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The flux-line lattice dissipation and the pinning force of Bi2Sr2CaCu2O8 and YBa2Cu3O7 films and a
Nb/Cu multilayer are investigated with the vibrating reed technique. In magnetic fields oriented under a small
angle with respect to the film surfaces the Bi-2:2:1:2 film shows a series of pronounced dissipation maxima at
matching fieldsBN in the irreversible region of the magnetic phase diagram. The Y-1:2:3 film shows tiny
damping maxima, whereas no structure in the dissipation of the Nb/Cu multilayer is detected below the upper
critical field. The comparison of the matching fields to an anisotropic London model shows that the dissipation
maxima are caused by rearrangements of the flux-line lattice configuration due to interactions with the sample
surface. The different behavior of the high-temperature superconductors and the Nb/Cu multilayer is under-
stood by explicitly taking the surface barrier into account. Deviations from the surface induced commensura-
bility of the flux-line lattice due to the intrinsic pinning are discussed. Our results indicate that pancake vortices
in the Bi-2:2:1:2 film should be coupled below the irreversibility line and below magnetic fieldsB'<0.5 T
perpendicular to the film surface.

I. INTRODUCTION

The structure of the flux-line lattice~FLL! parallel to a
superconducting film with a thicknessdp of the order of the
penetration depthl differs from the FLL in the thermody-
namic limit in a bulk sample. Due to the interaction of the
flux lines with the film surfaces an anisotropic FLL is
formed.1 At well defined field valuesBN , N51, 2, 3, . . . ,
which will be called matching fields, the FLL rearranges
from a state ofN21 toN flux-line rows parallel to the film.
The critical current density sustained by the surface exhibits
minima at the matching fieldsBN .

The FLL parallel to a superconducting film has been stud-
ied by a variety of methods. The matching fieldsBN have
been determined in conventional superconductors by elec-
tron tunneling,2 microwave absorption,3 and resistivity
measurements.4–6 Pruymboomet al.7 observed a periodic
variation of the pinning force in 90 nm wide Nb3Ge chan-
nels. Torque magnetization measurements on Nb/Cu multi-
layers show a series of maxima at field valuesBN in the
magnetization perpendicular to the layers.8,9 The matching
fieldsBN are in agreement with results of Monte Carlo simu-
lations of the flux-line positions in a superconducting film
which were performed within the framework of the aniso-
tropic London model.8

Hünnekeset al.10 investigated the flux-line dissipation in
YBa2Cu3O7 films in magnetic fields parallel to the film sur-
face with the vibrating reed technique. They observed a se-
ries of dissipation maxima in the irreversible region of the
magnetic phase diagram which they interpreted as evidence

for the matching of the FLL to the sample surfaces. Brong-
ersmaet al.11 performed Monte Carlo simulations of the FLL
in the Y-1:2:3 films using the anisotropic London model.
However, in contrast to the situation in Nb/Cu multilayers
the matching fields determined from the simulations are not
in agreement with the experimentally observed field values
at the flux-line dissipation maxima. The mechanism of the
flux-line dissipation maxima in Y-1:2:3 films remained thus
unclear.

In an attempt to understand the microscopic origin of the
different behavior of YBa2Cu3O7 and Bi2Sr2CaCu2O8

films on one side and Nb/Cu multilayers on the other side we
investigate in this work the flux-line dissipation and pinning
force of Bi-2:2:1:2 and Y-1:2:3 films and a Nb/Cu multilayer
using the same experimental technique, i.e., the vibrating
reed method. A major difference between these samples is
their anisotropy factorg5lc /lab . lab and lc denote the
penetration depths for supercurrents flowing in theab planes
and along thec axis, respectively. Whereas the Nb/Cu
multilayer is nearly isotropic withg.1.2, the Y-1:2:3 film
has an anisotropy constant12 g.5 and the Bi-2:2:1:2 film is
highly anisotropic13 g.150.

The FLL in a Bi-2:2:1:2 film in a magnetic field at an
angleQ with respect to the sample plane can be described by
a tilted stack of pancake vortices. From theory it is expected
that only at very small anglesuQu!arctan(g21).0.4° be-
tween the magnetic field and the CuO2 planes the vortex
structure consists of pancake vortices connected by a lattice
of Josephson vortices parallel to the superconducting
planes.14,15 It was verified experimentally that the dissipation
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in high-Tc superconductors is mainly due to the motion of
pancake vortices.16–18Therefore the measurement of the FLL
structure and flux-line dissipation in magnetic fields slightly
tilted with respect to the film surface provides information
about the interaction between Josephson and pancake vorti-
ces and between individual pancake vortices. Our results in-
dicate that the pancake vortices remain coupled in the field
rangeB<6 T and angle rangeuQu&15°, where we observe
matching effects.

The paper is organized as follows. In the next section the
experimental setup and sample preparation are briefly sum-
marized. In Sec. III the experimental results for the Bi-
2:2:1:2 and Y-1:2:3 films and for the Nb/Cu multilayer are
presented. The interpretation is discussed in Sec. IV. The
main conclusions are summarized in Sec. V.

II. EXPERIMENTAL DETAILS

In this work the flux-line lattice pinning and dissipation in
superconducting films is studied with the vibrating reed tech-
nique. The films and their substrates are glued to silicon
crystals with typical dimensionsl3w3d56.532.030.2
mm3. To drive the vibrating reed and detect its motion ca-
pacitively a thin silver layer of thickness;10 nm is sput-
tered on the silicon crystals. A schematic drawing of the
vibrating reed arrangement is shown in Fig. 1. An external
static magnetic fieldB is applied at an angleQ with respect
to the film surface. The vibration amplitudes are of the order
.10 nm.

The sample holder can be rotatedin situ with an angular
resolutionDQ.0.01°. The resonance frequency of the vi-
brating reed with the superconducting film glued to it is
n0;5 kHz in zero field and the quality factor in zero field is
Q05n0 /Dn0;104 at T<70 K. Dn0 denotes the half width
of the resonance curve. The resonance frequencyv52pn
and the inverse quality factorQtot

21 of the whole system are
measured as a function of magnetic fieldB, angleQ and
temperatureT. To obtain the inverse quality factorQ21 of
the superconducting film,Qtot

21 is corrected for the zero field
valueQ0

21 . The corrected inverse quality factor~or internal
friction! Q21[Qtot

212Q0
21 is in the following frequently

called damping.
We investigated two high-temperature superconductor

films, namely a Bi-2:2:1:2 and a Y-1:2:3 film, and a Nb/Cu
multilayer.

The Bi2Sr2CaCu2O8 film was fabricated at the Tech-
nische Hochschule Darmstadt by dc sputtering onto a
SrTiO3 substrate. The thickness of thec-axis oriented film is
dp5320 nm. The inductively measured critical temperature

is Tc589 K with a transition widthDT51.0 K. From the
10310 mm2 film three pieces called BF1, BF2, and BF3
were cut with a diamond saw. These parts have the dimen-
sions l p3wp52.2031.25 mm2 ~BF1!, l p3wp52.7031.35
mm2 ~BF2!, and l p3wp52.8030.85 mm2 ~BF3!. Further
details on the preparation and characterization of the Bi-
2:2:1:2 film can be found in Ref. 19.

The 200 nm thin YBa2Cu3O7 film was made at the A.F.
Ioffe Physical-Technical-Institute, St. Petersburg. It was de-
posited on a KTaO3 substrate by magnetron sputtering. The
c axis is oriented perpendicular to the substrate. Details on
the preparation and characterization of this film are described
in Ref. 20. The measurements were performed on a part with
dimensionsl p52.2 mm,wp51.6 mm which was cut from
the center of the film.

The Nb/Cu multilayer was deposited at the Vrije Univer-
siteit in Amsterdam. It consists of 19 niobium layers of thick-
ness 10 nm that are separated by 10 nm copper layers. The
outer Nb layers were covered with 50 nm Cu layers to pre-
vent the nucleation of surface superconductivity. The
multilayer was grown on a sapphire substrate in a two-
electron-gun UHV evaporation chamber. The resistively
measured critical temperature isTc56 K. Further informa-
tion on the characterization of the Nb/Cu multilayer is found
in Refs. 8 and 9. Magnetic moment measurements were per-
formed on a multilayer strip of dimensionsl p510 mm and
wp50.7 mm using a torquemeter with a resolution of 1029

Nm. The vibrating reed measurements were performed on a
multilayer with dimensionsl p52.7 mm andwp50.7 mm.

III. EXPERIMENTAL RESULTS

A. Bi 2Sr2CaCu2O8 film

In this section the resonance frequency change and the
damping of the Bi-2:2:1:2 films BF1, BF2, and BF3 in a
magnetic field are presented.

In Fig. 2 the squared resonance frequency difference
Dv2[v2(B)2v2(0) of sample BF3 is shown as a function
of angle in a magnetic fieldB54 T at T525 K. Dv2 is

FIG. 1. Schematical setup of the vibrating reed.Q denotes the
angle between the external magnetic field and the film surface.

FIG. 2. Resonance frequency enhancement of Bi-2:2:1:2 film
BF3 atT525 K andB54 T as a function of the angleQ between
the magnetic field and the film surface. The solid line is a fit of Eq.
~1! to the data.
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maximal for magnetic fields parallel to the film surface. The
resonance frequency enhancement is mainly due to the
shielding currents in the CuO2 planes and is given by21

v2~B!2v2~0!5v i
22vpin

2 2G2, ~1!

with v i
25(Vp /I )(pwp/4dp)(B

2/m0)cos
2Q. Vp denotes the

volume,wp the width anddp the thickness of the film.I is
the effective moment of inertia of the silicon crystal with the
substrate glued to it. The first termv i

2 on the right hand side
of Eq. ~1! is the ideal resonance frequency enhancement in
the case of infinitely strong pinning, the second termvpin

2

accounts for corrections due to the finite pinning strength.
vpin
2 is inversely proportional to the Labusch parameter22,23

a. The third term on the right hand side of Eq.~1! is a
correction term due to the dampingG5Q21v/2. The correc-
tion terms are generally small and can be neglected in a first
approximation.24

The solid line in Fig. 2 is a fit of Eq.~1! to the data with
an effective moment of inertiaI5238310212 kg m2. The
pinning correction and the damping are neglected. From the
fit the absolute orientation of the magnetic field with respect
to the film surface is determined with an accuracy
DQ&0.5°.

A comparison ofDv2 andQ21 atQ50° andQ580° is
shown in Figs. 3~a! and 3~b!. The measurements were per-
formed in decreasing fields, after field cooling the film BF3
from aboveTc to the measuring temperatureT530 K in an
applied fieldB58 T. The damping atQ580° shows a single
broad maximum atB.7 T that is accompanied by the van-
ishing of the resonance frequency enhancement. Since the
resonance frequency enhancement is a measure of the pin-
ning strength, we conclude that the FLL depins above
B.7 T atT530 K, Q580° andn0;5 kHz.

The maximum in the damping defines the depinning
line.25,26 Figure 4~a! shows the depinning line atQ580°
defined by the single damping maximum. The extracted de-
pinning line is in agreement with depinning lines found for
Bi-2:2:1:2 crystals.17,27

In the following we turn to the discussion of the damping
and resonance frequency change in a magnetic field oriented
under a small angle with respect to the film surface. Figure
3~a! shows thatDv2 at Q50° is monotonically increasing

with increasing magnetic fieldB<8 T, i.e., at Q50°,
T530 K andB<8 T the FLL is pinned. From Eq.~1! we
expectDv2}B2. The solid lines in Fig. 3~a! are calculated
from Eq. ~1! with the effective moment of inertiaI obtained
from the fit to the angle dependent resonance frequency
change. They provide an excellent description of the data at
Q50° in the complete magnetic field range and of the data
at Q580° below the maximum inDv2.

Though the FLL is pinned atQ50°, T530 K and
B58 T a rich structure of maxima is seen in the damping at
Q50°60.5°. Since the resonance frequency is continuously
increasing with magnetic field, these maxima arenot due to
thermally activated depinning processes. Since they do not
appear in the damping for large anglesuQu.15°, they are
not due to second phases. Similar structures in the damping
of vibrating Y-1:2:3 films have been reported by Hu¨nnekes
et al.10 The mechanism leading to the structures in the damp-
ing Q21 will be investigated in the following.

In Fig. 5 the damping of film BF2 is shown atQ55°, 10
K <T< 70 K on ~a! a linear scale and~b! a semilogarithmic
scale. For clarity the damping curves in~b! have been verti-
cally displaced. As can be seen from Fig. 5~a! the structures
in the damping atT530 K andT550 K are considerably
smaller than the depinning peak which is measured at
T570 K. Note that the height of the damping maximum at
the depinning line is related to the magnetic field by28

Qmax
21 }B2. The structures in the damping below the irrevers-

ibility field Birr might tentatively be related to a partial de-
pinning of the FLL.

The peak structures in the damping atT530 K and 50 K
are similar in shape but the damping maxima atT550 K are
shifted to lower magnetic fields. To align the damping
maxima in Fig. 5~b! the dampingQ21 is plotted versus a
reduced fieldB/B* with B*51.0 T for T<30 K and
B*50.87 T for T550 K, 60 K. Since the damping at
T570 K does not show any maxima belowBirr we arbi-
trarily chooseB*51 T for T570 K. As a function of the
reduced fieldB/B* the damping at different temperatures
displays a series of maxima at the reduced fields indicated by
the arrows. The damping maxima are most pronounced at 30
K <T< 60 K, whereas they are washed out at low tempera-
turesT<20 K and close to the irreversibility line atT570
K. The meaning of the scaling fieldB* is discussed in Sec.
IV B.

FIG. 3. ~a! Dv2 and ~b! Q21 of the Bi-2:2:1:2 film BF3 at
T530 K, Q50° andQ580°. The solid lines in~a! are calculated
with Eq. ~1!.

FIG. 4. Depinning line of the film BF3 atQ580°. Birr denotes
the irreversibility field defined by the single damping maximum at
Q580°.
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Angular dependent measurements show that the damping
maxima in the irreversible regime of theB-T plane disappear
for angles larger thanQ;15°.

The structures in the dissipation are correlated with
anomalies in the pinning force. In Fig. 6~a! the damping
Q21 and ~b! the squared resonance frequency change of the
film BF1 are shown atQ50°. From the measured resonance
frequency enhancementDv2 the ideal resonance frequency
change due to the shielding currents in the superconducting
planes, see Eq.~1!, is subtracted, i.e., the correction term
vpin
2 .v i

22Dv2}a21 is displayed in Fig. 6~b!. The anoma-
lies in the resonance frequency enhancement, i.e., in the pin-
ning force, are uniquely correlated with the dissipation
maxima. SinceG2!v i

22Dv2, the structures in the reso-
nance frequency are not caused by the damping correction in
Eq. ~1! but are due to anomalies in the pinning correction
termvpin

2 .

B. YBa2Cu3O7 film

The dissipation of the Y-1:2:3 film was measured in mag-
netic fields oriented under a small angle with respect to the
film surface. In Fig. 7 the damping is shown atQ50° as a
function of magnetic field forT520 K andT570 K. The

field cooled measurements~FC! show small dissipation
maxima atB1.0.45 T andB2.0.9 T; see inset to Fig. 7. In
the ZFC measurement atT520 K no dissipation maxima are
observed. Further measurements in the temperature range 6
K <T< 40 K and angle range 0°<Q<5° showed no evi-
dence for damping maxima in the irreversible regime of the
magnetic phase diagram.

FIG. 5. DampingQ21 of Bi-2:2:1:2 film BF2 atQ55° and
different temperatures on~a! a linear and~b! a semilogarithmic
scale. For clarity only three damping curves are shown in~a!. To
show the peak positions clearly the damping curves in~b! are ver-
tically shifted. The damping curves have been multiplied by the
factors 1/3~10 K!, 2/3 ~20 K!, 1 ~30 K!, 5 ~50 K!, 300 ~60 K!,
3000~70 K!. B* denotes a scaling field withB*51 T for T<30 K
andT570 K andB*50.87 T atT550 K, 60 K. The arrows indi-
cate the matching fieldsBN numbered by integer values
N51,2, . . . .

FIG. 6. ~a! DampingQ21 and ~b! resonance frequency change
v i
22Dv2 of Bi-2:2:1:2 film BF1 atQ50°. v i

2 denotes the reso-
nance frequency enhancement due to the shielding currents in the
superconducting planes in the limit of an infinite pinning force.
SinceG2!v i

22Dv2 the differencev i
22Dv2 is proportional to the

pinning correctionvpin
2 }a21 @see Eq.~1!#.

FIG. 7. DampingQ21 of a 200 nm thin Y-1:2:3 film at
Q50°, T520 K andT570 K. The inset shows the damping at low
magnetic fields. FC stands for field cooled and ZFC for zero field
cooled.
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C. Nb/Cu multilayer

The magnetic moment perpendicular to the Nb/Cu
multilayer is shown in Fig. 8 for different temperatures 2.2 K
<T< 5.9 K. The magnetic field is applied under an angle
Q51° with respect to the layers. The magnetic moment
shows a series of pronounced maxima. When the angleQ
between magnetic field and the layers is increased the height
of the maxima in the magnetic moment gradually decreases
and vanishes aroundQ;6°. The position of the peaks is
independent of temperature implying that the penetration
length lab is larger than the thickness of the sample, i.e.,
lab.dp .

The angular dependence of the squared resonance fre-
quency difference of the Nb/Cu multilayer is shown in Fig. 9
at T54.5 K andB50.4 T.Dv2 has a triangular shape with
Dv250 for uQu.35°.

The resonance frequency change and damping of the vi-
brating multilayer was measured as a function of magnetic
field at constant angle 0°<Q<8°. In Figs. 10~a! and 10~b!
Dv2 is shown on a linear and a logarithmic scale, respec-

tively. The solid line in 10~b! is a fit of Eq. ~1! to the low
field data withI5125310212 kg m2 neglecting the correc-
tion terms. In Figs. 10~c! and 10~d! the dampingQ21 is
shown on a linear and a logarithmic scale. A damping maxi-
mum is seen at the upper critical fieldBc2 that is accompa-
nied by the vanishing of the resonance frequency enhance-
ment. Within the experimental resolution no structures in the
dissipation can be resolved in the irreversible regime of the
B-T plane.

From Fig. 10 we determineBc250.48 T atT54.5 K and
Q50°. From the measurement of the angular dependent
resonance frequency the anisotropy constant of the Nb/Cu
multilayer can be estimated. AssumingBc2(90°)
<Bc2(35°)50.4 T at T54.5 K an anisotropy constant
g5Bc2(0°)/Bc2(90°)>1.2 follows.

We stress that the vibrating reed measurements are per-
formed at low effective ac magnetic field amplitudes
bac;1 mT at B50.1 T.

IV. MODEL AND INTERPRETATION

The existence of a series of maxima in the dissipation of
vibrating Bi2Sr2CaCu2O8 films has been shown in the pre-
ceding paragraph. Hu¨nnekeset al.10 observed a series of dis-
sipation maxima in vibrating YBa2Cu3O7 films, if the mag-
netic field is parallel to the film surfaces. The 200 nm thin
Y-1:2:3 film investigated here showed only tiny dissipation
maxima in the irreversible region of the magnetic phase dia-
gram. A Nb/Cu multilayer showed no damping maxima be-
low Bc2 , but clear maxima in the irreversible magnetization
were observed.

Since vibrating reed measurements on high-temperature
single crystalsof thicknessdp.50mm much larger than the
penetration depthlab do not show any dissipation maxima
below the irreversibility line,21,24 we conclude that the ob-
served dissipation maxima in the high-temperaturefilm
samples are related to the interaction of the flux-line lattice
with the sample surface. The flux-line lattice in the supercon-
ducting films forms a configuration that is commensurate
with the sample thickness. At the matching fields the flux-
line configuration is supposed to become unstable and rear-
range to another stable configuration. We shall show that the

FIG. 8. Magnetic moment perpendicular to the Nb/Cu
multilayer as a function of magnetic field applied under an angle
Q51° with respect to the layers. The temperatures are, from top to
bottom, 2.2 K, 2.5 K, 2.9 K, 3.3 K, 3.7 K, 4.2 K, 5.0 K. The peaks
are labeled by the numberN.

FIG. 9. Angular dependence of the resonance frequency en-
hancement of the Nb/Cu multilayer atT54.5 K andB50.4 T.

FIG. 10. Nb/Cu multilayer:~a!, ~b! Dv2 and ~c!, ~d! Q21 as a
function of magnetic field atT54.5 K. The solid line in~b! is a fit
of Eq. ~1! to the low field data.
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seemingly conflicting results for the high-Tc films and the
Nb/Cu multilayer can be consistently interpreted when the
surface barrier is taken into account.

A. Flux-line lattice configuration in a superconducting film

A flux line near and parallel to the surface of a supercon-
ducting sample experiences two forces. The Lorentz force
due to the interaction with the Meissner currents in a surface
region of depthlab is directed into the superconductor. The
image force due to the interaction of the flux line with its
image vortex is directed outwards. These forces lead to the
appearance of surface barriers for the entry and exit of flux
lines.29,30

The FLL parallel to a superconducting film with
dp,lab has been investigated by Carter,31 Takács,32 Brong-
ersmaet al.,8 and Mawatari and Yamafuji.1 These investiga-
tions were performed within London theory. In the following
lab and lc denote the penetration depths for supercurrents
flowing in theab planes and along thec axis, respectively,
jab andjc denote the coherence lengths in the CuO2 planes
and along thec axis. The anisotropy constant is defined as
g5lc /lab .

Brongersmaet al.8 performed Monte Carlo simulations of
the FLL parallel to a superconducting film withdp,lab in
theabsenceof a transport current. They observed the forma-
tion of N flux-line rows with a separationAx5dp /(N11),
N52,3, . . . . The fluxlines rearrange at well defined fields
BN from N to N11 rows. The Monte Carlo simulations are
performed with a fixed number of vortices in a layer of thick-
nessdp and lengthL. A varying vortex density is simulated
by variation ofL. Due to this simulation procedure the sur-
face barrier for the entry of vortices in the superconducting
film is neglected and the first row of vortices appears at the
lower critical field

Bc15
2F0

pgdp
2 lnFgdpjab

G . ~2!

F0 denotes the flux quantum. The reduced matching fields
BN /Bc1 are dependent on the parameterjab /gdp . Brong-
ersmaet al.8 showed that the rearrangements of the flux lines
take place at the magnetic field values that correspond to the
experimentally determined maxima in the magnetic moment
perpendicular to the multilayer. From this result we conclude
that surface barriers for flux-line entry and exit are negligible
in the Nb/Cu multilayers. This may be due to the rather thick
outer Cu layers evaporated on the multilayers.8

Mawatari and Yamafuji1 investigated the FLL parallel to a
superconducting film in thepresenceof a transport current
J parallel to the film surface and perpendicular to the flux
lines by explicitly taking into account that vortices had to
cross the surface barrier. They analytically calculated the
critical current densityJc sustained by the surface, the sepa-
ration of the flux-line rowsAx and the flux-line lattice con-
stant along the rowsAy . In this model surface barriers prove
to be important and the field scale of the matching effect is
the superheating field

Bsh5
F0

A2pjabdp
. ~3!

The superheating field is the maximal magnetic field value
for which the Meissner state is stable. In a zero field cooled
magnetization measurement without an applied transport cur-
rent the surface barrier for vortex entry does not vanish for
magnetic fields up toBsh.

For the investigated Bi-2:2:1:2 film we havedp5320 nm,
lab5200 nm,33 jab.2.0 nm,34 andg.150.13 Therefore we
get from Eq. ~2! Bc1.931024 T and from Eq. ~3!
Bsh.0.7 T. The damping shows maxima at magnetic fields
BN>0.7 T, i.e., the observed field scale for the occurence of
the dissipation maxima is of the order of the superheating
field Bsh and not ofBc1 . Therefore we analyze the appear-
ance of the dissipation maxima within the model of Mawa-
tari and Yamafuji.1

The calculations are performed for a FLL parallel to the
film surfaces since in this case the method of image vortices
can be used. We expect the results to be qualitatively un-
changed in the small angle range where surface pinning is
strong.

We note that this model is valid for three-dimensional-
~3D! anisotropic superconductors. Since Bi-2:2:1:2 films and
crystals are strongly anisotropic, they should be described
within the Lawrence-Doniach model.35,36 However, Joseph-
son strings connecting the pancake vortices nucleate only at
very small angles14,15with cotQ@g. Usingg.150 we obtain
uQu!0.4°. For larger angles the Lawrence-Doniach model is
equivalent to the anisotropic London model. Since the mis-
alignment angle in our measurements isDQ.0.5° we can
interpret the results obtained on the Bi-2:2:1:2 films within
the model of Mawatari and Yamafuji.1

Feinberg and Buzdin37 estimated the superheating field of
a bulk sample (lab!dp) in magnetic fieldsparallel to the
layers in the Lawrence-Doniach model and obtained

Bshi5F0 /plabgs ~4!

for T,T* and

Bshi5F0 /A2plabjab ~5!

for T.T* . The crossover temperatureT* is defined by
jc(T* )5s/A2. s denotes the layer separation. With
lab.200 nm,g.150 ands51.5 nm for Bi-2:2:1:2 one ob-
tains Bshi(T!T* ).0.01 T. SinceBshi!Bsh and since the
matching fields are of the order ofBsh we conclude that the
measurements were performed in an angle range where the
Bi-2:2:1:2 film can be described by the anisotropic London
theory.

B. Bi 2Sr2CaCu2O8 film

In the Appendix the equations for the critical current den-
sity and the FLL constants derived by Mawatari and
Yamafuji1 are summarized. The field scale is the superheat-
ing field Bsh and the critical current density scale is the de-
pairing current

Jdp5
F0

2A2pm0g
1/2lab

2 jab
. ~6!
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The single parameter in the theory is the ratiojab /gdp .
With typical superconducting parameters of Bi-2:2:1:2
samples we obtainjab /gdp,1023.

In the Appendix we derive the equations for the FLL con-
figuration in the first order injab /gdp , which is an excellent
approximation forjab /gdp,1023 andN<20.

In Fig. 11 the reduced critical current densityJc /J dp with
Jdp.231011 A/m2 is shown as a function of the reduced
field B/Bsh. The critical current density is calculated with
Eqs. ~A2!–~A15!. Jc has a nonmonotonous behavior. The
minima inJc at fieldsBN occur whenever the FLL rearranges
from N21 toN rows. In Fig. 12 we show the average posi-
tion X̄ of the flux-line rows along the film thickness and the
flux lattice constantsAx along the thickness andAy along the
rows as a function of the magnetic fieldB. The values of
X̄, Ax andAy displayed in Fig. 12 are calculated for a trans-
port current density equal to the critical current densityJc
sustained by the surface barriers.Ay exhibits a sawtooth
structure that clearly marks the rearrangements of the vortex
lattice.

The interaction of the FLL with the film surface creates an
anisotropic FLL withAx.56 nm andAy.12.5 nm for the
Bi-2:2:1:2 film atB54Bsh.2.4 T. The anisotropic FLL is
stabilized by the long range interaction between the flux lines
and between the flux lines and the film surface. The influence
of the sample surfaces on the flux-line configuration be-
comes particularly clear if we compare the FLL constants
Ax andAy to their corresponding valuesac andaab in bulk
samples. Magnetic fields parallel to theab planes of abulk
sample create an anisotropic FLL with lattice constants
aab5(gF0 /B)

1/2 parallel to the superconducting planes and
ac5(F0 /gB)

1/2 perpendicular to the planes. For Bi-2:2:1:2
samples with an anisotropy constantg.150 we obtain the
lattice constantsaab.360 nm andac.2.4 nm in a field
B54Bsh.2.4 T, i.e., in this case isaab@ac .

The arrows in Fig. 12~c! mark the matching fieldsBN .
The matching fields determined either from the discontinui-
ties inAy or by the minima inJc agree and are plotted in Fig.

13 as a function of the flux-line row numberN. In the limit
jab /gdp!1 the fieldsBN depend linearly onN according to

BN5Bsh~0.1910.71N!. ~7!

For the Bi-2:2:1:2 film we obtain DB5BN112BN
50.71Bsh.0.5 T with a superheating field for an anisotropic
superconductorBsh50.7 T.

In order to compare the theory to the data we have num-
bered the matching fields as indicated in Fig. 5. For tempera-
turesT<40 K no temperature dependence of the matching
fields could be detected, for larger temperatures the damping
maxima shift to smaller magnetic fields. This is in qualitative
agreement with Eq.~7!. It was not possible to determine the
temperature dependence of the phenomenologically intro-
duced scaling fieldB*}Bsh. Furthermore not all expected
matching fields are observed. These deviations from the
theory will be discussed later.

In Fig. 14 the matching fields of the three parts of the
Bi-2:2:1:2 film ~a! BF1, ~b! BF2, and~c! BF3 are shown at
Q50°60.5°. The matching fields show a linear dependence
on the number of flux-line rowsN with slopesDB50.68 T
for BF1 and BF2 andDB50.75 T for BF3. The matching
fields of film BF2 atQ55° are shown in Fig. 15. The sepa-

FIG. 11. Theoretical critical current densityJc /Jdp of a super-
conducting film in a parallel magnetic field.Jc is calculated in the
limit jab /gdp!1. The critical current density is minimal at mag-
netic fieldsBN , where the FLL undergoes a rearrangement from
N21 to N flux-line rows.

FIG. 12. ~a! Averaged positionX̄ of the flux-line rows and~b!
separationAx of the flux-line rows along the thickness of the super-
conducting film.~c! Flux-line row constantAy . The inset to~a!
shows a schematic picture of the flux-line configuration.X̄, Ax , and
Ay are calculated in the limitjab /gdp!1 in the presence of the

critical transport current perpendicular toBW and parallel to the film
surface that is shown in Fig. 11. The arrows in~c! mark the fields
BN , where rearrangements of the FLL take place. Note that due to
the presence of the transport current vortices nucleate in the film
already belowBsh.
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ration between two matching fields isDB50.66 T at
Q55°, i.e., the slopeDB is independent of angle for
uQu<5°.

The slopesDB50.760.1 T determined atQ50° and
Q55° are in good agreement with the theoretical estimate
DB.0.5 T for a thin anisotropic superconducting film.
Therefore the fundamental mechanism causing the FLL dis-
sipation maxima in the irreversible region of the magnetic
phase diagram is the rearrangement of the flux lines at small
angles to the film plane. The deviations from the theoretical

estimate might be attributed to the surface roughness and to
the crudeness of that estimate.

The FLL atQ55° consists of tilted stacks of pancake
vortices. From the angle independence of the matching fields
we conclude that the dissipation and matching effects in the
whole investigated angle range are due to pancake vortices.
These stacks of pancakes must be coupled in the investigated
field B<6 T and angleuQu<5° range, i.e., for magnetic
fieldsB'<0.5 T perpendicular to the CuO2 planes. Our re-
sults indicate that the superheating fieldBsh of a stack of
pancake vortices is of the same order of magnitude as the
superheating field of a flux line in a 3D-anisotropic super-
conducting film.

Since the matching effects are not observed for angles
larger thanQ;15° we conclude that surface barriers are not
important for uQu*15°. This is similar to angle dependent
measurements of the critical current density in NbTa films38

which show that surface pinning is effective in an angle
rangeuQu&15°.

Before discussing deviations from the model we turn to
the interpretation of the data obtained for the Y-1:2:3 film
and the Nb/Cu multilayer.

C. YBa2Cu3O7 film

The 200 nm thin Y-1:2:3 film investigated in this work
has the parametersBsh.1.5 T, Bc1.10 mT, and
jab /gdp.1023. We have used the valuesjab.15 nm and
g.5. Therefore the first damping maxima are expected from
Eq. ~7! at the fieldsB1.1.35 T andB2.2.4 T. We measured
tiny maxima in the damping atB1.0.45 T andB2.0.9 T.
The reduced matching fields can be understood assuming a
value for the superheating field that is reduced to one third of
the theoretical value.

In the following we shortly discuss the results of Hu¨n-
nekes et al.10,39 who measured the damping of vibrating
Y-1:2:3 films with a thickness in the range 43 nm<dp< 600
nm. All investigated films showed a series of damping
maxima as a function of the applied magnetic fieldB<2.5 T.
The measurements were carried out atT520 K. The posi-
tions of the damping maxima of a 43 nm and a 275 nm thin

FIG. 13. Calculated matching fieldsBN in the limit
jab /gdp!1. The matching fields are defined by the minima in the
critical current density or equivalently by the jumps in the lattice
constant Ay . The solid line is the functionBN5Bsh(0.19
10.71N).

FIG. 14. Experimentally determined matching fields of the Bi-
2:2:1:2 films ~a! BF1, ~b! BF2, and~c! BF3 as a function of the
flux-line row numberN. The angle between the magnetic field and
the film surface isQ50°60.5°. The matching fields are deter-
mined for temperatures 20 K<T< 40 K.

FIG. 15. Matching fields of Bi-2:2:1:2 film BF2 atQ55° and
10 K <T< 60 K.
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film were also measured at 50 K and 80 K, respectively. The
matching fields were only weakly shifted by temperature.

Except for the 43 nm thin film the results for all films
investigated by Hu¨nnekeset al.10,39 can be qualitatively un-
derstood if surface barriers are taken into account. However,
the experimentally determined superheating fields of the
Y-1:2:3 films are lower than the calculated values. The re-
duction of the superheating fields might be attributed to sur-
face roughness.

The 43 nm thin Y-1:2:3 film investigated by Hu¨nnekes
et al.10 exhibits matching fieldsB150.25 T andB250.8 T.
Brongersmaet al.11 pointed out that the calculated lower
critical field parallel to the CuO2 planesBc150.56 T is
higher than the first matching field. Due to this fact and the
limited experimental resolution40 of the damping measure-
ment the data for the 43 nm film are not conclusive with
regard to a comparison with the theory.

D. Nb/Cu multilayer

The Nb/Cu multilayer has the parametersjab516 nm and
g.1.2. With an effective thicknessdp.400 nm we obtain
Jdp.6.631010 A/m2, Bsh.0.072 T, andjab /gdp.0.036.
Figure 16~a! shows the calculated critical current density.
The matching fieldsBN determined from the minima in the
critical current density are shown in Fig. 16~b! (d). For
small flux-line row numbersN the matching fieldBN is lin-
ear inN @solid line in Fig. 16~b!#, whereasBN}N2 is found
for largeN @dotted line in Fig. 16~b!#.

In the experimentally accessible field rangeB,0.4 T at
T54.5 K five dissipation maxima are expected from the
theoretical calculations presented in Fig. 16~b! but are not
observed experimentally. However, the magnetization per-
pendicular to the multilayers indeed shows four maxima at
T54.2 K. The experimentally determined matching fields
areBN50.028, 0.060, 0.131, 0.21 T,N51, 2, 3, 4. Taking
into account the uncertainty in the thickness of the multilayer
that originates from the 50 nm outer copper layers the ex-
perimentally determined fields are in excellent agreement

with the calculated rearrangement fieldsBN50.024, 0.058,
0.122, 0.185 T,N51, 2, 3, 4, obtained from the Monte Carlo
simulations.41 However, the rearrangement fields
BN50.060, 0.119, 0.188, 0.268 T,N51, 2, 3, 4, obtained
from the model of Mawatari and Yamafuji1 are significantly
larger than the matching fields determined from the torque
magnetization. This comparison proves that surface barriers
for the entry of vortices in the multilayer are not effective.
This is consistent with measurements of the critical current
density due to surface pinning that is reduced in supercon-
ductors plated with a normal metal.42 Furthermore graded
Ta/NbTa/Ta films with a smooth interface between the Ta
and the NbTa layers show strongly reduced surface
pinning.38

Why are maxima not observed in the dissipation of the
Nb/Cu multilayer? One possibility might be that the sensitiv-
ity of the vibrating reed technique is not sufficient. To check
this we compare the dampingQ21 of the Bi-2:2:1:2 film
BF2 at T560 K, Q51.5° and of the Nb/Cu multilayer at
T54.5 K,Q50° andQ54° in Fig. 17. The flux-line dissi-
pation in the Bi-2:2:1:2 film at the matching fields is larger
than the dissipation in the multilayer at the transition to the
normal state. From this comparison we conclude that the
dissipation level at the matching fields should be well above
the experimental resolution if it is due to the same dissipa-
tion mechanism as in the Bi-2:2:1:2 film.

From the experimental results we conclude that a surface
barrier for vortex entry and exit is effective in the Bi-2:2:1:2
films, but is inefficient in the Nb/Cu multilayers. Therefore
one might speculate that in Bi-2:2:1:2 the FLL-dissipation
maxima at the matching fields are caused by the interaction
of the vortices with surface barriers. In the vicinity of the
matching fields the flux-line configuration is unstable and the
hopping rate for vortices to overcome the surface barrier
might be enhanced. This interpretation naturally explains the
absence of damping maxima in the Nb/Cu multilayer with
outer Cu layers. The observation of only tiny damping
maxima in the 200 nm thin Y-1:2:3 film might be due to a
corroded surface of that film.

FIG. 16. ~a! Theoretical critical current densityJc in a parallel
magnetic field calculated with the supercondcuting parameters of
the Nb/Cu multilayer.~b! Matching fields determined from the
minima in Jc . For smallN a linear dependenceBN}N is found
~solid line!, for largeN a quadratic dependenceBN}N2 is seen
~dotted line!.

FIG. 17. Comparison of the dampingQ21 of the Nb/Cu
multilayer atT54.5 K,Q50° andQ54° and the damping of the
Bi-2:2:1:2 film BF2 atT560 K, Q51.5°.
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E. Deviations from the simple model

The model of Mawatari and Yamafuji1 predicts rearrange-
ments of the FLL at constant field intervalsDB, thus evenly
spaced dissipation maxima might be expected. In contrast,
the damping of vibrating Bi-2:2:1:2 films generally shows
only a few of the expected maxima. The selection rules de-
pend on temperature and angleQ.

In the model a defect free superconductor is assumed. The
Bi-2:2:1:2 film, however, shows strong bulk pinning as can
be seen from the cos2Q variation of the resonance frequency
enhancement in Fig. 2. We observed that the damping
maxima are most clearly seen in the intermediate tempera-
ture range. At low temperaturesT<20 K the formation of an
ordered FLL structure is hindered by strong bulk pinning, at
high temperatures near the irreversibility temperatureTirr
thermal fluctuations destroy the FLL order or the coupling
between the pancake vortices.

Moreover, beside the formation of a FLL commensurate
with the film thickness we expect a matching to the layered
structure due to the intrinsic pinning mechanism.43,44 Ous-
senaet al.45 observed a nonmonotonic dependence of the
magnetization of a twin free Y-1:2:3 single crystal in a mag-
netic field parallel to the CuO2 planes. Their crystal has a
thicknessdp50.125 mm@lab . A similar nonmonotonic
variation of the critical current density in Pb-Bi films with a
periodic variation of the Bi content was reported by Raffy
et al.46 The maxima in the magnetization of the Y-1:2:3 crys-
tal can be understood assuming a matching of the FLL to the
layered structure that has a periodicitys, i.e., ac5ns,
n51,2, . . . .47 In the case of Bi-2:2:1:2 withg.150 and
s515 Å we obtain the matching fields

Bn5
F0

gs2n2
, n51,2, . . . . ~8!

These matching fieldsBn are of the same order of magnitude
than the matching fieldsBN expected from a FLL commen-
surate to the film surfaces. Qualitatively the suppression of
damping maxima at the matching fieldsBN can be under-
stood from a competition between the matching to the film
thickness and to the layered structure, respectively.

Cooley and Grishin48 considered a modified critical state
model ~‘‘terrace critical state’’! for a superconducting slab
with a regular array of columnar pinning centers with pin
lattice constantap . In magnetic fields parallel to the colum-
nar pins they found a periodic variation of the magnetization
with periodDB.F0 /ap

2 . Cooley and Grishin48 suggest that
the model might be applicable to the pinning by a layered
structure ifap

2.labs is substituted. From the superconduct-
ing parameters for Bi-2:2:1:2 we estimate a period
DB.6.9 T that is much larger than the observed period.

V. CONCLUSIONS

In this work the flux-line dissipation and pinning force of
superconducting films has been investigated in magnetic
fields that are oriented under a small angle with respect to the
sample surface. In a Bi2Sr2CaCu2O8 film a series of pro-
nounced maxima is found in the irreversible region of the
magnetic phase diagram, a YBa2Cu3O7 film displays only
tiny dissipation maxima, whereas no damping peak structure

is observed in a Nb/Cu multilayer. We have evaluated the
matching fieldsBN in the Bi-2:2:1:2 film defined by the dis-
sipation maxima at fixed angle and temperaturesT<60 K.
The matching fields observed at a fixed angle are found to be
equally spaced with an angle independent separation
DB50.760.1 T atQ50° andQ55°.

Calculations within the anisotropic London model show
that the flux-line lattice parallel to the film surfaces forms a
sequence of states, each consisting ofN flux-line rows.1 At
well defined field valuesBN the FLL rearranges suddenly
from N21 to N flux-line rows, whereas the critical current
density sustained by the surface displays a minimum. The
comparison of the rearrangement fields with the experimen-
tally determined matching fields shows semiquantitative
agreement.

This work and the work of Hu¨nnekeset al.10 show that
the superheating fields of Bi-2:2:1:2 and Y-1:2:3 films are of
the same order of magnitude. We conclude that the stacks of
pancake vortices in the investigated Bi-2:2:1:2 film in the
angle range cotQ!g behave like flux lines in a 3D-
anisotropic superconductor. Moreover, since only the pan-
cake vortices in the CuO2 planes are supposed to cause
dissipation,16 our results show that there is a coupling be-
tween the pancake vortices in the field rangeB<6 T or
B'<0.5 T. The competition between the commensurability
of the FLL to the film surfaces and the layered structure as
well as the isotropic bulk pinning might cause the observed
deviations from the surface pinning model.

The magnetization of the Nb/Cu multilayer perpendicular
to the Nb layers exhibits a series of maxima at magnetic
fieldsBN that agree with the rearrangement fields of the FLL
if the surface barrier for vortex entry is neglected.8 In con-
trast, in vibrating reed measurements on the Nb/Cu
multilayer no damping peak structure belowBc2 that indi-
cates FLL rearrangements was found. The surface barriers of
the Nb/Cu multilayer are reduced by evaporation of rather
thick outer Cu layers. Therefore we propose that the dissipa-
tion maxima observed in Bi-2:2:1:2 films and Y-1:2:3 films
are due to flux lines hopping over surface barriers.
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APPENDIX: CRITICAL CURRENT DENSITY OF A
SUPERCONDUCTING FILM IN A PARALLEL FIELD

In this appendix the equations for the critical current den-
sity and the FLL constants of superconducting films in par-
allel magnetic fields are summarized. Furthermore the criti-
cal current density and the FLL constants are derived in the
first order in the parameterj/dp . The calculations are per-
formed for an isotropic superconductor. The results are gen-
eralized to uniaxially anisotropic superconductors by the fol-
lowing scaling prescription:

l→g1/2lab , j→g21/2jab , dp→g1/2dp . ~A1!
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The critical current density that a FLL parallel to a super-
conducting film is able to sustain due to the interaction with
the film surfaces was calculated analytically by Mawatari
and Yamafuji.1 The equations derived in Ref. 1 are summa-
rized here for convenience.

The superconducting film extends in they-z plane with
the film surfaces atx50 and x5dp . The magnetic field
BW 5Bẑ is oriented along thez axis, the transport current
JW5Jŷ along they axis.

Ax andAy denote the FLL constants along the thickness
of the film and along the flux-line rows, respectively; see
inset Fig. 12. IfN flux-line rows at positionsxi are present in
the film, the averaged position of the flux-line rows along the
thickness of the film isX̄5N21( i51

N xi . Since the Lorentz
force points in the positivex direction, the vortex rows are
pushed towards the film surface atx5dp , i.e., X̄.dp/2. In
the magnetic field rangeB(N21)N<B<BNN , N51, 2, 3, . . . ,
the critical current densityJc5Jc,ex

(N) is supplied by the sur-
face barrier for vortex exit out of the film, in the magnetic
field rangeBNN<B<BN(N11) , N50, 1, 2, . . . , thecritical
current densityJc5Jc,en

(N) is determined by the surface barrier
for vortex entry into the film. The crossover fieldsB(N21)N
andBNN denote the boundaries between magnetic field re-
gions belonging to different pinning mechanisms and are de-
termined by requiring the critical current density to be a con-
tinuous function ofB. The above-mentioned matching fields
are given byBN5B(N21)N , N51,2,3, . . . .

We choose the following reduced units:j5Jc /Jdp,
b5B/Bsh, b(N21)N5B(N21)N /Bsh, bNN5BNN /Bsh,
ax5Ax /dp , ay5Ay /dp , x̄5X̄/dp , and z5j/dp .
Jdp5F0/2A2pm0l

2j denotes the depairing current,
Bsh5F0 /A2pjdp the superheating field, anddp the film
thickness. The model is valid in the limits (dp/2l)2!1 and
j!l.

~1! Jc in the Meissner phase:

0<b<b01:

j c,en
~0! 512b. ~A2!

~2! Jc in the presence of one flux-line row:

j5S b2A2p
z

ay
D ~2x̄21!, ~A3!

bF122 x̄~12 x̄!G5
z

A2 F p

ay
211 lnS ay

A2pz
D G ; ~A4!

b01<b<b11: j c,ex
(1) is determined by Eqs.~A3! and~A4! and

j5 j c,ex
~1! , ~A5!

~2x̄21!25S 12
A2pz

bay
D S 12

ay
p D ; ~A6!

b11<b<b12: j c,en
(1) is determined by Eqs.~A3! and~A4! and

j5 j c,en
~1! , ~A7!

j c,en
~1! 512Fb22A2p

z

ay
~12 x̄!G . ~A8!

~3! Jc in the presence ofN flux-line rows,N>2:

j5b~12Nax!~2x̄21!, ~A9!

~2x̄21!25ax
22~12Nax!

22
2A2z

b
@11 ln~bax!#,

~A10!

axay5
A2pz

b
; ~A11!

b(N21)N<b<bNN : j c,ex
(N) is determined by Eqs.~A9!–~A11!

and

j5 j c,ex
~N! , ~A12!

~2x̄21!25~12Nax!F12Nax1
1

N S ax2 ay
p D G ;

~A13!

bNN<b<bN(N11) : j c,en
(N) is determined by Eqs.~A9!–~A11!

and

j5 j c,en
~N! , ~A14!

j c,en
~N! 512Fb22A2pN

z

ay
~12 x̄!G . ~A15!

The equations~A3!–~A8! and ~A9!–~A15! have been
solved numerically.

We have obtained a simple analytical solution of the equa-
tions ~A2!–~A15! in the limit j/dp!1.

~1! Jc in the Meissner phase,j/dp!1:

0<b<b01:

j c,en
~0! 512b. ~A16!

~2! Jc in the presence of one flux-line row,j/dp!1:

b01<b<b11:

j c,ex
~1! 5

b

3A3
, ~A17!

ay5
3A2p

2b
z, ~A18!

x̄5
1

2 S 11
A3
3 D ; ~A19!

b11<b<b12:

j c,en
~1! 5S 12b1bA22

2

bD S 12A22
2

bD , ~A20!
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ay5
A2p

2b212bA22
2

b

z, ~A21!

x̄512
1

2
A22

2

b
. ~A22!

~3! Jc in the presence ofN flux-line rows, N>2,
j/dp!1:

b~N21!N<b<bNN :

j c,ex
~N! 5b~12Nax!~2x̄21!, ~A23!

ax5
4N2212A8N211

4N~N221!
, ~A24!

ay5
A2p

axb
z, ~A25!

x̄5
1

2
@11Aax22~12Nax!

2#; ~A26!

bNN<b<bN(N11) :

j c,en
~N! 512b@122Nax~12 x̄!#, ~A27!

ax5
N~2b21!2A2b222b112N2

b~2N221!
, ~A28!

ay5
A2p

axb
z, ~A29!

x̄5
1

2 F11
12b~12Nax!

b G . ~A30!
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Gaži, E. Rosseel, M. Baert, Y. Bruynseraede, M. Forsthuber, and
G. Hilscher, Physica C229, 231 ~1994!.

7A. Pruymboom, P.H. Kes, E. van der Drift, and S. Radelaar, Phys.
Rev. Lett.60, 1430~1988!.

8S.H. Brongersma, E. Verweij, N.J. Koeman, D.G. de Groot, R.
Griessen, and B.I. Ivlev, Phys. Rev. Lett.71, 2319~1994!.

9S.H. Brongersma, J.J.M. Pothuizen, E. Verweij, N.J. Koeman,
D.G. de Groot, and R. Griessen, J. Alloys Compounds195, 443
~1993!.

10C. Hünnekes, H.G. Bohn, W. Schilling, and H. Schulz, Phys. Rev.
Lett. 72, 2271~1994!.

11S.H. Brongersma, B.I. Ivlev, and R. Griessen, Phys. Rev. Lett.73,
3329 ~1994!; C. Hünnekes, H.G. Bohn, W. Schilling, and H.
Schulz,ibid. 73, 3330~1994!.

12D.E. Farrell, J.P. Rice, D.M. Ginsberg, and J.Z. Liu, Phys. Rev.
Lett. 64, 1573~1990!.

13J.C. Martı´nez, S.H. Brongersma, A. Koshelev, B. Ivlev, P.H. Kes,
R.P. Griessen, D.G. de Groot, Z. Tarnavski, and A.A. Menovsky,

Phys. Rev. Lett.69, 2276~1992!.
14L.N. Bulaevskii, M. Ledvij, and V.G. Kogan, Phys. Rev. B46,

366 ~1992!; L.N. Bulaevskii and J.R. Clem,ibid. 44, 10 234
~1991!.

15D. Feinberg, Physica C194, 126 ~1992!.
16P.H. Kes, J. Aarts, V.M. Vinokur, and C.J. van der Beek, Phys.

Rev. Lett.64, 1063~1990!.
17C. Durán, J. Jazyi, F. de la Cruz, D.J. Bishop, D.B. Mitzi, and A.

Kapitulnik, Phys. Rev. B44, 7737~1991!.
18Y. Kopelevich, A. Gupta, and P. Esquinazi, Phys. Rev. Lett.70,

666 ~1993!.
19P. Wagner, F. Hillmer, U. Frey, H. Adrian, T. Steinborn, L. Ranno,

A. Elschner, I. Heyvaert, and Y. Bruynseraede, Physica C215,
123 ~1993!; P. Wagner, F. Hillmer, U. Frey, and H. Adrian, Phys.
Rev. B49, 13 184~1994!.

20V.V. Lemanov, A.L. Kholkin, and A.B. Sherman, Pis’ma Zh.
Eksp. Teor. Fiz.56, 580 ~1992! @JETP Lett.56, 562 ~1992!#.

21M. Ziese, P. Esquinazi, and H.F. Braun, Supercond. Sci. Technol.
7, 869 ~1994!.

22E.H. Brandt, P. Esquinazi, H. Neckel, and G. Weiss, Phys. Rev.
Lett. 56, 89 ~1986!; E.H. Brandt, P. Esquinazi, and H. Neckel, J.
Low Temp. Phys.63, 187 ~1986!.

23R. Labusch, Cryst. Lattice Defects1, 1 ~1969!.
24P. Esquinazi, J. Low Temp. Phys.85, 139 ~1991!.
25A.P. Malozemoff, T.K. Worthington, Y. Yeshurun, F. Holtzberg,

and P.H. Kes, Phys. Rev. B38, 7203~1988!.
26A. Gupta, P. Esquinazi, H.F. Braun, W. Gerha¨user, H.-W. Neu-

müller, K. Heine, and J. Tenbrink, Europhys. Lett.10, 663
~1989!; A. Gupta, P. Esquinazi, H.F. Braun, and H.-W. Neu-
müller, Phys. Rev. Lett.63, 1869~1989!.

27A. Gupta, Y. Kopelevich, M. Ziese, P. Esquinazi, P. Fischer, F.I.
Schulz, and H.F. Braun, Phys. Rev. B48, 6359~1993!.

28M. Ziese, P. Esquinazi, Y. Kopelevich, and A.B. Sherman,
Physica C224, 79 ~1994!.

29C.P. Bean and J.D. Livingston, Phys. Rev. Lett.12, 14 ~1964!.
30P.G. de Gennes, Solid State Commun.3, 127 ~1965!.
31C. Carter, Can. J. Phys.47, 1447~1969!.
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