2,468 research outputs found

    Solving the 100 Swiss Francs Problem

    Full text link
    Sturmfels offered 100 Swiss Francs in 2005 to a conjecture, which deals with a special case of the maximum likelihood estimation for a latent class model. This paper confirms the conjecture positively

    Restricted ambiguity of erasing morphisms

    Get PDF
    A morphism h is called ambiguous for a string s if there is another morphism that maps s to the same image as h; otherwise, it is called unambiguous. In this paper, we examine some fundamental problems on the ambiguity of erasing morphisms. We provide a detailed analysis of so-called ambiguity partitions, and our main result uses this concept to characterise those strings that have a morphism of strongly restricted ambiguity. Furthermore, we demonstrate that there are strings for which the set of unambiguous morphisms, depending on the size of the target alphabet of these morphisms, is empty, finite or infinite. Finally, we show that the problem of the existence of unambiguous erasing morphisms is equivalent to some basic decision problems for nonerasing multi-pattern languages

    Numerical investigation of conjugated heat transfer in a channel with a moving depositing front

    Get PDF
    This article presents numerical simulations of conjugated heat transfer in a fouled channel with a moving depositing front. The depositing front separating the fluid and the deposit layer is captured using the level-set method. Fluid flow is modeled by the incompressible Navier–Stokes equations. Numerical solution is performed on a fixed mesh using the finite volume method. The effects of Reynolds number and thermal conductivity ratio between the deposit layer and the fluid on local Nusselt number as well as length-averaged Nusselt number are investigated. It is found that heat transfer performance, represented by the local and length-averaged Nusselt number reduces significantly in a fouled channel compared with that in a clean channel. Heat transfer performance decreases with the growth of the deposit layer. Increases in Reynolds, Prandtl numbers both enhance heat transfer. Besides, heat transfer is enhanced when the thermal conductivity ratio between the deposit layer and the fluid is lower than 20 but it decreases when the thermal conductivity ratio is larger than 2

    Transitional Cell Carcinoma of the Bladder Manifestating as Malignant Lymphoma with Generalized Lymphadenopathy

    Get PDF
    Bladder cancer usually spreads via the lymphatic and hematogenous routes, the most common sites of metastases of urinary bladder cancers being the regional lymph nodes, liver, lung, bone, peritoneum, pleura, kidney, adrenal gland and intestines. Generalized lymph node metastasis of transitional cell cancer of the bladder is extremely rare. According to our literature search, there has been no case report of transitional cell cancer of the bladder that manifests as an extensive large lymph node metastasis involving the intraparotid, supraclavicular thoracic inlet, axillary and regional abdominal and pelvic lymph nodes without bone or visceral organs involved. Such a presentation could be mistaken as malignant lymphoma and the importance of a biopsy of the lymph nodes is emphasized. The clinical course of rapid progression of the disease and the presence of wild-type p53 with rapid response to chemotherapy and a short remission may represent a unique case, which is discussed here

    Novel microstructured fibres for supercontinuum generation

    No full text
    We report recent progress on the fabrication of photonic crystal fibre from ZBLAN and tellurite glasses and their application to generating broadband supercontinua

    Theory of Current-Induced Magnetization Precession

    Full text link
    We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate that unpolarized current flow from a non-magnet into a ferromagnet can produce a precession-type instability of the magnetization. The fundamental origin of the instability is the difference in conductivity between majority spins and minority spins in the ferromagnet. This leads to spin accumulation and spin currents that carry angular momentum across the interface. The component of this angular momentum perpendicular to the magnetization drives precessional motion that is opposed by Gilbert damping. Neglecting magnetic anisotropy and magnetostatics, our approximate analytic and exact numerical solutions using realistic values for the material parameters show (for both semi-infinite and thin film geometries) that a linear instability occurs when both the current density and the excitation wave vector parallel to the interface are neither too small nor too large. For many aspects of the problem, the variation of the magnetization in the direction of the current flows makes an important contribution.Comment: Submitted to Physical Review

    Response of alluvial systems to Late Pleistocene climate changes recorded by environmental magnetism in the Añavieja Basin (Iberian Range, NE Spain)

    Get PDF
    Environmental magnetic proxies were analyzed in a relatively monotonous, ~25.3m thick alluvial sedimentary sequence drilled in the Añavieja Basin (NE Spain). Results from the core AÑ2 suggest that the concentrationdependent magnetic parameters mainly reflect variations in the content of detrital magnetite, sourced in the catchment rocks and soils of the basin, via changes in the dynamics of alluvial fans due to temperature changes in the northern hemisphere during the Late Pleistocene. The correspondence between the magnetic proxies and the temperature variations in the North Atlantic region (NGRIP curve) indicates that higher (lower) concentrations and finer (coarser) magnetite grains coincide with warm (cold) periods. We propose that during cold periods, a sparser vegetation cover favored the incoming of higher energy runoff bearing coarser sediments to the basin that are relatively impoverished in magnetite. In contrast, during warm periods, the wider distribution of the vegetation cover associated with the lower runoff energy lead to finer, magnetite-richer sediment input to the basin. Maghemite, presumably of pedogenic origin, appears to be present also in the studied alluvial sediments. Further studies are necessary to unravel its palaeoclimatic significance

    Epitaxially strained [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and PbTiO3_3 from first principles

    Full text link
    The effect of layer-by-layer heterostructuring and epitaxial strain on lattice instabilities and related ferroelectric properties is investigated from first principles for the [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and pure PbTiO3_3 on a cubic substrate. The results for the superlattice show an enhancement of the stability of the monoclinic r-phase with respect to pure PbTiO3_3. Analysis of the lattice instabilities of the relaxed centrosymmetric reference structure computed within density functional perturbation theory suggests that this results from the presence of two unstable zone-center modes, one confined in the PbTiO3_3 layer and one in the PbZrO3_3 layer, which produce in-plane and normal components of the polarization, respectively. The zero-temperature dielectric response is computed and shown to be enhanced not only near the phase boundaries, but throughout the r-phase. Analysis of the analogous calculation for pure PbTiO3_3 is consistent with this interpretation, and suggests useful approaches to engineering the dielectric properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure

    Limitation of energy deposition in classical N body dynamics

    Full text link
    Energy transfers in collisions between classical clusters are studied with Classical N Body Dynamics calculations for different entrance channels. It is shown that the energy per particle transferred to thermalised classical clusters does not exceed the energy of the least bound particle in the cluster in its ``ground state''. This limitation is observed during the whole time of the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl

    From semiclassical transport to quantum Hall effect under low-field Landau quantization

    Full text link
    The crossover from the semiclassical transport to quantum Hall effect is studied by examining a two-dimensional electron system in an AlGaAs/GaAs heterostructure. By probing the magneto-oscillations, it is shown that the semiclassical Shubnikov-de Haas (SdH) formulation can be valid even when the minima of the longitudinal resistivity approach zero. The extension of the applicable range of the SdH theory could be due to the damping effects resulting from disorder and temperature. Moreover, we observed plateau-plateau transition like behavior with such an extension. From our study, it is important to include the positive magnetoresistance to refine the SdH theory.Comment: 11 pages, 5 figure
    • 

    corecore