78 research outputs found

    The Universal Phase Space of AdS3 Gravity

    Full text link
    We describe what can be called the "universal" phase space of AdS3 gravity, in which the moduli spaces of globally hyperbolic AdS spacetimes with compact spatial sections, as well as the moduli spaces of multi-black-hole spacetimes are realized as submanifolds. The universal phase space is parametrized by two copies of the Universal Teichm\"uller space T(1) and is obtained from the correspondence between maximal surfaces in AdS3 and quasisymmetric homeomorphisms of the unit circle. We also relate our parametrization to the Chern-Simons formulation of 2+1 gravity and, infinitesimally, to the holographic (Fefferman-Graham) description. In particular, we obtain a relation between the generators of quasiconformal deformations in each T(1) sector and the chiral Brown-Henneaux vector fields. We also relate the charges arising in the holographic description (such as the mass and angular momentum of an AdS3 spacetime) to the periods of the quadratic differentials arising via the Bers embedding of T(1)xT(1). Our construction also yields a symplectic map from T*T(1) to T(1)xT(1) generalizing the well-known Mess map in the compact spatial surface setting.Comment: 41 pages, 2 figures, revised version accepted for publication in Commun.Math.Phy

    Supersymmetric Unification Without Low Energy Supersymmetry And Signatures for Fine-Tuning at the LHC

    Full text link
    The cosmological constant problem is a failure of naturalness and suggests that a fine-tuning mechanism is at work, which may also address the hierarchy problem. An example -- supported by Weinberg's successful prediction of the cosmological constant -- is the potentially vast landscape of vacua in string theory, where the existence of galaxies and atoms is promoted to a vacuum selection criterion. Then, low energy SUSY becomes unnecessary, and supersymmetry -- if present in the fundamental theory -- can be broken near the unification scale. All the scalars of the supersymmetric standard model become ultraheavy, except for a single finely tuned Higgs. Yet, the fermions of the supersymmetric standard model can remain light, protected by chiral symmetry, and account for the successful unification of gauge couplings. This framework removes all the difficulties of the SSM: the absence of a light Higgs and sparticles, dimension five proton decay, SUSY flavor and CP problems, and the cosmological gravitino and moduli problems. High-scale SUSY breaking raises the mass of the light Higgs to about 120-150 GeV. The gluino is strikingly long lived, and a measurement of its lifetime can determine the ultraheavy scalar mass scale. Measuring the four Yukawa couplings of the Higgs to the gauginos and higgsinos precisely tests for high-scale SUSY. These ideas, if confirmed, will demonstrate that supersymmetry is present but irrelevant for the hierarchy problem -- just as it has been irrelevant for the cosmological constant problem -- strongly suggesting the existence of a fine-tuning mechanism in nature.Comment: Typos and equations fixed, references adde

    Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere

    Full text link
    A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15-240Rsun), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi

    Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity

    Full text link
    The theory of massive gravity in three dimensions recently proposed by Bergshoeff, Hohm and Townsend (BHT) is considered. At the special case when the theory admits a unique maximally symmetric solution, a conformally flat space that contains black holes and gravitational solitons for any value of the cosmological constant is found. For negative cosmological constant, the black hole is characterized in terms of the mass and the "gravitational hair" parameter, providing a lower bound for the mass. For negative mass parameter, the black hole acquires an inner horizon, and the entropy vanishes at the extremal case. Gravitational solitons and kinks, being regular everywhere, are obtained from a double Wick rotation of the black hole. A wormhole solution in vacuum that interpolates between two static universes of negative spatial curvature is obtained as a limiting case of the gravitational soliton with a suitable identification. The black hole and the gravitational soliton fit within a set of relaxed asymptotically AdS conditions as compared with the ones of Brown and Henneaux. In the case of positive cosmological constant the black hole possesses an event and a cosmological horizon, whose mass is bounded from above. Remarkably, the temperatures of the event and the cosmological horizons coincide, and at the extremal case one obtains the analogue of the Nariai solution, dS2×S1dS_{2}\times S^{1}. A gravitational soliton is also obtained through a double Wick rotation of the black hole. The Euclidean continuation of these solutions describes instantons with vanishing Euclidean action. For vanishing cosmological constant the black hole and the gravitational soliton are asymptotically locally flat spacetimes. The rotating solutions can be obtained by boosting the previous ones in the tϕt-\phi plane.Comment: Talk given at the "Workshop on Gravity in Three Dimensions," 14-24 April 2009, ESI, Vienna. 30 pages, 6 figures. V2: minor changes and section 6 slightly improved. Last version for JHE

    Two-dimensional superstrings and the supersymmetric matrix model

    Full text link
    We present evidence that the supersymmetric matrix model of Marinari and Parisi represents the world-line theory of N unstable D-particles in type II superstring theory in two dimensions. This identification suggests that the matrix model gives a holographic description of superstrings in a two-dimensional black hole geometry.Comment: 22 pages, 2 figures; v2: corrected eqn 4.6; v3: corrected appendices and discussion of vacua, added ref

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
    corecore