field of a line (columns 5 through 12) and the other two name
fields (columns 15 through 22 and 40 through 47) are available for the
column names.

First
Name
Field

SAMP1

SAMP1

SAMP1

SAMPI

SAMP1

SAMP1

SAMP1

SAMPI

SAMP1

NONE (no data) - There is no data. The user must decide where and how to
obtain the necessary values.

5. OaTECTIYES - This section specifies the form of q . The section may take
one of the forms whose names follow:

LINEAR (q is a linear function) - The recourse objective is given by
q (y) = 4y, where q is given by the data following the section header. The
data for th is form consists of a number of "definitions," which a re analo-
gous to the "vectors" in the RANGES and BOUNDS sections of the core file
(see IBM, 1972). Each definition specifies the elements of q and consists of
entr ies of the form "defname name value," where "defname" is the name of
t h e definition to which the entry belongs, "name" is the name of a column
of W (or of a row of T; see below) and "value" is the value for the
corresponding row of q . "defname" occupies the f i s t name field on a line

Second
Name
Field

SCENl

TROW1

TROW2

SCEN2

TROW1

TROW2

SCEN3

TROW1

TROW2

First
Numeric

Field

0.5

1.0

2.0

0.3

3.0

4.0

0.2

5.0

5.0

(columns 5 through 12), "name" occupies the second name field (columns
15 through 22) and "value" occupies the first numeric field (columns 25
through 36).

Entries for different definitions must not be mixed together in the input
file.

As an example, let the W matrix have two columns, WCOLl and WCOL2, and
define two vectors q as follows:

and

The contents of the name and numeric fields for these vectors a re shown in
table 4. The user specifies which is the desired definition (our definition
names "VEC1" and "VECZ" were chosen arbitrarily) when the appropriate
input util ity is called. Note that every value contains a decimal point.

Table 4. Contents of a sample LINEAR OBJECTIVES section.

First
Name
Keld

VEC1

VEC1

VEC2

VEC2

PIECEWISE (q is two-piece linear) -The recourse objective is assumed to be
two-piece continuous about zero, i.e.

The da ta for this form consists of a number of "definitions," which a re
analogous to the "vectors" in the RANGES and BOUNDS sections of the core
file (see IBM, 1972). Each definition specifies the values of qi+ and q,- for all
i and consists of entr ies of the form "defname name value value", where
"defname" is the name of the definition to which the entry belongs, "name"
is the name of a column of W (or of a row of T; see below), the first value
gives the corresponding value of q + , and the second value gives the
corresponding value of q-. The names occupy the first and second name
fields on a line (columns 5 through 12 and 15 through 22) and the values
occupy the first and second numeric fields (columns 25 through 36 and 50
through 61).

Second
Name
Field

WCOLl

WCOLZ

WCOLl

WCOLZ

Entries for different definitions must not be mixed together in the input
file.

First
Numeric
Fi el d

7.0

9.0

3.0

3.0

As an example, let the W matrix have two columns, WCOLl and WCOL2, and
define two vectors q as follows:

The contents of the name and numeric fields for these vectors are shown in
table 5. The user specifies which is the desired definition (our definition
names "VEC1" and "VECZ" were chosen arbitrarily) when the appropriate
input utility is called. Note that every value contains a decimal point and
that the values of q,' are positive.

Table 5. Contents of a sample OBJECTIVES (PIECEWISE) section.

NONE (no data) - There is no data. The user must decide where and how to
obtain the necessary values.

Note - if the recourse matrix is simple (i.e., if there are no column names
for W), row names of T are substituted for column names of W in the OBJEC-
TIVES section.

6. ENDATA - This line marks the end of the stochastics file (the section con-
tains no data lines).

I t is clear that we have covered only a few of the possibilities for most of the
above sections. However, the format is such that new forms can be added as
the need arises.

Standard Data Structures
One of the benefits of a standard format is that a library of routines to

facilitate the task of reading files specified in the format may be written. f e
now describe some special data structures used by our utilities.

Packed Vectors and Matrices
The matrices and vectors that appear in a stochastic program with

recourse are often sparse. Our utilities therefore attempt to conserve memory
by saving only the nonzero elements of a matrix or vector. We call this a
"packed" representation and refer to matrices or vectors stored in this fashion
as "packed matrices" and "packed vectors." respectively.

A packed vector consists of two arrays?. One contains the nonzero vector
elements. The other holds the row or column indices of the nonzero vector ele-
ments. We call these arrays the "values" array and the "indices" array, respec-
tively. If the nonzero elements of a vector are [vil, . . . ,vin] and are ordered so
that ij<ij+l, then the jth element of the values array contains the value of v . 9
and the jth element of the indices array contains the value of i,. The values
and indices arrays for the vector [1,0,4,0.0.5] are shown in figure 1.

values indices

Figure 1. Packed representation of the vector [1,0,4,0,0,5]

Just as an ordinary matrix may be viewed as a collection of vectors, a
packed matrix may be thought of as a collection of packed vectors. A packed
matrix consists of three arrays. One contains the the nonzero matrix ele-
ments. Another holds the row indices of the nonzero matrix elements. These
two arrays are analogous to the values and indices arrays mentioned in the
preceding paragraph and so are called the values array and the indices array,
respectively. The third array organizes the matrix by column: the ith element
of this array is the location in the values and indices arrays where the entries
for the i th column of the matrix begin. Because the elements of the third array
"point" to the matrix columns, we call this array the "pointers" array. If a
matrix has n columns, the (n+l) th element of the pointers array contains the
index of the element in the values array immediately following the last nonzero
matrix element (i.e., the (n+l) th element points to the space immediately fol-
lowing the matrix entries). The values, indices, and pointers arrays for the 6x5
matrix

t Throughout this paper, we use the term "array' to refer to "a nonempty sequence of data"
(ANSI, 1078, p. 5-1) within the computer's memory. An array may have several d imasions

are shown in figure 2. The double lines in that figure mark the beginning of the
entr ies for each column. Note that the third column vector of the matr ix is
identical to the vector whose packed representation is shown in figure 1 and as
a result that the portions of the values and indices arrays tha t contain the
entr ies for that vector in figure 2 are identical to the values and indices arrays
in figure 1. Note also that the value of the first element of the pointers array is
always 1.

values indices pointers

Figure 2. Packed representation of a 6x5 matrix

I t is difficult t o obtain a single row vector from the data s t ructure shown in
figure 2. To permit rapid access to row vectors, we add three arrays to a packed
matrix and produce an "augmented packed matrix." The three arrays are
called the "augmented pointers" array, the "augmented indices" array, and the
"map" array. The augmented pointers array and the augmented indices array
a re analogous to the indices and pointers arrays of the packed matrix. The aug-
mented indices array contains the column indices of the nonzero matr ix ele-
ments and the augmented pointers array holds pointers to the beginning of the
entr ies for each row. However, there is a small complication. The contents of
the augmented pointers array cannot be used to access the values array
directly since the entries in the values array a re organized by column. The

or only one dimension. We reserve the word "matrix" to refer to the mat-ices in the prob-
lem, i.e.,A,T.and W.

function of the map array is to map the augmented pointer array and the aug-
mented indices array onto the values array (hence its name). Each element in
the map array is the location in the values array of the matrix element whose
row and column indices are defined by the appropriate entries in the aug-
mented pointers array and the augmented indices array. Figure 3 shows the
augmented pointers, augmented indices, map, and values arrays for the matrix
used to provide the example in figure 2. The double lines in figure 3 mark the
beginning of the entries for each row. Like the pointers array, the augmented
pointers array always has the value 1 in its first element.

augmented
pointers

augmented
indices values

Figure 3.
Arrays for rapid access of row vectors

in the packed representation of a 6x5 matrix

The reader may be forgiven for wondering how the use of six arrays to
represent a single matrix can possibly save space. Indeed, i t might appear tha t
the density of the matrix would have to be less than 0.16 for such an approach
to conserve memory. The t rue picture is brighter because only the values
array need be capable of expressing real numbers. The contents of the auxili-
ary arrays (indices, pointers, etc.) are integers. In the utilities we have writ-
ten, the values array is double precision and the auxiliary arrays are half
integer integer*^). Table 6 shows the densities at which i t becomes uneconom-
ical to use the various packed representations.

Table 6. Critical densities for packed data structures.

Representation

packed vector

packed matrix

augmented matrix

Since many of our input utilities use packed representations exclusively,
we have provided routines to convert packed structures to their unpacked
equivalents and vice versa. I t is possible to write subroutines that use these
utilities and the standard input utilities to read dense matrices without per-
manently consuming the additional memory that the packed representation
requires. For example, to read the contents of an mxn matrix, M, whose density
is greater than 0.73, into an mxn array, A, the user writes a subroutine and
passes i t the address of A (i.e., '"call subroutine(A ,...)"). The subroutine
- declares the pointers, indices, and values arrays for a packed matrix,
- calls the appropriate input utility to read the contents of M into the packed

matrix, and
- calls the "expand matrix" utility, directing i t to transfer the contents of

the packed matrix into k
The effect of these operations is to place the elements of M into A The arrays
used to represent the packed matrix disappear when the subroutine executes
i ts "return" statement.

Unpacked
Dimensions

n

rnxn

rnxn

Stochastic Vectors
The stochastic right hand side vector, p , cannot easily be represented as a

single packed vector. The DISTRIBUTIONS section (which defines p) may appear
in several forms, each of which provides different information. Accordingly,
there are three separate (but similar) data structures to describe the distribu-
tion of the stochastic right hand side.

The three data structures share a common organization: each has a
"pointers" array, a "probabilities" array, and a t least one "values" array. The
contents of these arrays are interpreted differently for each data structure.

For the DISCRETE form of the DISTRIBUTIONS section, the values array con-
tains the values tha t each row may assume and each entry in the probabilities
array contains the likelihood that the row assumes the corresponding value. In
this case, the pointers array plays a role similar to the augmented pointers
array in an augmented packed matrix: i t organizes the values and probabilities
arrays by row. The ith entry in the pointers array is the location in the values
and probabilities arrays where the entries for the ith row begin. Like the last
element of the pointers array in a packed matrix, the last element of the
pointers array in a stochastic vector points to the first "empty" entry in the
values and probabilities arrays. The pointers, values, and probabilities arrays
for the vector whose rows have the distribution

I1 lo. 4

Savings realized if density <
Exact Approx. %

8 -
10

----- 8 2 2
10 lorn lorn

-- 8 2(n+m) 4
14 14mn 14mn

0 0

73

46

6 0.1
Row 2 = 6 with probability 0.7

10.2

with probability 0:5 lo
Row 4 = 3 wit.h probability 1.0

are shown in figure 4. The double lines in that figure mark the beginning of the
entr ies for each row.

pointers values
'=

proba-
bilities

1-

Flgure 4.
Representation of a stochastic vector

(DISCRETE DISTRIBUTIONS).

The situation is quite similar for the PIECEWISE form of the DISTRIBUTIONS
section, except tha t two values arrays are needed. One (the "high values"
array) contains the upper endpoint for each interval. The other (the "low
values" array) contains the lower endpoint for each interval. Each entry in the
probabilities array contains the likelihood tha t the appropriate row assumes a
value in the corresponding interval. The pointers array again organizes the
other arrays by row. The pointers, high and low values, and probabilities arrays
for the vector whose rows have the distribution .

Row 1 in with probability

[5,5.3] 0.1
[6,6.3] with probability 0.7
[7,7.3] lo..

"th probability [:::
Row 4 in [3,3.2] with probability 1.0

are shown in figure 5. The double lines in that figure mark the beginning of the
entries for each row. Note that the ranges were obtained by taking the values
from the example shown in figure 4 as the lower bounds for the intervals and
thus that the pointers and probabilities arrays are the same as in figure 4 and
that the low values array is the same as the values array in figure 4.

low
pointers values

m
high proba-

values bilities

Figure 5.
Representation of a stochastic vector

(PIECEWISE DISTRIBUTIONS).

The data structure for the SCENARIOS form of the DISTRTBLTIONS section is
quite different from that for the DISCRETE and PIECEWISE forms. The values
array. as always, contains the values that each row may assume. However, the
values are grouped by scenario: the ith element of the pointers array is the
location in the values array where the entries for the i th observation of the vec-
tor begin and the ith element of the probabilities array contains the likelihood
that the vector assumes the corresponding value. I f there are n observations,
the (n+l) th entry in the pointers array is the index of the first unused element
in the values array. The pointers, values, and probabilities arrays for the vec-
tor whose distribution is

with probability

are shown in figure 6. The double lines in that figure mark the beginning of the

entries for each scenario.

pointers
proba-
bilities values

1-

Figure 6.
Representation of a stochastic vector

(SCENARIOS DISTRIBUTION).

Since each observation has the same number of elements (i.e., the number of
rows in p), the pointers array is not strictly necessary. We have included i t to
provide some uniformity in the components of the data structures for each
form of the stochastic right hand side.

Simple Lists and Hash Tables
Lists play an important role in the standard input format. Some sections

(e.g., the ROWS section and the CORE form of the TECHNOLOGY section) are lit-
tle more than a list of names. Other sections (e.g., the COLUMNS section and
the OBJECTIVES section) require that a list of names be searched. Our input
utilities are able to represent these lists in either of two data structures.

A list of names may be kept in a "simple list" or in a "hash table" (Knuth,
1973). A simple list is essentially a one-dimensional array of character strings.

New entries are placed in the first available element and the list is searched
sequentially. The hashing process uses a function to assign an index to each
name; the name is then placed in the corresponding element of the hash table.
Searches are therefore faster when a hash table is used, but a hash table
requires more space than a simple List. The simple list and a hash table gen-
erated when the names "row00001," "row00002," "row00006" are entered in
order are shown in figure 7. Also shown is the location where the name
"row00007" would be entered. The hash function used to generate the indices
for the hash table appears in our "pchash" utility.

simple hash
list table

Figure 7. Simple list and hash table

Packed Matrices and User-Written Routines
To use the STOCHASTIC form of the TECHNOLOGY and the RECOURSE sec-

tions or the SIMULATIONS form of the DISTRIBUTIONS section of the stochastics
file, the user must write a routine to supply the values of the active elements of
the corresponding matrix or vector. By convention, the first parameter passed
to this routine is the values array for the appropriate structure. All the user's
routine need do is enter its data in column order into this array. It is the cal-
ling routine's responsibility to establish the contents of any auxiliary arrays.

Overview of the Utilities
Nazareth (1982) discusses the development of subroutines which may be

used "as the primitives or basic operators of a language for implementing LP
algorithms." His thesis is tha t a mathematician should develop algorithms to
solve problems, not grind out FORTw routines to read input files. The purpose
of our util it ies is t o free the program author from the tyranny of minutiae and
to allow the researcher to concentrate on methods rather than on means.

The ancestors of our routines are the modules in the LPKlT collection
(Nazareth, 1982). Accordingly, we have adopted LPKIT's naming conventions.
"Problem oriented modules" have names which begin with the let ter "p." Our
problem oriented modules read the sections defined in the standard input for-
m a t and perform various other chores. "Algorithm oriented modules" have
names which begin with the let ter "a." The algorithm oriented modules in our
collection operate on packed data structures; these subroutines therefore have
names which begin with the let ters "ad." Tables 7 through 10 contain a sum-
mary of our utilities.

Table 7. Routines tha t manipulate packed data s t ructures

Subroutine

adcmat

adcvec

adxmat

adxvec

adrn kax

Function

Produce a packed matrix
from a matr ix of full rank
(i.e., remove zeros)

Produce a packed vector
from a vector of full rank
(i.e., remove zeros)

Produce a matr ix of full
rank from a packed ma-
tr ix (i.e.. restore zeros)

Produce a vector of full
rank from a packed vector
(i.e.. restore zeros)

Produce an augmented
packed matr ix from a
packed matr ix (i.e., gen-
erate auxiliary arrays)

Table 8. Routines that read specific sections in the standard format

Subroutine

prcrow

prcbou

prsdis

prsdpc

prsdsc

Function

Read the ROWS section of a core file

Read the BOUNDS section of a core file

Read the DISCRETE form of the DISTRI-
BUTIONS section of a stochastics file

Read the PIECEWISE form of the DIS-
TRIBUTIONS section of a stochastics
file

Read the SCENARIOS form of the DIS-
TRIBUTIONS section of a stochastics
A1 e

Table 4. General input routines

Subroutine

prfmat

prfnam

prfv ec

prssvc

prfget

pflush

Function

Read a matrix from a specified file

Read a list of names from a specified file

Read a vector from a specified file

Read lines from a specified file until a
noncomment line is encountered

Read lines from a specified file until a
section header is encountered

Table 10. Miscellaneous utilities

Subroutine

paroll

pchsrc

pctsrc

pntsrc

pntst l

pntst2

pchash

pckbnd

pireal

pirint

pstrip

PuPPer

Caveats
Although we have attempted to provide a comprehensive set of 1/0

handlers as well as several useful .data structure manipulation routines, we
realize that our collection is incomplete. We hope to enlarge it in the next few
months. Furthermore, while a programmer will find it possible to read data
expressed in the standard input format using some combination of our utilities,
he or she may also discover mistakes in the logic of some routines. Our library
is woefully untested. In most cases, however, i t should prove a simple task to
correct any errors. Finally, we would like to remind the reader that this paper
is a proposal and that nothing is graven in stone.

Function

Reorder the contents of an array

Search a character hash table for a specified key

Search a character simple list for a specified key

Insert a specified key in the proper position in an ordered
numeric simple list

Hash a string of eight characters

Check a name against a set of bounds

Convert a character string to the real number i t represents

Convert a character string to the integer i t represents

Remove leading blanks from a character string

Convert lower case letters in a character string to their
upper case equivalents

Utility Descriptions
We now give a short summary of each of the utilities. We describe the basic

function of each routine, specify the options that are available, and discuss how
each routine might be used A detailed description of the parameters taken by
each routine and their meanings appears in comments to the source code,
which is available from IlASA. Interested parties should contact

Project Secretary
SDS/ADO
International Institute for Applied Systems Analysis
A-236 1 Laxenburg
Austria

ADCMAT
'Illis subroutine generates the packed representation of matrix of full

rank, i.e., removes elements that are zero. The caller may direct ADCMAT to
treat as zero any element whose absolute value is less than a specified toler-
ance.

This subroutine generates the packed representation of a vector of full
rank, i.e., removes elements that a re zero. The caller may direct ADCVEC to
t reat as zero any element whose absolute value is less than a specified toler-
ance.

ADMKAX
This subroutine produces arrays to permit access to row vectors in a

packed matrix, i.e., generates the augmented pointers, augmented indices, and
map arrays.

ADxblAT
This subroutine generates a matr ix of full rank from a packed matrix, i.e.,

restores elements tha t are zero.

A D m c
This subroutine generates a vector of full rank from a packed vector, i.e.,

restores rows or columns containing zero.

PAROLL
This subroutine adjusts the contents of one, two, or three arrays so that a

given element moves to the top of the array(s) while the relative order of the
array entr ies remains unchanged. It is used by other Library routines to ensure
that entr ies in stochastic vectors appear in str ict row order.

PCHASH
This subroutine calculates the initial index and offset used by the method

of double hashing for an eight character key.

PCHSRC
This subroutine is adapted from L. Nazareth's HASH. PCHSRC searches a

hash table for a given eight character key. It uses double hashing for collision
resolution.

PCKBND
This subroutine searches a subset of a given list or table of names for a

given eight character key. It is used by other l ibrary routines to search a list
when a user wishes to restr ict his or he r attention to a certain submatrix or
subvector in an input file.

PcrsRC
This subroutine searches a simple list for a specified eight character key.

mum
This subroutine reads lines from an input file until a noncomment line

whose first character is nonblank is found. I t returns the contents of tha t line
to the caller.

The cal ler may direct th is subroutine to convert any lower case characters
in columns 1 through 12, 15 through 22, and 40 through 47 (the code field, the
three name fields, and the first and fourth columns) to the i r upper case
equivalents.

This subroutine essentially skips to the next section header in the input
when called. It can therefore be used to bypass unused sections in the stochas-
tics or core files or t o "flush" any lines that may remain in a section after the
appropriate data has been read.

PIREAL
This subroutine converts the first sequence of nonblank characters i t finds

in a given string into the real number that sequence represents. The sequence
must contain a decimal point and only the first 15 characters in the sequence
are significant. PIREAL removes the character sequence from the beginning of
the string.

PIRINT
This subroutine converts the first sequence of nonblank characters i t finds

in a given string into the integer value that sequence represents. The sequence
must not contain a decimal point and only the first 10 characters in the
sequence are significant. PIRINT removes the character sequence from the
beginning of the string.

This subroutine searches for a given key in an ordered numeric simple list
using a binary search. The list is assumed to be in ascending order. It is used
by other routines in the library to determine whether a certain name has or
has not been enountered previously in the input file.

PNTSTl and PNTSlZ
These subroutines insert a given key into a simple list using insertion sort.

The routines assume the list is in one-to-one correspondence with another
a r ray and adjust this ar ray so t ha t the values remain str ict ly associated with
the list entr ies (the associated array is assumed to be double precision in
PNTSTl and half integer in PNTSTZ).

PNTSTl and PNTSTZ are used by other routines in the library t o ensure that
the contents of packed vectors appear in str ict row order.

PRCBOU
This subroutine is adapted from M. Saunders' MINOS and L. Nazareth's

PREADB. PRCBOU reads the BOUNDS section of a core file. It assumes that the
BOUNDS section header has been read by the calling routine. I t terminates
when it encounters a noncomment card or line with a character in the first
column or if it encounters end of file. Values in the numeric fields must con-
tain a decimal point in order t o be interpreted properly.

The caller provides PRCBOU a l ist of names. Each time PRCBOU reads a
column name, it searches this list. If the column name is not in the list, an
e r ro r is generated.

Several options a re available:
- The caller may specify tha t the acceptable column names are in a hash

table rather than in a simple list.
- The caller may direct PRCBOU to take its first input from a character

string rather than from t h e source file.

- The caller may direct PRCBOU to enter only the bounds on some set of
columns into the arrays that hold them.

- The caller may inhibit output of diagnostic messages, of the bounds them-
selves, or of both.

Several checks are performed on the input data.

This subroutine is adapted from M. Saunders' MINOS and L. Nazareth's
PREADR. PRCROW reads the ROWS section of a core file. It assumes that the
ROWS section header has been read by the calling routine. It terminates when
it encounters a noncomment card or line with a character in the first column
or if it encounters end of file. PRCROW ignores 'D' type rows.

There are several options available:
- The caller may direct PRCROW to construct a simple list or to construct a

hash table to hold the row names.
- The caller may direct PRCROW to take its first input from a character

string rather than from the source file.
- The caller may inhibit output of diagnostic messages, of the row names and

types themselves, or of both.

Several checks are performed on the input data.

This subroutine reads lines from an input file until a noncomment, non-
blank line is found. I t returns the contents of the line to the caller.

The caller may direct this subroutine to convert any lower case characters
in columns 1 through 12, 15 through 22, and 40 through 47 (the code field, the
three name fields, and the first and fourth columns) to their upper case
equivalents.

This subroutine essentially returns the next "interesting" line in the input
file.

PRFIfAT
This subroutine is adapted from M. Saunders' MINOS and L. Nazareth's

PREADC. PRFMAT reads matrix entries into a packed matrix. It can be used to
read the COLUMNS section of the core file, the DETERMINISTIC and STOCHASTIC
forms of the RECOURSE section of the stochastic file, and, in conjunction with
ADMKAX, the STOCHASTIC form of the TEXHNOLOGY section of the stochastics
file. I t assumes that the header card of the current section has been read by
the calling routine. It terminates when it encounters a noncomment card or
line with a character in the first column or if i t encounters end of file.

Only nonzero elements of the array are entered into the packed matrix and
values in the numeric fields musf contain a decimal point in order to be inter-
preted properly.

The caller passes PRFMAT a List of names. Each time PRFMAT reads a row
name, i t searches this list. If the row name is not in the list, an error is gen-
erated.

Several options are available:

- The caller may direct PRFMAT to construct a simple list or to construct a
hash table to hold the column names.

- The caller may specify that the acceptable row names are in a hash table
rather than in a simple list.

- The caller may direct PRFMAT to take its first input from a character string
rather than from the source file.

- The caller may direct PRFMAT to read only a fixed number of columns from
the source file.

- The caller may direct PRFMAT to enter only the elements for some set of
rows into the packed matrix.

- The caller may direct PRFMAT to treat all values whose absolute value is
less than or equal to some tolerance as zero.

- The caller may direct PRFMAT to enter all values i t encounters, including
zeros, into the packed matrix.

- The caller may inhibit output of diagnostic messages, of the matrix con-
tents themselves, or of both.

Several checks are performed on the input data.

PRFNAM
This subroutine reads a list of names from a file into a simple list. I t

assumes that there is one name per line, in the first name field (columns 5
through 12). I t terminates when it encounters a noncomment card or line with
a character in the first column or if i t encounters end of file. I t can be used to
read the CORE form of the TECHNOLOGY and RECOURSE sections of the stochas-
tics file.

Several options are available:
- The caller may direct PRFNAM to construct a hash table rather than a sim-

ple list.
- The caller may specify that a name must be unique or that a name may

appear more than once in the source file.
- The caller may pass PRFNAM a set of names, specifying that every name in

the source file must appear in this set.
- The caller may direct PRFNAM to take its first input from a character

string rather than from the source file.
- The caller may direct PRFNAM to read only a fixed number of names from

the source file.
- The caller may inhibit output of diagnostic messages, of the names them-

selves, or of both.

Several checks are performed on the input data.

PRFYEC
This subroutine is adapted from M. Saunders' MINOS and L. Nazareth's

PREADC. PRFVEC a row or column vector from a file into a packed vector. I t
assumes that the row or column names appear in the second and/or third
name fields (columns 15 through 22 and 40 through 47, respectively) and that
the associated values are in the first and second numeric fields (columns 25
through 36 and 50 through 61. respectively). The subroutine terminates when it
encounters a noncomment card or line with a nonblank character in the f i s t
column or if it encounters end of file. I t can be used to read the RHS and

RANGES sections of the core file and serves as the basis for PRFMAT.

Only nonzero elements of the vector are entered into the packed vector.
and values in the numeric fields must contain a decimal point in order to be
interpreted properly.

The caller passes PRFVEC a list of names. Each time PRFVEC reads a row or
column name, it searches this list. I f the row or column name is not in the list,
an error is generated.

Several options are available:
- The caller may specify that the list of acceptable row or column names is

in a hash table rather than in a simple list.
- The caller may direct PRFVEC to take its first input from a character string

rather than from the source file.
- The caller may direct PRFVEC to read lines until the contents of the first

name field (columns 5 through 12) change.
- The caller may pass PRFVEC a number of pointers that define a subset of

the list of acceptable row or column names and direct PRFVEC to enter
only elements from those rows or columns into the packed vector.

- The caller may direct PRFVEC to treat all values whose absolute value is
less than or equal to some tolerance as zero.

- The caller may direct PRFVEC to enter all values it encounters, including
zeros, into the packed vector.

- The caller may inhibit output of diagnostic messages, of the vector con-
tents themselves, or of both.

Several checks are performed on the input data.

PRSDIS
This subroutine reads the DISCRETE form of a standard format DJSTRIBU-

TlONS section into a stochastic vector. I t terminates when it encounters a non-
comment card or line with a character in the first column or if i t encounters
end of file. Values in the numeric fields must contain a decimal point in order
to be interpreted properly and the values specified for a given row must be dis-
tin c t.

The caller passes PRSDIS a list of names. Each time PRSDIS reads the
name of a row in the stochastic vector, i t searches this list. If the row name is
not in the list, an error is generated.

Several options are available:
- The caller may specify that the acceptable row names are in a hash table

rather than in a simple list.
- The caller may direct PRSDIS to take its first input from a character string

rather than from the source file.
- The caller may direct PRSDIS to enter only the elements for some set of

rows into the stochastic vector.
- The caller may provide a tolerance that specifies how close the sum of the

probabilities for the values that a given row may assume must be to unity.
- The caller may inhibit output of diagnostic messages, of the vector con-

tents themselves, or of both.

Several checks are performed on the input data.

PRSDPC
This subroutine reads the PIECEWISE form of a standard format DISTRIBU-

TIONS section into a stochastic vector. I t terminates when it encounters a non-
comment card or line with a character in the first column or if i t encounters
end of file. Values in the numeric fields MUST contain a decimal point in order
to be interpreted properly.

The caller passes PRSDPC a list of names. Each time PRSDPC reads the
name of a row in the stochastic vector, i t searches this list. If the row name is
not in the list, an error is generated.

Several options are available:
- The caller may specify that the acceptable row names are in a hash table

rather than in a simple list.

- The caller may direct PRSDPC to take its first input from a character
string rather than from the source file.

- The caller may direct PRSDPC to enter only the elements for some set of
rows into the stochastic vector.

- The caller may provide a tolerance that specifies how close the sum of the
probabilities for the ranges for a give row must be to unity.

- The caller may inhibit output of diagnostic messages, of the vector con-
tents themselves, or of both.

Several checks are performed on the input data.

PRSDSC
This subroutine reads the SCENARIOS form of a standard format DISTRIBU-

TIONS section into a stochastic vector. I t terminates when it encounters a non-
comment card or line with a character in the first column or if i t encounters
end of file. The values in the numeric fields must contain a decimal point in
order to be interpreted properly.

The caller passes PRSDSC a list of names. Each time PRSDSC reads the
name of a row in the stochastic vector, i t searches this list. If the row name is
not in the list, an error is generated.

Several options are available:
- The caller may specify that the acceptable row names are in a hash table

rather than in a simple list.
- The caller may direct PRSDSC to take its first input from a character stri.ng

rather than from the source file.
- The caller may direct PRSDSC to enter only the elements for some set of

rows into the stochastic vector.
- The caller may provide a tolerance that specifies how close the sum of the

probabilities for the scenarios must be to unity. .
- The caller may inhibit output of diagnostic messages, of the vector con-

tents themselves, or of both.

Several checks are performed on the input data.

P R s K
This subroutine is a generic input utility for the stochastics file. I t can be

used to read the OBJECTIVES section and serves as a building block for routines
that read the DISCRETE and SCENARIOS forms of the DISTRIBUTIONS section.
The subroutine terminates if i t encounters a noncomment card or line with a

nonblank character in the first column or if it encounters end of file. Values in
the numeric fields must contain a decimal point in order to be interpreted
properly.

PRSSVC supports a number of options that allow it to read several sections
of the standard input format. Among them:
- The caller may direct PRSSVC to enter the data it reads into a packed vec-

tor or into the arrays for a stochastic vector. The former is required to
read the OBJECTIVES section of the stochastics file, the latter to to read
the DISTRIBUTIONS section of the stochastics file.

- The caller may direct PRSSVC to ignore lines whose first numeric value has
an absolute value less than or equal to a specified tolerance.

- The caller may direct PRSSVC to read lines until the contents of any combi-
nation of the code field (columns 2 and 3), the first name field (columns 5
through 12), and the second name field (columns 15 through 22) change
from what they were when the first valid line was read Routines to read
the sections listed below can profit from using this capability with the corn-
binations shown:

Section (Form) Fields
DlSTRlBUTIONS(SCENARI0S) code, first name
DISTRIBUTIONS (DISCRETE) first name, second name
OBJECTIVES (LINEAR) first name
OBJECTDIES (PIECEWISE) first name

- The caller may pass PRSSVC a list of names. In this case, each time
PRSSVC reads a line, i t searches this list to see whether the contents of the
second name field on the line (columns 15 through 22) appear in the list.
If not, an error is generated. The caller may specify that the list of accept-
able names is in a hash table rather than in a simple list. This option
simplifies the task of reading the OBJECTIVES section and the SCENARIO
form of the DISTRIBUTIONS section.

- The caller may pass PRSSVC a number of pointers that define a subset of
the List of acceptable names and direct PRSSVC to enter only values associ-
ated with those names into the appropriate structure.

- The caller may direct PRSSVC to enter both values that appear on a line
into the values arrays or to enter only the first value into the first values
array. The former is useful when reading the DISCRETE form of the DISTRI-
BUTIONS section and the PIECEWISE form of the OBJECTIVES section and
the lat ter is useful when reading the SCENARIOS form of the DISTRIBUTIONS
section and the LINEAR form of the OBJECTIVES section.

- The caller may specify that the values appearing in the first numeric field
must be unique. This option is used to verify that the values for the rows
in the DISCRETE form of the DISTRIBUTIONS section are unique. In this
case, the values that appear in the first numeric field are sorted in ascend-
ing order when returned. For this reason, this option cannot be specified
with a list of acceptable names or with packed vector data structures (this
option is ignored if conflicting options are specified).

- The caller may direct PRSSVC to take its first input from a character string
rather than from the source file.

- The caller may inhibit output of diagnostic messages, of the input data
itself, or of both.

Several checks are performed on the input data.

PsrRn'
This subroutine removes leading blanks from a given string and returns

the modified string to the caller.

This subroutine converts any lower case characters in the code firld, the
three name fields. and the first and fourth columns (columns 1 through 12, 15
through 22, and 40 through 47) of a given line to their upper case equivalents.

Viions of Utopia
The routines presented here are, alas, rough drafts only. Readers are

encouraged to make whatever modifications (or corrections) they may need.
Work will continue, however. in an effort to expand the range of the modules,
improve their ease of use, eradiacate bugs. and standardize calling conven-
tions.

References
ANSI (American National Standards Institute), (1978) Americm National Stan-
dard Programming Language FDRTFWN (ANSI X3.9- 1978 FORTRAN 77)

IBM (International Business Machines, lnc.), (1972) Mathe~t ica l Programming
Subsystem - Extended (MF'SX) and Generalized Upper Bounding (GUB) Program
Description document number SH20-0968-1 (document number 830056 in the
IIASA library)

Knu th, D.E. (1973), The Art of Computer Programming. Volume 3/Sorting and
Searching. Addison Wesley

Murtagh, B.A and M.A Saunders (1977). MINOS - A Large-Scale Nonlinear Pro-
gramming System (For Problems with Linear Constraints) - User's Guide, Techn-
ical Report SOL 77-9, Systems Optimization Laboratory, Department of Opera-
tions Research. Stanford University

Nazareth, L. (1982), Implementation Aids for Optimization Algorithms that Solve
Sequences of Linear Programs by the Revised Simplex Method, IlASA Working
Paper WP-82-107

