29 research outputs found

    Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia

    Get PDF
    Cancer testis antigens (CTA) provide attractive targets for cancer-specific immunotherapy. Although CTA genes are expressed in some normal tissues, such as the testis, this immunologically protected site lacks MHC I expression and as such, does not present self antigens to T cells. To date, CTA genes have been shown to be expressed in a range of solid tumors via demethylation of their promoter CpG islands, but rarely in chronic myeloid leukemia (CML) or other hematologic malignancies

    Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphia-positive acute lymphoblastic leukemia

    Get PDF
    The clinical significance of aberrant promoter methylation of the canonical Wnt pathway antagonist genes (sFRP1, sFRP2, sFRP4, sFRP5, Wif1, Dkk3, and Hdpr1) and also putative tumor-suppressor gene Wnt5a, belonging to the non-canonical Wnt signaling pathway, was investigated in a large series of 75 patients with Philadelphia chromosome-positive acute lymphoblastic leukemia by methylationspecific polymerase chain reaction. At least one methylated gene was observed in cells from 66% (49/75) of patients (methylated group). Disease-free survival and overall survival at 9 years were 51 and 40%, respectively, for the unmethylated group and 3 and 2%, respectively, for the methylated group (both P < 0.0001). Multivariate analysis demonstrated that the Wnt methylation profile was an independent prognostic factor predicting disease-free survival (P = 0.007) and overall survival (P = 0.039). Abnormal DNA methylation of promoter-associated CpG islands in the Wnt signaling pathway is very common in Philadelphia chromosome-positive acute lymphoblastic leukemia and potentially defines subgroups with distinct clinical characteristics

    Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia.

    Get PDF
    Histone deacetylases (HDACs) have been identified as therapeutic targets due to their regulatory function in chromatin structure and organization. Here, we analyzed the therapeutic effect of LBH589, a class I-II HDAC inhibitor, in acute lymphoblastic leukemia (ALL). In vitro, LBH589 induced dose-dependent antiproliferative and apoptotic effects, which were associated with increased H3 and H4 histone acetylation. Intravenous administration of LBH589 in immunodeficient BALB/c-RAG2(-/-)γc(-/-) mice in which human-derived T and B-ALL cell lines were injected induced a significant reduction in tumor growth. Using primary ALL cells, a xenograft model of human leukemia in BALB/c-RAG2(-/-)γc(-/-) mice was established, allowing continuous passages of transplanted cells to several mouse generations. Treatment of mice engrafted with T or B-ALL cells with LBH589 induced an in vivo increase in the acetylation of H3 and H4, which was accompanied with prolonged survival of LBH589-treated mice in comparison with those receiving vincristine and dexamethasone. Notably, the therapeutic efficacy of LBH589 was significantly enhanced in combination with vincristine and dexamethasone. Our results show the therapeutic activity of LBH589 in combination with standard chemotherapy in pre-clinical models of ALL and suggest that this combination may be of clinical value in the treatment of patients with ALL

    J-PLUS: The javalambre photometric local universe survey

    Get PDF
    ABSTRACT: TheJavalambrePhotometric Local UniverseSurvey (J-PLUS )isanongoing 12-band photometricopticalsurvey, observingthousands of squaredegrees of theNorthernHemispherefromthededicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mountedon a telescopewith a diameter of 83 cm, and isequippedwith a uniquesystem of filtersspanningtheentireopticalrange (3500–10 000 Å). Thisfiltersystemis a combination of broad-, medium-, and narrow-band filters, optimallydesigned to extracttherest-framespectralfeatures (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizingstellartypes and delivering a low-resolutionphotospectrumforeach pixel of theobservedsky. With a typicaldepth of AB ∼21.25 mag per band, thisfilter set thusallowsforanunbiased and accuratecharacterization of thestellarpopulation in our Galaxy, itprovidesanunprecedented 2D photospectralinformationforall resolved galaxies in the local Universe, as well as accuratephoto-z estimates (at the δ z/(1 + z)∼0.005–0.03 precisionlevel) formoderatelybright (up to r ∼ 20 mag) extragalacticsources. Whilesomenarrow-band filters are designedforthestudy of particular emissionfeatures ([O II]/λ3727, Hα/λ6563) up to z < 0.017, theyalsoprovidewell-definedwindowsfortheanalysis of otheremissionlines at higherredshifts. As a result, J-PLUS has thepotential to contribute to a widerange of fields in Astrophysics, both in thenearbyUniverse (MilkyWaystructure, globular clusters, 2D IFU-likestudies, stellarpopulations of nearby and moderate-redshiftgalaxies, clusters of galaxies) and at highredshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellarobjects, etc.). Withthispaper, wereleasethefirst∼1000 deg2 of J-PLUS data, containingabout 4.3 millionstars and 3.0 milliongalaxies at r <  21mag. With a goal of 8500 deg2 forthe total J-PLUS footprint, thesenumbers are expected to rise to about 35 millionstars and 24 milliongalaxiesbytheend of thesurvey.Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel, the Spanish Ministry of Economy and Competitiveness (MINECO; under grants AYA2017-86274-P, AYA2016-77846-P, AYA2016-77237-C3-1-P, AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, AGAUR grant SGR-661/2017, and ICTS-2009-14), and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685

    WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia

    No full text
    Wnt5a is a member of the Wnt family of proteins that signals through the non-canonical Wnt/Ca2+ pathway to suppress cyclin D1 expression and negatively regulate B cell proliferation suggesting that it acts as an tumour suppressor for lymphoid leukemogenesis. Although canonical Wnt pathway is a ‘hot spot’ for methylation in acute lymphoblastic leukaemia (ALL), the role of Wnt5a abnormalities has never been evaluated in this clinical setting. The methylation status of the WNT5A promoter was analysed by methylation-specific PCR (MSP) and sequencing in six ALL-derived cell lines (TOM-1, NALM-20, MY, LOUCY, JURKAT and TANOUE) and in 307 ALL patients. WNT5A and CYCLIN D1 expressions were assessed by quantitative RT-PCR. We observed WNT5A hypermethylation in all cell lines and in cells from 43% (132/307) of ALL patients. WNT5A methylation was associated with decreased WNT5A mRNA expression (P < 0.001) and this expression was restored after exposure to the demethylating agent 5-Aza-20-deoxycytidine. Moreover, WNT5A hypermethylation correlated with upregulation of CYCLIN D1 expression (P = 0.002). Disease-free survival (DFS) and overall survival (OS) at 13 and 14 years, respectively, were 59% and 53% for unmethylated patients and 28% and 31% for hypermethylated patients (P = 0.0003 and P = 0.003). Multivariate analysis demonstrated that WNT5A methylation was an independent prognostic factor predicting DFS (P = 0.003) and OS (P = 0.04). We have demonstrated that WNT5A, a putative tumour suppressor gene in ALL, is silenced by methylation in this disease and that this epigenetic event is associated with upregulation of CYCLIN D1 expression and confers poor prognosis in this group of patients

    WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia

    No full text
    Wnt5a is a member of the Wnt family of proteins that signals through the non-canonical Wnt/Ca2+ pathway to suppress cyclin D1 expression and negatively regulate B cell proliferation suggesting that it acts as an tumour suppressor for lymphoid leukemogenesis. Although canonical Wnt pathway is a ‘hot spot’ for methylation in acute lymphoblastic leukaemia (ALL), the role of Wnt5a abnormalities has never been evaluated in this clinical setting. The methylation status of the WNT5A promoter was analysed by methylation-specific PCR (MSP) and sequencing in six ALL-derived cell lines (TOM-1, NALM-20, MY, LOUCY, JURKAT and TANOUE) and in 307 ALL patients. WNT5A and CYCLIN D1 expressions were assessed by quantitative RT-PCR. We observed WNT5A hypermethylation in all cell lines and in cells from 43% (132/307) of ALL patients. WNT5A methylation was associated with decreased WNT5A mRNA expression (P < 0.001) and this expression was restored after exposure to the demethylating agent 5-Aza-20-deoxycytidine. Moreover, WNT5A hypermethylation correlated with upregulation of CYCLIN D1 expression (P = 0.002). Disease-free survival (DFS) and overall survival (OS) at 13 and 14 years, respectively, were 59% and 53% for unmethylated patients and 28% and 31% for hypermethylated patients (P = 0.0003 and P = 0.003). Multivariate analysis demonstrated that WNT5A methylation was an independent prognostic factor predicting DFS (P = 0.003) and OS (P = 0.04). We have demonstrated that WNT5A, a putative tumour suppressor gene in ALL, is silenced by methylation in this disease and that this epigenetic event is associated with upregulation of CYCLIN D1 expression and confers poor prognosis in this group of patients

    Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphia-positive acute lymphoblastic leukemia

    No full text
    The clinical significance of aberrant promoter methylation of the canonical Wnt pathway antagonist genes (sFRP1, sFRP2, sFRP4, sFRP5, Wif1, Dkk3, and Hdpr1) and also putative tumor-suppressor gene Wnt5a, belonging to the non-canonical Wnt signaling pathway, was investigated in a large series of 75 patients with Philadelphia chromosome-positive acute lymphoblastic leukemia by methylationspecific polymerase chain reaction. At least one methylated gene was observed in cells from 66% (49/75) of patients (methylated group). Disease-free survival and overall survival at 9 years were 51 and 40%, respectively, for the unmethylated group and 3 and 2%, respectively, for the methylated group (both P < 0.0001). Multivariate analysis demonstrated that the Wnt methylation profile was an independent prognostic factor predicting disease-free survival (P = 0.007) and overall survival (P = 0.039). Abnormal DNA methylation of promoter-associated CpG islands in the Wnt signaling pathway is very common in Philadelphia chromosome-positive acute lymphoblastic leukemia and potentially defines subgroups with distinct clinical characteristics

    Epigenetic regulation of PRAME gene in chronic myeloid leukemia

    No full text
    Tumor associated antigens (TAA) provide attractive targets for cancer-specific immunotherapy. PRAME is a TAA gene up-regulated in advanced phases of chronic myeloid leukemia (CML). To date, molecular mechanisms for the expression of PRAME have never been studied. We found that some Ph’-positive cell lines did not express PRAME. The expression of PRAMEwas restored in these cell lines by treatment with 5 -aza-2 -deoxycytidine, suggesting that the expression of PRAME is mainly suppressed by hypermethylation. Bisulfite sequencing analysis of the CpG sites of the PRAME exon 2 in these cancer cell lines revealed a close relationship between the methylation status of the PRAME gene and its expression. A methylation-specific PCR analysis demonstrated that hypomethylation of PRAME was significantly more frequent in CML blast crisis (70%) than in chronic phase (36%) (P = 0.01) and was correlated with high expression levels of PRAME transcripts (P < 0.0001). These results suggest that hypomethylation of PRAME up-regulates its expression in CML and might play a significant role in the progression of the disease

    Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia

    No full text
    Repetitive elements are heavily methylated in normal tissues, but hypomethylated in malignant tissues, driving the global genomic hypomethylation found in cancer. This hypomethylation results in chromosomal instability, a well-characterized feature of the advanced phases of chronic myeloid leukemia (CML). We investigated methylation changes of DNA repetitive elements (LINE1, Alu, Satellite-alpha and Satellite-2) during the progression of CML from chronic phase (CP) to blast crisis (BC). CP-CML samples were significantly more hypomethylated for all repetitive sequences compared with normal samples. Furthermore, a more profound level of hypomethylation was observed among BC samples compared with CP samples. Our data suggest that repetitive DNA hypomethylation are closely associated with CML progression
    corecore