19 research outputs found

    In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology

    Get PDF
    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generating deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counter-selectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counter-selectable pheS gene and I-SceI homing endonuclease. The system provides efficiency in cloning homology regions of target genes, and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a c-di-GMP responsive regulator protein important for biofilm formation

    Effective Theory Description of Weak Annihilation in B-> Xu l nu Decays

    Get PDF
    The semileptonic B-> Xu l nu decays allow a pretty clean determination of the CKM matrix element |Vub|. Nevertheless, the presence of weak-annihilation effects near the end-point of the q2 spectrum introduces uncertainties in the inclusive calculation, requiring the use of non-perturbative techniques like heavy meson chiral perturbation theory and large NC limit.Comment: 3 pages, 2 figures. To appear in the proceedings of the 7th International Conference on Hyperons, Charm And Beauty Hadrons (BEACH 2006), 2nd-8th July 2006, Lancaster, Englan

    B_s --> mu+ mu- decay in the R-parity violating minimal supergravity

    Full text link
    We study B_s --> mu+ mu- in the context of the R-parity violating minimal supergravity in the high tan beta regime. We find that the lowest value of the branching ratio can go well below the present LHCb sensitivity and hence B_s --> mu+ mu- can even be invisible to the LHC. We also find that the present upper bound on Br(B_s --> mu+ mu-) puts strong constraint on the minimal supergravity parameter space. The constraints become more severe if the upper bound is close to its standard model prediction.Comment: 18 pages, 10 figures; version to be published in European Physical Journal

    B^0-\bar{B}^0 mixing and B \to X_s \gamma decay in the third type 2HDM: effects of NLO QCD contributions

    Full text link
    In this paper, we calculated the next-to-leading order (NLO) new physics contributions to the mass splitting \dmd and the branching ratio \brbxsga induced by the charged Higgs loop diagrams in the third type of two-Higgs-doublet models (model III) and draw the constraints on the free parameters of model III. For the model III under consideration, we found that (a) an upper limit |\ltt|\leq 1.7 is obtained from the precision data of \dmd=0.502 \pm 0.007 ps^{-1}, while |\ltt| \approx 0.5 is favored phenomenologicaly; (b) for B→XsγB \to X_s \gamma decay, the NLO QCD contributions tend to cancel the LO new physics contributions; (c) a light charged Higgs boson with a mass around or even less than 200 GeV is still allowed at NLO level by the measured branching ratio \brbxsga: numerically, 188 \leq \mh \leq 215 GeV for (|\ltt|,|\lbb|)=(0.5,18); (d) the NLO QCD contributions tend to cancel the LO contributions effectively, the lower limit on \mh is consequently decreased by about 200 GeV; (e) the allowed region of \mh will be shifted toward heavy mass end for a non-zero relative phase θ\theta between the Yukawa couplings \ltt and \lbb. The numerical results for the conventional model II are also presented for the sake of a comparison.Comment: 42 pages, 18 eps figures, Revtex, new references adde

    The Top Quark Decay Vertex in Standard Model Extensions

    Full text link
    New physics interactions can affect the strength and structure of the tbWtbW vertex. We investigate the magnitudes and phases of "anomalous" contributions to this vertex in a two-Higgs doublet and the minimal supersymmetric extension of the standard model, and in a top-color assisted technicolor (TC2) model. While the magnitudes of the anomalous couplings remain below 1 percent in the first two models, TC2 interactions can reduce the left-chiral coupling fLf_L by several percent.Comment: Latex, 27 pages, 14 figure

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200

    The Physics of the B Factories

    Get PDF
    corecore