152 research outputs found

    Electron self-trapping in intermediate-valent SmB6

    Full text link
    SmB6 exhibits intermediate valence in the ground state and unusual behaviour at low temperatures. The resistivity and the Hall effect cannot be explained either by conventional sf-hybridization or by hopping transport in an impurity band. At least three different energy scales determine three temperature regimes of electron transport in this system. We consider the ground state properties, the soft valence fluctuations and the spectrum of band carriers in n-doped SmB6. The behaviour of excess conduction electrons in the presence of soft valence fluctuations and the origin of the three energy scales in the spectrum of elementary excitations is discussed. The carriers which determine the low-temperature transport in this system are self-trapped electron-polaron complexes rather than simply electrons in an impurity band. The mechanism of electron trapping is the interaction with soft valence fluctuations.Comment: 12 pages, 3 figure

    Global Characterization of Inland Water Reservoirs Using ICESat-2 Altimetry and Climate Reanalysis

    Get PDF
    Accurate, transparent knowledge of global reservoir levels is a prerequisite for effective management of water resources. However, no complete database exists because gauge data are not globally available and the current generation of satellite radar altimeters resolves only the world's largest reservoirs. Here, we investigate water level changes in global reservoirs using ICESat-2, National Aeronautics and Space Administration (NASA)'s new satellite laser altimetry mission. In just the first 12 months of the mission, we find that ICESat-2 accurately (±14.1 cm) retrieved water level changes for 3,712 global reservoirs having surface areas ranging from <1 to >10,000 km2. From this new global data set, we identify distinct regional patterns in reservoir level change that can be attributed to both water availability and management strategy. Our findings demonstrate that ICESat-2 will form a crucial component of any global reservoir level inventory and enable new insight into how reservoir management responds to climatic variability and increasing human demand

    Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery

    Get PDF
    Fine-scale, subseasonal fluctuations in Arctic-Boreal surface water reflect regional water balance and modulate trace gas emissions to the atmosphere but have eluded detection using traditional satellite remote sensing. We use high-resolution (~3–5 m), high-frequency CubeSat sensors to measure near-daily changes in lake surface area through an object-based tracking method that incorporates machine learning to overcome notable limitations of CubeSat imagery. From ~76,000 images we obtain >2.2 million individual observations of changing surface areas for 85,358 lakes in Northern Canada and Alaska between 1 May and 1 October 2017. We find broad-scale lake area declines across diverse climatic, hydrologic, and physiographic terrains. Localized exceptions reveal lowland flooding and aquatic vegetation phenology cycles. Cumulative small shoreline changes of abundant lakes on the Canadian Shield exceed total inundation variations of better-studied lowland environments, revealing a surprisingly dynamic landscape with respect to subseasonal variations in surface water extent and trace gas emissions

    Spin-polaron model: transport properties of EuB6_6

    Full text link
    To understand anomalous transport properties of EuB6_6, we have studied the spin-polaron Hamiltonian incorporating the electron-phonon interaction. Assuming a strong exchange interaction between the carriers and the localized spins, the electrical conductivity is calculated. The temperature and magnetic field dependence of the resistivity of EuB6_6 are well explained. At low temperature, magnons dominate the conduction process, whereas the lattice contribution becomes significant at very high temperature due to the scattering with the phonons. Large negative magnetoresistance near the ferromagnetic transition is also reproduced as observed in EuB6_6.Comment: 4 pages, 3 figures, accepted in Phys. Rev.

    Fluctuation induced hopping and spin polaron transport

    Full text link
    We study the motion of free magnetic polarons in a paramagnetic background of fluctuating local moments. The polaron can tunnel only to nearby regions of local moments when these fluctuate into alignment. We propose this fluctuation induced hopping as a new transport mechanism for the spin polaron. We calculate the diffusion constant for fluctuation induced hopping from the rate at which local moments fluctuate into alignment. The electrical resistivity is then obtained via the Einstein relation. We suggest that the proposed transport mechanism is relevant in the high temperature phase of the Mn pyrochlore colossal magneto resistance compounds and Europium hexaboride.Comment: 8 pages, 3 figure

    High pressure insulator-metal transition in SmB6

    Full text link
    We report the temperature and pressure dependence of the electrical resistivity and Hall constant of single crystal SmB6 for temperatures ranging from 1.2 K to room temperature, and pressures from 1 bar to 80 kbar. Our results indicate that at low pressures SmB6 is an insulator, but undergoes a sudden transition to metallic behavior at a pressure of 50 kbar.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31646/1/0000580.pd

    Electronic transport in EuB6_6

    Get PDF
    EuB6_6 is a magnetic semiconductor in which defects introduce charge carriers into the conduction band with the Fermi energy varying with temperature and magnetic field. We present experimental and theoretical work on the electronic magnetotransport in single-crystalline EuB6_6. Magnetization, magnetoresistance and Hall effect data were recorded at temperatures between 2 and 300 K and in magnetic fields up to 5.5 T. The negative magnetoresistance is well reproduced by a model in which the spin disorder scattering is reduced by the applied magnetic field. The Hall effect can be separated into an ordinary and an anomalous part. At 20 K the latter accounts for half of the observed Hall voltage, and its importance decreases rapidly with increasing temperature. As for Gd and its compounds, where the rare-earth ion adopts the same Hund's rule ground state as Eu2+^{2+} in EuB6_{6}, the standard antisymmetric scattering mechanisms underestimate the sizesize of this contribution by several orders of magnitude, while reproducing its shapeshape almost perfectly. Well below the bulk ferromagnetic ordering at TCT_C = 12.5 K, a two-band model successfully describes the magnetotransport. Our description is consistent with published de Haas van Alphen, optical reflectivity, angular-resolved photoemission, and soft X-ray emission as well as absorption data, but requires a new interpretation for the gap feature deduced from the latter two experiments.Comment: 35 pages, 12 figures, submitted to PR

    Association of Lupus Nephritis Histopathologic Classification With Venous Thromboembolism—Modification by Age at Biopsy

    Get PDF
    Introduction: Lupus nephritis (LN) is an independent risk factor for venous thromboembolism (VTE). The risk of VTE has not been analyzed by International Society of Nephrology/Renal Pathology Society or World Health Organization LN class. Study goals were to measure VTE incidence in an LN patient cohort, to evaluate associations between VTE and LN class, and to investigate factors modifying associations between VTE and LN class. Methods: A retrospective analysis was performed using Glomerular Disease Collaborative Network data. Image-confirmed VTE was compared between patients with any LN class V lesion and patients with only LN class III or IV. Logistic regression was used to calculate odds ratios and 95% confidence intervals. Effect modification was assessed between main effect and covariates. Results: Our cohort consisted of 534 LN patients, 310 (58%) with class III/IV and 224 (42%) with class V with or without class III/IV, including 106 with class V alone. The VTE incidence was 62 of 534 (11.6%). The odds of VTE were not significantly different between patients with class III/IV and class V in adjusted analyses (odds ratio [OR] = 0.82, 95% confidence interval [CI] = 0.45−1.48). An age interaction was observed (P = 0.009), with increased odds of VTE with class III/IV diagnosed at a younger age (2.75, 0.90−8.41 estimated at age 16 years) and decreased odds with class III/IV diagnosed at an older age (0.23, 0.07−0.72 estimated at age 46 years), compared to class V. Conclusions: The VTE incidence was similar among patients with LN classes III/IV and V, suggesting that VTE risk is not limited to class V−related nephrotic syndrome and that age may modulate LN class-specific VTE risk

    Matching and surface barrier effects of the flux-line lattice in superconducting films and multilayers.

    Get PDF
    The flux-line lattice dissipation and the pinning force of Bi2Sr2CaCu2O8 and YBa2Cu3O7 films and a Nb/Cu multilayer are investigated with the vibrating reed technique. In magnetic fields oriented under a small angle with respect to the film surfaces the Bi-2:2:1:2 film shows a series of pronounced dissipation maxima at matching fields BN in the irreversible region of the magnetic phase diagram. The Y-1:2:3 film shows tiny damping maxima, whereas no structure in the dissipation of the Nb/Cu multilayer is detected below the upper critical field. The comparison of the matching fields to an anisotropic London model shows that the dissipation maxima are caused by rearrangements of the flux-line lattice configuration due to interactions with the sample surface. The different behavior of the high-temperature superconductors and the Nb/Cu multilayer is understood by explicitly taking the surface barrier into account. Deviations from the surface induced commensurability of the flux-line lattice due to the intrinsic pinning are discussed. Our results indicate that pancake vortices in the Bi-2:2:1:2 film should be coupled below the irreversibility line and below magnetic fields B??0.5 T perpendicular to the film surface
    corecore