
Arctic‐Boreal Lake Dynamics Revealed
Using CubeSat Imagery
Sarah W. Cooley1,2 , Laurence C. Smith3 , Jonathan C. Ryan2 , Lincoln H. Pitcher3 ,
and Tamlin M. Pavelsky4

1Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA, 2Institute at
Brown for the Environment and Society, Brown University, Providence, RI, USA, 3Department of Geography, University
of California, Los Angeles, CA, USA, 4Department of Geological Sciences, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA

Abstract Fine‐scale, subseasonal fluctuations in Arctic‐Boreal surface water reflect regional water
balance and modulate trace gas emissions to the atmosphere but have eluded detection using traditional
satellite remote sensing. We use high‐resolution (~3–5 m), high‐frequency CubeSat sensors to measure
near‐daily changes in lake surface area through an object‐based tracking method that incorporates machine
learning to overcome notable limitations of CubeSat imagery. From ~76,000 images we obtain >2.2 million
individual observations of changing surface areas for 85,358 lakes in Northern Canada and Alaska
between 1 May and 1 October 2017. We find broad‐scale lake area declines across diverse climatic,
hydrologic, and physiographic terrains. Localized exceptions reveal lowland flooding and aquatic vegetation
phenology cycles. Cumulative small shoreline changes of abundant lakes on the Canadian Shield exceed
total inundation variations of better‐studied lowland environments, revealing a surprisingly dynamic
landscape with respect to subseasonal variations in surface water extent and trace gas emissions.

Plain Language Summary Fluctuations in Arctic‐Boreal lakes reflect climate change and
regulate freshwater methane and CO2 emissions. Observing these fine‐scale changes has traditionally
been difficult due to the coarse spatial and temporal resolution of available satellite imagery. Recently,
however, the launch of hundreds of tiny satellites known as CubeSats has created new opportunities for
monitoring lake area through providing daily imagery at 3‐m resolution. Here we present a new method for
tracking lake area changes using CubeSat imagery, which overcomes limitations that have, until now,
prevented large‐scale CubeSat analyses. Using this method, we track changes in lake area for ~85,000 lakes
across Northern Canada and Alaska between May and October 2017. We observe a general seasonal decline
in lake area across diverse terrains but identify localized exceptions caused by wetland flooding and the
growth and decline of vegetation on the lake surface. Surprisingly, the greatest absolute lake area changes
occur in upland, lake‐dense terrains previously thought to be very stable. In these regions, small (<10 m)
changes along lake margins cumulatively sum to large changes in total lake area that are largely
undetectable from coarser‐resolution satellites. This previously unquantified lake area variability suggests
that models may underestimate greenhouse gas emissions in these regions.

1. Introduction

The Arctic‐Boreal region contains the highest density of lakes on Earth (Lehner & Döll, 2004; Pekel et al.,
2016; Verpoorter et al., 2014). Their areal extents fluctuate seasonally and interannually in response to regio-
nal water balance, fluvial inundation, and surface‐groundwater interactions. Variability in lake extent is
thus a useful indicator of diverse climatic and physiographic processes (Tranvik et al., 2009).
Furthermore, because Arctic‐Boreal lakes are net sources of CO2 and CH4 (Hastie et al., 2018), fluctuations
in lake area impact freshwater trace gas emissions to the atmosphere (Bastviken et al., 2011; Raymond et al.,
2013). Lake shoreline variability is especially important because shallow water, vegetation, and CO2 super-
saturation intensify trace gas emissions along seasonally inundated lake perimeters (Bastviken et al., 2004;
Tranvik et al., 2009). Quantifying the subseasonal variability of Arctic‐Boreal lake areas is therefore critical
for improving estimates of trace gas flux (Kirschke et al., 2013; Stackpoole et al., 2017) and understanding the
hydrological sensitivity of lakes to geological substrate, water balance, fluvial activity, thawing permafrost,
landscape disturbance, and climatic change (Bring et al., 2016).
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Despite the importance of subseasonal variations in Arctic‐Boreal lakes, their temporal dynamics are poorly
constrained due to a classic trade‐off between high spatial versus high temporal resolution in satellite remote
sensing. Most previous studies have analyzed interannual changes in lake abundance and/or area using
medium‐to‐high resolution (~30 m) imagery (e.g., Chen et al., 2014; Jepsen et al., 2013; Jones et al., 2011;
Lyons et al., 2013; Olthof et al., 2015; Plug et al., 2008; Roach et al., 2013; Smith et al., 2005; Yoshikawa &
Hinzman, 2003). More recently, the now‐dense Landsat archive has been used to detect seasonal to interann-
ual trends in lake area (Nitze & Grosse, 2016; Nitze et al., 2017, 2018; Pastick et al., 2018). These studies
reveal contrasting trends in lake extent variously attributed to thawing permafrost, changing water balance,
hydrologic connectivity, underlying hydrogeology, shortening duration of spring snow cover, and allometric
properties such as lake area. To track subseasonal changes, some studies have obtainedmore frequent obser-
vations using very coarse‐resolution sensors (~25 km; Mialon et al., 2005; Schroeder et al., 2010; Watts et al.,
2014), but these analyses cannot resolve individual lakes or lake margins. Moreover, most remote sensing
studies have focused on thermokarst and/or lowland wetland terrains, notably Alaska's North Slope (e.g.,
Frohn et al., 2005), Yukon Flats (e.g., Chen et al., 2014), and Tuktoyaktuk Peninsula (e.g., Plug et al.,
2008), whereas comparatively little research has examined much larger upland, bedrock‐controlled environ-
ments in Canada. Consequently, subseasonal variability in lake area remains one of the largest uncertainties
in estimates of the freshwater carbon budget (Bastviken et al., 2011; Holgerson & Raymond, 2016; Riley
et al., 2011), and its drivers are poorly understood, particularly in little‐studied lake‐dense upland regions
(Lehner & Döll, 2004; Pekel et al., 2016).

This study quantifies subseasonal dynamics in lake surface water area across four study areas in Arctic‐
Boreal regions of Alaska and Canada using CubeSat imagery provided by Planet Labs (Planet Team,
2018). Through deployment of hundreds of satellites in a constellation, Planet CubeSats offer both high spa-
tial (3–5 m) and high temporal (near‐daily) resolution. However, the imagery is acquired with inexpensive
multispectral cameras that lack the radiometric quality, cross‐sensor consistency, and geolocation accuracy
of national space agency‐funded missions (Cooley et al., 2017; Houborg & McCabe, 2016, 2018). To over-
come these quality limitations that have, until now, prevented large‐scale analyses using CubeSats, we pre-
sent a novel object‐based lake tracking method that incorporates machine learning. We apply this method to
>75,000 CubeSat images to produce near‐daily time series of surface water area for ~85,000 lakes, yielding
>2.2 million individual lake observations. These observations are obtained within four strategically located
study areas to capture large‐scale climatic gradients, varying permafrost extent and distinctly different phy-
siographic regions. We use this novel data set to explore the importance of permafrost presence, topography,
precipitation minus evaporation, distance from rivers, mean annual air temperature, and lake allometry in
controlling seasonal surface water variability. Finally, we discuss the implications of our results for fresh-
water inundation dynamics and carbon cycling across the Arctic‐Boreal region.

2. Study Area

We track changes in lake extent across four diverse study areas spanning a range of physiographic and geo-
logical environments, namely, (1) Yukon Flats Basin (YFB), Alaska; (2) Mackenzie River Valley (MRV),
Canada; (3) Canadian Shield Transect (CST), near Yellowknife, Canada; and (4) Hudson Bay Lowland
(HBL), Canada. In total, these four study areas cover 226,553 km2 of the western Arctic‐Boreal region of
North America (Figure 1, inset), and span Arctic tundra, boreal forest, peat plateau, lowland wetland, and
upland shield terrains. The 33,383 km2 YFB study area is characterized by fluvially disconnected wetlands
surrounding a wide low‐gradient reach of the Yukon River in north central Alaska (e.g., Anderson et al.,
2013; Pitcher et al., 2019). The 82,200 km2 MRV study area includes the Mackenzie River Delta, a vast, flu-
vially connected wetland, the Tuktoyaktuk Peninsula, a polar desert with continuous permafrost and thou-
sands of thermokarst lakes, and boreal forest and plateaus further south along the Mackenzie and Peel
Rivers (Burn & Kokelj, 2009; Plug et al., 2008). The 32,107 km2 CST is a 350 × 90 km corridor extending from
Yellowknife to the Northwest Territories‐Nunavut border. It spans a lake‐rich upland region consisting of
exposed Precambrian bedrock surrounded by soil‐filled valley bottoms (Spence & Woo, 2002, 2003, 2006).
The 78,863 km2 HBL is a 610 × 135 km transect spanning bedrock‐controlled shield terrain north of Lake
Winnipeg to extensive peat plateaus near the Hudson Bay coast south of Churchill, Manitoba (Wolfe
et al., 2011). Taken collectively, these four study areas are broadly representative of the diverse terrains
found across nonmountainous regions of Arctic‐Boreal North America.
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3. Methods
3.1. Data

Our primary data source is PlanetScope CubeSat satellite imagery from Planet Labs (see the supporting
information; Planet Team, 2018). PlanetScope imagery has red, blue, green, and near‐infrared bands with
3.125‐m spatial resolution. Given its near‐daily revisit time, PlanetScope accounts for 95% of all imagery ana-
lyzed. We also use RapidEye CubeSat satellite imagery from Planet Labs, which has red, blue, green, far red,
and near‐infrared bands at 5‐m resolution and an approximate revisit time of 5 days. No cloud mask exists
for either product, but Planet Labs provides a cloud index estimating the cloud‐obscured fraction of each
image. We analyze all imagery with less than 20% cloud obscuration and greater than 20° solar elevation
angle acquired between 1 May and 1 October 2017, a collection of ~76,000 images and ~25 TB of data across
our four study areas spanning the active Arctic‐Boreal hydrological season.

3.2. Water Classification and Lake Tracking Method

CubeSat imagery remains underused within academic research largely due to its lack of automated cloud
mask and atmospheric correction, inconsistency in cross‐sensor radiometric calibration, and geolocation
error (Cooley et al., 2017). To overcome these issues, we develop a novel method that incorporates object‐
based lake tracking and machine learning‐derived observation filtering. This method is similar to that
described in Cooley et al. (2017) but adapted for automation across large spatial scales. Full details of the
method are described in the supporting information, and the main steps are summarized here.

The first step entails creation of a buffered lakemask used both to seed the water classification algorithm and
to track changes in lake area. This mask is built through a multistep process involving initial water classifi-
cation of early‐season, cloud‐free images, which are summed and buffered by 60 m to produce a conservative
lake mask containing both the maximum seasonal extent of lakes and the surrounding land (see the

Figure 1. Gridded maps of lake dynamism (seasonal maximum minus seasonal minimum lake area, km2) for our YFB,
MRV, CST, and HBL study areas derived from CubeSat satellite imagery and machine learning. White dashed lines
show major river systems (Yukon and Mackenzie Rivers and their tributaries). High dynamism is dispersed across the
CST, as well as concentrated in the central YFB along the Yukon River andMackenzie River Delta (northwest MRV). Stars
indicate locations of in situ lake level measurements.
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supporting information). To prevent double‐counting of lake area changes, lakes whose 60‐m buffer zones
overlap are considered to be a singular water body for lake tracking (see the supporting information). We
classify pixels as either land or water based on Normalized Difference Water Index (McFeeters, 1996)
thresholds, chosen for each image based on the shape of the buffered lake mask Normalized Difference
Water Index histogram (see the supporting information; Cooley et al., 2017).

Next, to track seasonal changes in lake area, we calculate the total water area contained within each lake
object in the 60 m‐buffered lake mask, recording an individual observation for each lake for every image
(Cooley et al., 2017). This object‐based lake tracking method is necessary because CubeSat imagery has a
10‐m geolocation uncertainty (Cooley et al., 2017). By allowing lake boundaries to change over time, this
tracking method minimizes the impact of geolocation inaccuracy on reported patterns in lake area and
allows efficient change detection over our >2.2 million lake observations.

Finally, since the raw time series of lake areas include many erroneous data points caused by clouds, ice
cover, or poor classification performance on images with a low signal‐to‐noise ratio, we use a supervised
machine learning algorithm to flag poor individual lake area retrievals. For each study area, we create a
manually validated training data set and use it to seed a random forests classifier (Breiman, 2001), which
categorizes all lake observations as valid/invalid based on 14 predictor variables (see the supporting informa-
tion). The best valid lake observation per day, defined as closest to the 5‐day median, is then selected, and a
10‐day median filter is applied to produce the final lake area time series. Through our observation filtering
process, lakes only receive valid observations once they are ice‐free, and therefore, the start dates of the lake
area time series vary between early May and late June (see Figure S5).

To facilitate comparison between lake area time series, we produce a daily time series for all lakes >0.01 km2

by interpolating between near‐daily satellite observations. From the lake area time series, we calculate each
lake's hydrological “dynamism,” defined here as its seasonal maximum area minus seasonal minimum lake
area (km2), and percent dynamism, defined as dynamism divided by seasonal maximum lake area (%, km2/
km2). For visualization and analysis of spatial patterns, we also sum lake dynamism to a 5 × 5 km grid for
each study area (see the supporting information).

3.3. Validation and Error Analysis

We assess the accuracy of our method through both bootstrapping analyses of the manual training data and
comparison with in situ pressure transducer water level measurements we collected in 15 lakes during sum-
mer 2017 (see Figures S6 and S7). The bootstrapping analysis of our observation filtering process yields
RMSEs of 1,248–3,904 m2 for mean lake area, 2,997–15,409 m2 for maximum area, 973–22,978 m2 for mini-
mum area, and 5,660–23,135 m2 for seasonal dynamism (see Table S1). As lake area is typically highly cor-
related with lake level, we also compare the lake area time series to our 15 in situ water level records
collected in the YFB and CST. Thirteen of 15 CubeSat lake area time series are significantly correlated with
water level at p < 0.05, with 12 correlated at p < 0.01, and all 15 lakes experience seasonal declines in both
water level and lake area (see Figures S6–S7). While a small sample size, these simultaneous in situ measure-
ments confirm that our remotely sensed lake area changes are both real and accurate. Furthermore, this
result suggests that the dominant source of area change is lake level decline rather than vegetation growth
along lake margins (see the supporting information).

3.4. Allometric and Environmental Controls on Lake Area Changes

A key challenge of interpreting temporal and spatial patterns in lake extent is the strong relationship
between lake size, seasonal dynamism, and percent dynamism. Dynamism is positively correlated to lake
size whereas percent change is negatively correlated to lake size (see the supporting information). To control
for this effect, we develop a new lake metric, termed RΔ, which represents the mean lateral distance (in
meters) between each lake's maximum and minimum observed shoreline boundaries (see Figure S11).
Because RΔ is independent of lake area, this metric facilitates comparison of spatial patterns in surface water
seasonality across different lake sizes.

Finally, we use generalized multivariable regression to analyze drivers of seasonal dynamism. We calculate
gridded lake allometric variables, namely, water fraction (Figure S8), perimeter (Figure S9), number of lakes,
andmean lake area from our lake area time series. We also test distance from river network, permafrost state
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(Brown et al., 2002), mean annual air temperature (GISTEMP Team, 2018), and precipitation minus
evaporation (P – E; Figure S10; Vimal et al., 2018) and mean elevation and topographic roughness
(Yamazaki et al., 2017). All variables are summed or averaged to a 5 × 5 km grid, and regressions are
performed using each grid cell as an individual data point (see the supporting information).

4. Results

We identify 85,358 lakes (> 0.01 km2) across our four study areas, with 8,854 in the YFB, 37,957 in the MRV,
21,560 in the CST, and 16,987 in the HBL. Lake size approximately follows a Pareto distribution, similar to
previous lake mapping estimates (Downing et al., 2006; Lehner & Döll, 2004; Verpoorter et al., 2014). The
mean lake size within each of the four study areas ranges from 0.11 (±0.25) km2 (YFB) to 0.31 (±1.82)
km2 (CST) with an average value of 0.26 (±1.45) km2 across all four. Over the course of the study period,
the mean total lake areas are 802 (YFB), 9,336 (MRV), 6,479 (CST), and 5,082 (HBL) km2. Converted to units
of water fraction (lake surface area divided by total study area), the highest water fraction is found on the
CST (20.2%), followed by the MRV (11.4%), HBL (6.4%), and YFB (2.4%).

On average, Arctic‐Boreal lakes receive a valid, cloud‐free observation once every 5.2 (±1.9) days, varying
from 4.1 (±1.0) for the YFB to 6.2 (±1.8) for the MRV. We find a near‐universal decline in lake extent
during the study period, which is widespread across all four study areas, including lowland wetland and
upland bedrock terrains (Figure 1). These declines are consistent with in situ observations of water level
(Figures S6 and S7) and reflect broadly negative summer P − E over Northern North America in 2017
(Figure S10). The YFB,MRV, and CST show remarkable similarity in their subseasonal progression, decreas-
ing steeply from the start of the open water season until the end of July and then remaining mostly stable or
increasing slightly through the end of September (Figure 2). In contrast, the HBL declines gradually and is
more stable overall, perhaps due to its lack of well‐developed river networks, low water fraction, and high
water storage in its peatland terrain (Smith et al., 2012; Figure 2).

Figure 2. Temporal progression of area changes in 85,358 lakes summed across the YFB, MRV, CST, and HBL study areas
calculated from >2.2 million CubeSat observations of lake area. Shaded areas are uncertainty bounds determined from
RMSE values. Summed lake area changes are shown as both (a) percent of total study area (33,383, 82,200, 32,107, and
78,863 km2, respectively), and (b) percent of maximum observed lake area (952, 9,845, 6,723, and 5,217 km2, respectively).
While YFB lakes are highly variable (blue line in b), the CST is most dynamic at the landscape scale (red line in a). Panel
(c) splits the MRV (yellow line in b) into three subregions, revealing contrasting subseasonal progressions between
relatively stable lakes of Tuktoyaktuk Peninsula (dark green), dynamic lakes of the fluvial‐deltaic Mackenzie River Delta
(maroon), and subseasonal phenological cycles in aquatic vegetation in lakes of the Lower Mackenzie Plain (navy blue).
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Gridded maps of lake dynamism reveal loci of spring flooding in the YFB and MRD as well as substantial,
dispersed dynamism throughout the CST (Figure 1). The percent dynamism is 29% (dynamism = 279 km2)
for YFB, 9% (907 km2) for MRV, 7% (439 km2) for CST, and 5% (247 km2) for HBL (Figure 2b). The mean
individual lake percent change is comparable for the MRV, CST, and HBL (17%, 18%, and 15%), but higher
in the YFB where, on average, lakes change by 39%. However, when lake dynamism is considered at the
landscape scale, the change in surface water extent per unit land area is 0.8%, 1.1%, 1.4%, and 0.3%, for
the four study areas, respectively. In other words, the greatest change in lake water fraction is found in
the CST, where 1.4% of the total landscape is seasonally inundated, nearly double that of the YFB.

The high spatial resolution and dense temporal sampling afforded by CubeSats also reveal distinct localized
exceptions to the broader seasonal decline, as exemplified by local concentrations of lake dynamism within
theMRV (Figure 2c). TheMackenzie River Delta undergoes a steep decline (~8%) in lake area until mid‐July,
after which lake areas stabilize, a progression likely associated with floodplain inundation following ice
breakup and peak river discharge. In contrast, the thermokarst‐dominated Tuktoyaktuk Peninsula experi-
ences a small, gradual seasonal decline (~3%) in total lake area, and the Lower Mackenzie Plain declines
sharply through July (~12%) before rebounding in August and September (Figure 2c). Visual inspection
reveals that this distinct signal in the Lower Mackenzie Plain is primarily driven by a high incidence of lakes
that experience a large change in area due to rapid emergence and then decline of aquatic vegetation and/or
algae at their surface. When mapped across the four study areas, we find these “vegetation‐impacted” lakes
account for 1–2% of all lakes studied and 7–13% of the observed dynamism across the YFB, MRV, and CST,
with particular concentration in the Lower Mackenzie Plain and the southern tip of the CST (see
Figure S12).

CubeSat observations of RΔ (i.e., mean lateral distance between maximum and minimum lake boundaries)
reveal that most Arctic‐Boreal lake dynamism is driven by small shoreline fluctuations of ≤10 m (Figure 3).
Across all study areas, the mean RΔ is 6.6 (±8.6) m, varying from 5.0 (±5.0) m in the HBL to 13.0 (±13.0) m in
the YFB. Large RΔ values are primarily associated with floodplains and vegetation‐impacted lakes, whereas
low RΔ values predominate in upland regions (Figure 3). For the YFB, lakes with a RΔ≤ 10m account for just
28% of the observed dynamism, whereas they account for 54% in theMRV and 76% in both the CST andHBL.
This suggests that landscape‐scale lake dynamism is dominated by fewer highly dynamic lakes in the YFB
versus many comparatively stable lakes in the CST and HBL, with the CST displaying the greatest overall
dynamism due to the cumulative small shoreline fluctuations of many more lakes (Figure 2a; white asterisk
in Figure 3).

Multivariable regression of gridded lake dynamism with allometric (water fraction, lake perimeter, number
of lakes, and mean lake size) and environmental (elevation, topographic roughness, permafrost presence,
mean annual air temperature, distance to river, and P − E) variables indicates that total seasonal dynamism
strongly depends on lake allometry. The regression models built using these 10 variables explain 74%, 65%,
58%, and 55% of the total variance in seasonal dynamism for the four study areas, respectively (Figure S13;
Table S2). Between 87% (CST) and 99% (YFB and MRV) of the explanatory power is associated with peri-
meter and water fraction alone. In contrast, environmental variables explain only 2–16% of the observed
dynamism, with permafrost and mean annual air temperature the strongest predictors, suggesting little
detectable environmental control on lake dynamism over the study period (see the supporting information).

5. Discussion

Our object‐based CubeSat lake tracking method allows us to monitor fine‐scale changes in surface water
with high temporal frequency across large spatial scales. The combination of 3‐ to 5‐m spatial resolution
and ~5‐day average cloud‐free revisit time yielded >2.2 million observations of lakes as small as 0.01 km2

in just 5 months. By using machine learning to filter out low‐quality observations, some critical limitations
of CubeSat imagery are overcome, enabling scientific analysis of thousands of images and millions of indi-
vidual lake observations. Consequently, our analysis of ~85,000 lakes reveals both broad‐scale similarities
and novel fine‐scale anomalies in subseasonal inundation dynamics of Arctic‐Boreal lakes.

Broadly, we observe a universal, synchronous seasonal drawdown in surface water extent across our four
study areas throughout the 2017 open‐water season. This finding differs from most studies of surface
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water dynamics in Arctic‐Boreal regions, which tend to focus on dynamic, flood‐prone lowlands such as the
Yukon Flats (Anderson et al., 2013; Chen et al., 2014; Jepsen et al., 2016), Mackenzie River Delta (Goulding
et al., 2009; Lesack et al., 2013; Marsh & Lesack, 1996), and Peace‐Athabasca Delta (Pavelsky & Smith, 2008).
While our study confirms that lakes in such environments are hydrologically dynamic, it also shows that
their relatively small areas and comparatively low water fractions may make them less important to
continental‐scale surface water variability than the outsized attention they receive might suggest. Indeed,
in absolute terms we identify more total lake dynamism elsewhere. Lake percent area changes and RΔ

values are lower in upland regions like the CST and southeastern HBL, likely due to higher topographic
variability and poorly developed fluvial drainage. However, when multiplied across large, lake‐rich areas,
these small shoreline changes cumulatively produce large absolute changes in lake surface area across
the landscape.

This effect is exemplified by the contrast between the CST and the heavily studied YFB, which are similar in
size (32,107 and 33,383 km2) yet display vastly different subseasonal dynamics in lake area. Despite contain-
ing few highly dynamic lakes and a smaller percent dynamism (7% vs. 29%), the CST experiences signifi-
cantly more absolute lake dynamism than the YFB (439 km2 vs. 279 km2) due to its much larger water
fraction (20% vs. 2%). Previous surface water studies have largely ignored this landscape‐scale effect.
Coarse‐resolution global/pan‐Arctic analyses do include the Canadian Shield but have difficulty resolving
the fine‐scale changes that dominate subseasonal lake dynamics in this area. For example, a comparison
of our CubeSat results with a recent global Landsat‐based seasonality product (Pekel et al., 2016) finds that
even the 30 m, ~16‐day revisit time of this high‐quality product likely underestimates total seasonal dyna-
mism by up to 50% (Figure S14), especially in the CST, where small shoreline fluctuations (low RΔs) domi-
nate. While some of this difference may be due to interannual variability (see the supporting information),
this improved quantification of lake dynamism in the CST is likely an outcome of the high spatial resolution

Figure 3. Gridded maps of mean lateral distance between maximum and minimum observed lake boundaries (RΔ, m) for
YFB, MRV, CST, and HBL. Bar graphs quantify the change in lake water fraction (%) associated with lakes within
specified RΔ ranges. The CST displays the highest overall change in lake water fraction, dominated especially by small
shoreline fluctuations (RΔ ≤ 5, white asterisk).
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of CubeSat imagery, which enables mapping of numerous small, previously undetectable lake shoreline
changes that sum to large areas of intermittently inundated land.

Our quantification of substantial, widespread dynamism accrued from small shoreline fluctuations of many
lakes is consequential for estimates of trace gas emissions from freshwater bodies. In contrast to the rela-
tively “static” view of upland lakes commonly assumed by CH4 and CO2 emission models (Bastviken
et al., 2011; Matthews & Fung, 1987; Raymond et al., 2013; Ringeval et al., 2010; Watts et al., 2014), our
results suggest that all Arctic‐Boreal landscapes are dynamic and often at fine spatial scales missed by
coarse‐resolution products. This finding is inherently conservative, as we consider only open‐water lake
shorelines in this study, whereas Arctic‐Boreal lake fluctuations commonly recharge surrounding wetlands
as well. Furthermore, littoral, seasonally inundated shorelines and wetlands are known “hotspots” of fresh-
water CO2 and CH4 production and emission (Bastviken et al., 2004; Tranvik et al., 2009), suggesting that
1 km2 of intermittently inundated land comprised of numerous small shoreline fluctuations likely emits
more trace gas than 1 km2 of permanently inundated land owing to shallow water, vegetation, and CO2

supersaturation. Lastly, because Shield landscapes have both high water fractions and high lake densities,
they typically have a very high lake perimeter to land surface area ratio (2.3 km/km2 for CST vs. 0.6 km/
km2 for YFB), and thus, the total area of intermittently inundated lake shorelines potentially contributing
to CO2 emission in upland regions is large.

Finally, our analysis of potential drivers of subseasonal surface water dynamism identifies an outsized
importance of lake allometry (Lyons et al., 2013; Smith & Pavelsky, 2009), and particularly lake perimeter,
on spatiotemporal patterns in lake area change. Other variables commonly cited as drivers of interannual
lake surface area change, such as water balance (Anderson et al., 2013; Chen et al., 2014; Plug et al., 2008;
Riordan et al., 2006), permafrost presence (Jepsen et al., 2013; Smith et al., 2005; Walvoord et al., 2012),
and distance from river networks (Roach et al., 2013), appear to have a negligible effect on intra‐annual lake
dynamism compared to lake allometry. Better ancillary data sets could produce different results, and we sug-
gest future work to confirm or refute this finding, but a clear conclusion of our study is that any broad‐scale
study seeking to attribute lake area changes to permafrost, climate, or other external factors must first con-
trol for lake allometry. Given that these factors influence lake allometry themselves (Smith et al., 2007),
future work should also consider the interactions between lake allometry and environmental variables.

6. Conclusion

Our Arctic‐Boreal lake tracking analysis advances the utility of CubeSat imagery for hydrologic research. At
the local scale, the high temporal and spatial resolutions of CubeSat imagery reveal short‐lived phenomena
such as floodplain inundation and aquatic vegetation phenology, observations that can inform a wide range
of applications including carbon cycling (Bastviken et al., 2004; Tranvik et al., 2009), water quality (Palmer
et al., 2015), and hydrologic connectivity (Pavelsky & Smith, 2008). At the broad scale, we identify a ubiqui-
tous drawdown of surface water across northern North America during summer 2017, including substantial
water loss caused by fine‐scale lake shoreline contractions on the lake‐dense Canadian Shield, which
coarser‐resolution sensors miss. This finding suggests that current models of CO2 and CH4 trace gas emis-
sion from inland waters underestimate the importance of subseasonal lake area dynamics.
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