35 research outputs found

    Mining semantic relations between research areas

    Get PDF
    For a number of years now we have seen the emergence of repositories of research data specified using OWL/RDF as representation languages, and conceptualized according to a variety of ontologies. This class of solutions promises both to facilitate the integration of research data with other relevant sources of information and also to support more intelligent forms of querying and exploration. However, an issue which has only been partially addressed is that of generating and characterizing semantically the relations that exist between research areas. This problem has been traditionally addressed by manually creating taxonomies, such as the ACM classification of research topics. However, this manual approach is inadequate for a number of reasons: these taxonomies are very coarse-grained and they do not cater for the finegrained research topics, which define the level at which typically researchers (and even more so, PhD students) operate. Moreover, they evolve slowly, and therefore they tend not to cover the most recent research trends. In addition, as we move towards a semantic characterization of these relations, there is arguably a need for a more sophisticated characterization than a homogeneous taxonomy, to reflect the different ways in which research areas can be related. In this paper we propose Klink, a new approach to i) automatically generating relations between research areas and ii) populating a bibliographic ontology, which combines both machine learning methods and external knowledge, which is drawn from a number of resources, including Google Scholar and Wikipedia. We have tested a number of alternative algorithms and our evaluation shows that a method relying on both external knowledge and the ability to detect temporal relations between research areas performs best with respect to a manually constructed standard

    Structure of Lambda(1405) and chiral dynamics

    Full text link
    We report on a recent theoretical work on the structure of the Lambda(1405) resonance within a chiral unitary approach, in which the resonance is dynamically generated in meson-baryon scattering. Studying the analytic structure of the scattering amplitude, we have found that there are two poles lying around energies of Lambda(1405) with different widths and couplings to the meson-baryon states. We discuss reactions to conform the double pole structure in experiment and elastic K^- p scattering at low energies.Comment: 4 pages, LaTeX, 2 eps figures. Talk given at 10th International Conference on the Structure of Baryons (Baryon 2004) at Palaiseau (France), 25-29 October 200

    Dynamical Generation of Hyperon Resonances

    Get PDF
    In this talk we report on how, using a chiral unitary approach for the meson--baryon interactions, two octets of Jπ=1/2J^{\pi}=1/2^- baryon states and a singlet are generated dynamically, resulting in the case of strangeness S=1S=-1 in two poles of the scattering matrix close to the nominal Λ(1405)\Lambda(1405) resonance. We suggest experiments which could show evidence for the existence of these states.Comment: Invited talk in the VIII International Conference on Hypernuclei and Strange Particle Physic

    Penta-quark states with hidden charm and beauty

    Full text link
    More and more hadron states are found to be difficult to be accommodated by the quenched quark models which describe baryons as 3-quark states and mesons as antiquark-quark states. Dragging out an antiquark-quark pair from the gluon field in hadrons should be an important excitation mechanism for hadron spectroscopy. Our recent progress on the penta-quark states with hidden charm and beauty is reviewed.Comment: Plenary talk at the 5th Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), 22-26 Aug., 2011, Seoul, Kore

    Effects of pseudoscalar-baryon channels in the dynamically generated vector-baryon resonances

    Get PDF
    We study the interaction of vector mesons with the octet of stable baryons in the framework of the local hidden gauge formalism using a coupled channels unitary approach, including also the pseudoscalar-baryon channels which couple to the same quantum numbers. We examine the scattering amplitudes and their poles, which can be associated to known JP=1/2,3/2J^P=1/2^-,3/2^- baryon resonances, and determine the role of the pseudoscalar-baryon channels, changing the width and eventually the mass of the resonances generated with only the basis of vector-baryon states

    Helicity Amplitudes of the Lambda(1670) and two Lambda(1405) as dynamically generated resonances

    Full text link
    We determine the helicity amplitudes A_1/2 and radiative decay widths in the transition Lambda(1670) to gamma Y (Y=Lambda or Sigma^0). The Lambda(1670) is treated as a dynamically generated resonance in meson-baryon chiral dynamics. We obtain the radiative decay widths of the Lambda(1670) to gamma Lambda as 3 \pm 2 keV and to gamma Sigma^0 as 120 \pm 50 keV. Also, the Q^2 dependence of the helicity amplitudes A_1/2 is calculated. We find that the K Xi component in the Lambda(1670) structure, mainly responsible for the dynamical generation of this resonance, is also responsible for the significant suppression of the decay ratio Gamma_{gamma Lambda}/Gamma_{gamma Sigma^0}. A measurement of the ratio would, thus, provide direct access to the nature of the Lambda(1670). To compare the result for the Lambda(1670), we calculate the helicity amplitudes A_1/2 for the two states of the Lambda(1405). Also, the analytic continuation of Feynman parameterized integrals of more complicated loop amplitudes to the complex plane is developed which allows for an internally consistent evaluation of A_1/2.Comment: 15 pages, 8 figure

    Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry

    Get PDF
    Using a coupled-channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-baryon interaction with hidden beauty and obtain several new states of N around 11 GeV. We consider the basis of states eta (b) N, I'N, BI > (b) , BI pound (b) , B (*) I > (b) , B (*) I pound (b) , B (*) I pound (b) (*) and find four basic bound states which correspond to BI pound (b) , BI pound (b) (*) , B (*) I pound (b) and B (*) I pound (b) (*) , decaying mostly into eta (b) N and I'N and with a binding energy about 50-130 MeV with respect to the thresholds of the corresponding channel. All of them have isospin I = 1/2 , and we find no bound states or resonances in I = 3/2 . The BI pound (b) state appears in J = 1/2 , the BI pound (b) (*) in J = 3/2 , the B (*) I pound (b) appears nearly degenerate in J = 1/2 , 3/2 and the B (*) I pound (b) (*) appears nearly degenerate in J = 1/2 , 3/2, 5/2. These states have a width from 2-110 MeV, with conservative estimates of uncertainties, except for the one in J = 5/2 which has zero width since it cannot decay into any of the states of the basis chosen. We make generous estimates of the uncertainties and find that within very large margins these states appear bound

    DN interaction from meson exchange

    Get PDF
    A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KbarN potential of the Juelich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box diagrams involving D*N, D\Delta, and D*\Delta intermediate states. The coupling of DN to the pi-Lambda_c and pi-Sigma_c channels is taken into account. The interaction model generates the Lambda_c(2595) resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of an interaction model that is based on the leading-order Weinberg-Tomozawa term. Some features of the Lambda_c(2595) resonance are discussed and the role of the near-by pi-Sigma_c threshold is emphasized. Selected predictions of the orginal KbarN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Lambda(1405) resonance.Comment: 14 pages, 8 figure

    Flavor SU(3) breaking effects in the chiral unitary model for meson-baryon scatterings

    Full text link
    We examine flavor SU(3) breaking effects on meson-baryon scattering amplitudes in the chiral unitary model. It turns out that the SU(3) breaking, which appears in the leading quark mass term in the chiral expansion, can not explain the channel dependence of the subtraction parameters of the model, which are crucial to reproduce the observed scattering amplitudes and resonance properties.Comment: RevTeX4, 4 pages, 3 figures, 2 table
    corecore