850 research outputs found

    Nutritional effects of beef connective tissue characteristics and eating qualities

    Get PDF
    We compared taste panel and connective tissue characteristics of beef fed a high energy diet with beef fed grass. The high energy diet produced higher USDA quality and yield grades, more rapid weight gain, and increased connective tissue collagen synthesis arid breakdown. But, it did not consistently improve taste panel and shear characteristics over grass-feeding

    Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change

    Get PDF
    The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs

    Growing Environmental Activists: Developing Environmental Agency and Engagement Through Children’s Fiction.

    Get PDF
    We explore how story has the potential to encourage environmental engagement and a sense of agency provided that critical discussion takes place. We illuminate this with reference to the philosophies of John Macmurray on personal agency and social relations; of John Dewey on the primacy of experience for philosophy; and of Paul Ricoeur on hermeneutics, dialogue, dialectics and narrative. We view the use of fiction for environmental understanding as hermeneutic, a form of conceptualising place which interprets experience and perception. The four writers for young people discussed are Ernest Thompson Seton, Kenneth Grahame, Michelle Paver and Philip Pullman. We develop the concept of critical dialogue, and link this to Crick's demand for active democratic citizenship. We illustrate the educational potential for environmental discussions based on literature leading to deeper understanding of place and environment, encouraging the belief in young people that they can be and become agents for change. We develop from Zimbardo the key concept of heroic resister to encourage young people to overcome peer pressure. We conclude with a call to develop a greater awareness of the potential of fiction for learning, and for writers to produce more focused stories engaging with environmental responsibility and activism

    Effect of simplicity and attractiveness on route selection for different journey types

    Get PDF
    This study investigated the effects of six attributes, associated with simplicity or attractiveness, on route preference for three pedestrian journey types (everyday, leisure and tourist). Using stated choice preference experiments with computer generated scenes, participants were asked to choose one of a pair of routes showing either two levels of the same attribute (experiment 1) or different attributes (experiment 2). Contrary to predictions, vegetation was the most influential for both everyday and leisure journeys, and land use ranked much lower than expected in both cases. Turns ranked higher than decision points for everyday journeys as predicted, but the positions of both were lowered by initially unranked attributes. As anticipated, points of interest were most important for tourist trips, with the initially unranked attributes having less influence. This is the first time so many attributes have been compared directly, providing new information about the importance of the attributes for different journeys. © 2014 Springer International Publishing

    Correlated spin canting in ordered core-shell Fe3O4/MnxFe3-XO4 nanoparticle assemblies

    Get PDF
    Polarization-analyzed small-angle neutron-scattering methods are used to determine the spin arrangements and experimental length scales of magnetic correlations in ordered three-dimensional assemblies of ∌7.4-nm-diam core-shell Fe3O4/MnxFe3−xO4 nanoparticles. In moderate to high magnetic fields, the assemblies display a canted magnetic structure where the canting direction is coherent from nanoparticle to nanoparticle, in contrast to the less extended, more single-particle-like behavior for similar ferrite assemblies. The observed magnetic scattering is modeled by assuming that the interparticle dipolar coupling combined with Zeeman effects in a field leads to nanoparticle domains with preferred net spin alignments relative to packing symmetry axes. Over a range of fields and temperatures, the model qualitatively explains the observed scattering anomalies in terms of clusters that vary in area and thickness, highlighting the complex structures adopted in real, dense nanoparticle systems. The clusters often have a strong two-dimensional magnetic character which is attributed to structural stacking faults and the resulting influence of interparticle dipolar interactions for these magnetically soft nanoparticles

    Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    Get PDF
    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules

    Formation of Large-Scale Semi-Organized Structures in Turbulent Convection

    Get PDF
    A new mean-field theory of turbulent convection is developed. This theory predicts the convective wind instability in a shear-free turbulent convection which causes formation of large-scale semi-organized fluid motions in the form of cells or rolls. Spatial characteristics of these motions, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This study predicts also the existence of the convective shear instability in a sheared turbulent convection which results in generation of convective shear waves with a nonzero hydrodynamic helicity. Increase of shear promotes excitation of the convective shear instability. Applications of the obtained results to the atmospheric turbulent convection and the laboratory experiments on turbulent convection are discussed. This theory can be applied also for the describing a mesogranular turbulent convection in astrophysics.Comment: 16 pages, 10 figures, REVTEX4, PHYSICAL REVIEW E, v. 67, in press (2003
    • 

    corecore