289 research outputs found

    Hyperons analogous to the \Lambda(1405)

    Full text link
    The low mass of the Λ(1405)\Lambda(1405) hyperon with jP=1/2−j^P = 1/2^-, which is higher than the ground state Λ(1116)\Lambda(1116) mass by 290 MeV, is difficult to understand in quark models. We analyze the hyperon spectrum in the bound state approach of the Skyrme model that successfully describes both the Λ(1116)\Lambda(1116) and the Λ(1405)\Lambda(1405). This model predicts that several hyperon resonances of the same spin but with opposite parity form parity doublets that have a mass difference of around 300 MeV, which is indeed realized in the observed hyperon spectrum. Furthermore, the existence of the Ξ(1620)\Xi(1620) and the Ξ(1690)\Xi(1690) of jP=1/2−j^P=1/2^- is predicted by this model. Comments on the Ω\Omega baryons and heavy quark baryons are made as well.Comment: 4 pages, talk presented at the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Aug. 22-26, 2011, Seoul, Kore

    CP violation in Bd,s→l+l−B_{d,s} \to l^+l^- in the model III 2HDM

    Full text link
    We have calculated the Wilson coefficients C10,CQiC_{10}, C_{Q_i} (i=1,2) in the MSˉ\bar{MS} renormalization scheme in the model III 2HDM. Using the obtained Wilson coefficients, we have analyzed the CP violation in decays Bq0→l+l−B^0_q\to l^+l^- (q=d,s) in the model. The CP asymmetry, ACPA_{CP}, depends on the parameters of models and ACPA_{CP} in Bd→l+l−B_d\to l^+l^- can be as large as 40% and 35% for l=τl=\tau and l=ÎŒl=\mu respectively. It can reach 4% for Bs0B^0_s decays. Because in SM CP violation is smaller than or equal to O(10−310^{-3}) which is unobservably small, an observation of CP asymmetry in the decays Bq0→l+l−(q=d,s)B^0_q \to l^+l^- (q=d,s) would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure

    Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis

    Get PDF
    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 658-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligamenttuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning

    Nonequilibrium Evolution of Correlation Functions: A Canonical Approach

    Get PDF
    We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space translation only by using a canonical approach based on the recently developed Liouville-von Neumann formalism. The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for the quantum mechanical analog of the ϕ4\phi^{4} model. The technique involves representing the Hamiltonian in a Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any desired order. The correlation functions for the field theory are then investigated in the Hartree approximation and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up to O(λ2){\cal O}(\lambda^2). These correlation functions take into account next-to-leading and next-to-next-to-leading order effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations for the equal-time, connected correlation functions beyond the leading order. These equations are derived by including the connected 4-point functions in the hierarchy. The resulting coupled set of equations form a part of infinite hierarchy of coupled equations relating the various connected n-point functions. The connection with other approaches based on the path integral formalism is established and the physical implications of the set of equations are discussed with particular emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with non-equilibrium evolution beyond Hartree approx. based on the LvN formalism, has been adde

    Determination of Population Structure of Wheat Core Collection for Association Mapping

    Get PDF
    The microsatellites, as one of the most robust markers for identification of wheat varieties, were used for assessment of genetic diversity and population structure to promote effective use of genetic resources. In this study, the set of 284 wheat varieties were genotyped using 30 microsatellite markers. The chosen SSR markers were located among almost all linkage groups and covered all three genomes. The genotypes used originate from 24 different breeding centers worldwide and are included in an extensive core collection of the Institute of Field and Vegetable Crops in Novi Sad, Serbia. The total number of detected alleles was 349 at all analyzed loci. The average number of detected allelic variant per locus was 11.5. The mean value of polymorphic information content was 0.68. According to the probability of data obtained by program Structure, the results have shown presence of 6 subpopulations within the studied set of genotypes. The population structure positively correlated to some extent with geographic origin. The available pedigree data were included for additional explanation of population structure. The results of this study should provide valuable information for future association studies using the diverse wheat breeding material

    Search for single top quarks in the tau+jets channel using 4.8 fb−1^{-1} of ppˉp\bar{p} collision data

    Get PDF
    We present the first direct search for single top quark production using tau leptons. The search is based on 4.8 fb−1^{-1} of integrated luminosity collected in ppˉp\bar{p} collisions at s\sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We select events with a final state including an isolated tau lepton, missing transverse energy, two or three jets, one or two of them bb tagged. We use a multivariate technique to discriminate signal from background. The number of events observed in data in this final state is consistent with the signal plus background expectation. We set in the tau+jets channel an upper limit on the single top quark cross section of \TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected sensitivity for the observation of single top production when combining it with electron+jets and muon+jets channels already published by the D0 collaboration with 2.3 fb−1^{-1} of data. We measure a combined cross section of \SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure

    Familial thrombocytopenia due to a complex structural variant resulting in a WAC-ANKRD26 fusion transcript

    Get PDF
    Advances in genome sequencing have resulted in the identification of the causes for numerous rare diseases. However, many cases remain unsolved with standard molecular analyses. We describe a family presenting with a phenotype resembling inherited thrombocytopenia 2 (THC2). THC2 is generally caused by single nucleotide variants that prevent silencing of ANKRD26 expression during hematopoietic differentiation. Short-read whole-exome and genome sequencing approaches were unable to identify a causal variant in this family. Using long-read whole-genome sequencing, a large complex structural variant involving a paired-duplication inversion was identified. Through functional studies, we show that this structural variant results in a pathogenic gain-of-function WAC-ANKRD26 fusion transcript. Our findings illustrate how complex structural variants that may be missed by conventional genome sequencing approaches can cause human disease

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    • 

    corecore