SmB6 exhibits intermediate valence in the ground state and unusual behaviour
at low temperatures. The resistivity and the Hall effect cannot be explained
either by conventional sf-hybridization or by hopping transport in an impurity
band. At least three different energy scales determine three temperature
regimes of electron transport in this system. We consider the ground state
properties, the soft valence fluctuations and the spectrum of band carriers in
n-doped SmB6. The behaviour of excess conduction electrons in the presence of
soft valence fluctuations and the origin of the three energy scales in the
spectrum of elementary excitations is discussed. The carriers which determine
the low-temperature transport in this system are self-trapped electron-polaron
complexes rather than simply electrons in an impurity band. The mechanism of
electron trapping is the interaction with soft valence fluctuations.Comment: 12 pages, 3 figure