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In this talk we report on how, using a chiral unitary approach for the meson–baryon in-
teractions, two octets of Jπ = 1/2− baryon states and a singlet are generated dynamically,
resulting in the case of strangeness S = −1 in two poles of the scattering matrix close to
the nominal Λ(1405) resonance. We suggest experiments which could show evidence for
the existence of these states.

1. Introduction

The introduction of unitarity constraints in coupled channels in chiral perturbation
theory has led to unitary extensions of the theory that starting from the same effective
Lagrangians allow one to make predictions at much higher energies. One of the interesting
consequences of these extensions is that they generate dynamically low lying resonances,
both in the mesonic and baryonic sectors. By this we mean that they are generated by the
multiple scattering of the meson or baryon components, much the same as the deuteron
is generated by the interaction of the nucleons through the action of a potential, and they
are not preexistent states that remain in the large Nc limit where the multiple scattering
is suppressed. In what follows we show how two octets and a singlet of such states are
generated in the baryon sector with JP = 1/2−, with properties in good agreement with
existing resonances. In the strangeness S = −1 case the lowest lying of such resonances
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is the Λ(1405). The Λ(1405) resonance is a clear example of a dynamically generated
resonance appearing naturally in scattering theory with coupled meson–baryon channels
with strangeness S = −1 [ 1]. Chiral formulations of the meson–baryon interaction within
unitary frameworks all lead to the generation of this resonance, which is seen in the mass
distribution of πΣ states with isospin I = 0 in hadronic production processes [ 2, 3, 4, 5].
Yet, it was shown that in some models one could obtain two poles close to the nominal
Λ(1405) resonance, as it was the case within the cloudy bag model in Ref. [ 6]. Also,
in the investigation of the poles of the scattering matrix in Ref. [ 4], within the context
of chiral dynamics, it was found that there were two poles close to the nominal Λ(1405)
resonance both contributing to the πΣ invariant mass distribution. This was also the case
in Refs. [ 7, 8], where two poles are obtained with similar properties as to their masses,
widths and partial decay widths compared to those of the previous works.

The discussion below will clarify this issue and the structure of these resonances.

2. Description of the meson baryon interactions

Starting from the chiral Lagrangians for meson–baryon interactions [ 9] and using the
N/D method to obtain a scattering matrix fulfilling exactly unitarity in coupled channels
[ 4], the full set of transition matrix elements with the coupled channels in S = −1, K−p,
K̄0n, π0Λ, π0Σ0, π+Σ−, π−Σ+, ηΛ, ηΣ0, K0Ξ0 and K+Ξ−, is given in matrix form by

T = [1 − V G]−1 V . (1)

Here, the matrix V , obtained from the lowest order meson–baryon chiral Lagrangian,
contains the Weinberg-Tomozawa or seagull contribution, as employed e.g. in Ref. [ 10],

Vij = −Cij
1

4f 2
(2
√

s − Mi − Mj)
(

Mi + E

2Mi

)1/2
(

Mj + E ′

2Mj

)1/2

, (2)

where the Cij coefficients are given in Ref. [ 3], and an averaged meson decay constant
f = 1.123fπ is used [ 10], with fπ = 92.4 MeV the weak pion decay constant. At lowest
order in the chiral expansion all the baryon masses are equal to the one in the chiral limit,
M0, nevertheless in Ref. [ 10] the physical baryon masses, Mi, were used and these are
the ones appearing in Eq. (2). In addition to the Weinberg-Tomozawa term, one also has
at the same order in the chiral expansion the direct and exchange diagrams considered in
Ref. [ 4]. These are suppressed at low energies by powers of the three-momenta and meson
masses over Mi, the leading one being just linear. However, their importance increases
with energy and around

√
s ≃ 1.5 GeV they can be as large as a 20 percent of the seagull

term.
The diagonal matrix G stands for the loop function of a meson and a baryon and is

defined by a subtracted dispersion relation in terms of phase space with a cut starting at
the corresponding threshold [ 4]. It corresponds to the loop function of a meson and a
baryon once the logarithmic divergent constant is removed.

The analytical properties of G are properly kept when evaluating the previous loop
function in dimensional regularization. Using dimensional regularization and removing
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the divergent constant piece leads to

Gl = i 2Ml

∫ d4q

(2π)4

1

(P − q)2 − M2
l + iǫ

1

q2 − m2
l + iǫ

=
2Ml

16π2

{

al(µ) + ln
M2

l

µ2
+

m2
l − M2

l + s

2s
ln

m2
l

M2
l

+

+
ql√
s

[

ln(s − (M2
l − m2

l ) + 2ql

√
s) + ln(s + (M2

l − m2
l ) + 2ql

√
s)

− ln(−s + (M2
l − m2

l ) + 2ql

√
s) − ln(−s − (M2

l − m2
l ) + 2ql

√
s)
]

}

,(3)

where µ is the scale of dimensional regularization. For a given value of this scale, the
subtraction constant ai(µ) is determined so that the results are finally scale independent.

This meson baryon loop function was calculated in Ref. [ 3] with a cut-off regulariza-
tion, similarly as previously done in meson–meson scattering [ 14]. The values of the ai

constants in Eq. (3) are found to be around −2 to agree with the results of the cut–off
method for cut–off values of the order of the mass of the ρ(770) [ 4], which we call of
natural size. Indeed, in Ref. [ 10] it was found that with the values for the subtraction
constants

aK̄N = −1.84 , aπΣ = −2.00 , aπΛ = −1.83 ,
aηΛ = −2.25 , aηΣ = −2.38 , aKΞ = −2.67 ,

(4)

one reproduces the results for the G functions obtained in Ref. [ 3] with a cut–off of 630
MeV.

3. Poles of the T-matrix

The study of Ref. [ 10] showed the presence of poles in Eq. (1) around the Λ(1405) and
the Λ(1670) for isospin I = 0 and around the Σ(1620) in I = 1. The same approach in
S = −2 leads to the resonance Ξ(1620) [ 11] and in S = 0 to the N∗(1535) [ 12, 13],
this latter one also generated dynamically in Ref. [ 12]. One is thus tempted to consider
the appearance of a singlet and an octet of meson–baryon resonances. Nevertheless, the
situation is more complicated because indeed in the SU(3) limit there are two octets and
not just one, as we discuss below. The presence of these multiplets was already discussed
in Ref. [ 4] after obtaining a pole with S = −1 in the I = 1 channel, with mass around
1430 MeV, and two poles with I = 0, of masses around that of the Λ(1405). Similar
ideas have been exploited in the meson–meson interaction where a nonet of dynamically
generated mesons, made of the σ(500), f0(980), a0(980) and κ(900), has been obtained [
14, 15, 16, 17].

The appearance of a multiplet of dynamically generated mesons and baryons seems
most natural once a state of the multiplet appears. Indeed, one must recall that the chiral
Lagrangians are obtained from the combination of the octet of pseudoscalar mesons (the
pions and partners) and the octet of stable baryons (the nucleons and partners). The
SU(3) decomposition of the combination of two octets tells us that

8 ⊗ 8 = 1 ⊕ 8s ⊕ 8a ⊕ 10 ⊕ 10 ⊕ 27 . (5)
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Thus, on pure SU(3) grounds, should we have a SU(3) symmetric Lagrangian, one can
expect e.g. one singlet and two octets of resonances, the symmetric and antisymmetric
ones. Actually in the case of the meson–meson interactions only the symmetric octet
appears in S-wave because of Bose statistics, but in the case of the meson–baryon in-
teractions, where the building blocks come from two octets of different nature, both the
symmetric and antisymmetric octets could appear and there is no reason why they should
be degenerate in principle.

The lowest order meson–baryon chiral Lagrangian is exactly SU(3) invariant if all the
masses of the mesons are set equal. As stated above [see Eq. (2)], in Ref. [ 10] the baryon
masses take their physical values, although strictly speaking at the leading order in the
chiral expansion they should be equal to M0. For Eq. (2) being SU(3) symmetric, all the
baryons masses Mi must be set equal as well. When all the meson and baryon masses are
equal, and these common masses are employed in evaluating the Gl functions, together
with equal subtraction constants al, the T–matrix obtained from Eq. (1) is also SU(3)
symmetric.

If we do such an SU(3) symmetry approximation and look for poles of the scattering
matrix, we find poles corresponding to the octets and singlet. The surprising result is
that the two octet poles are degenerate as a consequence of the dynamics contained in the
chiral Lagrangians. Indeed, if we evaluate the matrix elements of the transition potential
V in a basis of SU(3) states,

Vαβ =
∑

i,j

〈i, α〉Cij〈j, β〉, (6)

where 〈i, α〉 are the SU(3) Clebsch–Gordan coefficients and Cij the coefficients in Eq. (2),
we obtain:

Vαβ = diag(6, 3, 3, 0, 0,−2) , (7)

taking the following order for the irreducible representations: 1, 8s, 8a, 10, 10 and 27.
Hence we observe that the states belonging to different irreducible representations do

not mix and the two octets appear degenerate. The coefficients in Eq. (7) clearly illustrate
why there are no bound states in the 10, 10 and 27 representations. Indeed, considering
the minus sign in Eq. (2), a negative sign in Eq. (7) means repulsion.

In practice, the same chiral Lagrangians allow for SU(3) breaking. In the case of Refs. [
3, 10] the breaking appears because both in the Vij transition potentials as in the Gl loop
functions one uses the physical masses of the particles as well as different subtraction
constants in Gl, corresponding to the use of a unique cut-off in all channels. In Ref. [ 4] the
physical masses are also used in the Gl functions, although these functions are evaluated
with a unique subtraction constant as corresponds to the SU(3) limit. In addition, the
Vij transition potentials are evaluated strictly at lowest order in the chiral expansion, so
that a common baryon mass is used and the one baryon exchange diagrams, both direct
and crossed, are included. In both approaches, physical masses are used to evaluate the
Gl loop functions so that unitarity is fulfilled exactly and the physical thresholds for all
channels are respected.

By following the approach of Ref. [ 10] and using the physical masses of the baryons
and the mesons, the position of the poles change and the two octets split apart in four
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Figure 1. Trajectories of the poles in the scattering amplitudes obtained by changing
the SU(3) breaking parameter x gradually. At the SU(3) symmetric limit (x = 0), only
two poles positions appear, one for the singlet and the other for the octet. The symbols
correspond to the step size δx = 0.1. The results are from [ 18].

branches, two for I = 0 and two for I = 1, as one can see in Fig. 1. In the figure we
show the trajectories of the poles as a function of a parameter x that breaks gradually the
SU(3) symmetry up to the physical values. The dependence of masses and subtraction
constants on the parameter x is given by

Mi(x) = M0 + x(Mi − M0), m2
i (x) = m2

0 + x(m2
i − m2

0), ai(x) = a0 + x(ai − a0), (8)

where 0 ≤ x ≤ 1. For the baryon masses, Mi(x), the breaking of the SU(3) symmetry
follows linearly, while for the meson masses, mi(x), the law is quadratic in the masses, since
in the QCD Lagrangian the flavor SU(3) breaking appears in the quark mass terms and
the squares of the meson masses depend on the quark masses linearly. In the calculation
of Fig. 1, the values M0 = 1151 MeV, m0 = 368 MeV and a0 = −2.148 are used.

The complex poles, zR, appear in unphysical sheets. In the present search we follow the
strategy of changing the sign of the momentum ql in the Gl(z) loop function of Eq. (3)
for the channels which are open at an energy equal to Re(z).

The splitting of the two I = 0 octet states is very interesting. One moves to higher
energies giving rise to the Λ(1670) resonance and the other one moves to lower energies
to create a pole, quite well identified below the K̄N threshold, with a narrow width. We
should also note that when for some values of x the trajectory crosses the K̄N threshold
(∼ 1435 MeV) the pole fades away but it emerges again clearly for values of x close to 1.
On the other hand, the singlet also evolves to produce a pole at low energies with a quite
large width.

We note that the singlet and the I = 0 octet states appear nearby in energy and one
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of the purposes of this paper is, precisely, to point out the fact that what experiments
actually see is a combination of the effect of these two resonances.

Similarly as for the I = 0 octet states, we can see that one branch of the I = 1 states
moves to higher energies while another moves to lower energies. The branch moving to
higher energies finishes at what would correspond to the Σ(1620) resonance when the
physical masses are reached. The branch moving to lower energies fades away after a
while when getting close to the K̄N threshold.

The model of Ref. [ 4] reproduces qualitatively the same results. However, this model
also produces in the physical limit (x = 1) another I = 1 pole having Re(z)=1401 MeV if,
in addition to changing the signs of the on-shell momenta in the πΛ and πΣ channels in
accordance to the strategy mentioned above, the sign in the K̄N channel is also changed.
The fact is that in both approaches there is a I = 1 amplitude with an enhanced strength
around the K̄N thhrehold. Whether this enhancement in the I = 1 amplitude can be
interpreted as a resonance or as a cusp, the fact that the strength of the I = 1 amplitude
around the Λ(1405) region is not negligible should have consequences for reactions pro-
ducing πΣ pairs in that region. This has been illustrated for instance in Ref. [ 19], where
the photoproduction of the Λ(1405) via the reaction γp → K+Λ(1405) was studied. It
was shown there that the different sign in the I = 1 component of the | π+Σ−〉, | π−Σ+〉
states leads, through interference between the I = 1 and the dominant I = 0 amplitudes,
to different cross sections in the various charge channels, a fact that has been confirmed
experimentally very recently [ 20].

Once the pole positions are found, one can also determine the couplings of these reso-
nances to the physical states by studying the amplitudes close to the pole and identifying
them with

Tij =
gigj

z − zR

. (9)

The couplings gi are in general complex valued numbers. In Table 1 we summarize the
pole positions and the complex couplings gi obtained from the model of Ref. [ 10] for
isospin I = 0. The results with the model of [ 4] are qualitatively similar.

Table 1
Pole positions and couplings to I = 0 physical states from the model of Ref. [ 10]

zR 1390 + 66i 1426 + 16i 1680 + 20i
(I = 0) gi |gi| gi |gi| gi |gi|

πΣ −2.5 − 1.5i 2.9 0.42 − 1.4i 1.5 −0.003 − 0.27i 0.27
K̄N 1.2 + 1.7i 2.1 −2.5 + 0.94i 2.7 0.30 + 0.71i 0.77
ηΛ 0.010 + 0.77i 0.77 −1.4 + 0.21i 1.4 −1.1 − 0.12i 1.1
KΞ −0.45 − 0.41i 0.61 0.11 − 0.33i 0.35 3.4 + 0.14i 3.5

We now consider the results obtained from the model of Ref. [ 4]. Making use of their
set I of parameters, which correspond to a baryon mass M0 = 1286 MeV and a meson
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Table 2
Pole positions and couplings to I = 1 physical states from the model of Ref. [ 4]

zR 1401 + 40i 1488 + 114i
(I = 1) gi |gi| gi |gi|

πΛ 0.60 + 0.47i 0.76 0.98 + 0.84i 1.3
πΣ 1.27 + 0.71i 1.5 −1.32 − 1.00i 1.7
K̄N −1.24 − 0.73i 1.4 −0.89 − 0.57i 1.1
ηΣ 0.56 + 0.41i 0.69 0.58 + 0.29i 0.65
KΞ 0.12 + 0.05i 0.13 −1.63 − 0.91i 1.9

decay constant f = 0.798fπ = 74.1 MeV, both in the chiral limit, together with a common
subtraction constant a = −2.23, the results obtained for I = 1 are displayed in Table 2.

We observe that the second resonance with I = 0 couples strongly to K̄N channel,
while the first resonance couples more strongly to πΣ. The results for I = 0 shown in
Table 1 resemble much those obtained in Ref. [ 6] and Ref. [ 8] where two resonances are
also found close to 1405 MeV, with the one at lower energies having a larger width than
the second and a stronger coupling to πΣ, while the resonance at higher energies being
narrower and coupling mostly to K̄N .

We can also project the states found over the pure SU(3) states and we find the results
of Table 3

Table 3
Couplings of the I = 0 bound states to the meson–baryon SU(3) basis states, obtained with the
model of Ref. [ 10]

zR 1390 + 66i 1426 + 16i 1680 + 20i
(evolved singlet) (evolved octet 8s) (evolved octet 8a)

gγ |gγ| gγ |gγ| gγ |gγ|
1 2.3 + 2.3i 3.3 −2.1 + 1.6i 2.6 −1.9 + 0.42i 2.0
8s −1.4 − 0.14i 1.4 −1.1 − 0.62i 1.3 −1.5 − 0.066i 1.5
8a 0.53 + 0.94i 1.1 −1.7 + 0.43i 1.8 2.6 + 0.59i 2.7
27 0.25 − 0.031i 0.25 0.18 + 0.092i 0.21 −0.36 + 0.28i 0.4

We observe that the physical singlet couples mostly to the singlet SU(3) state. This
means that this physical state has retained largely the singlet nature it had in the SU(3)
symmetric situation. The same is true for the physical I = 0 antisymmetric octet shown in
the last column. However, the couplings of the physical symmetric octet reveal that, due
to its proximity to the singlet state, it has become mostly a singlet with some admixture
of the symmetric and antisymmetric octets.
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4. Influence of the poles on the physical observables

In a given reaction the Λ(1405) resonance is always seen in πΣ mass distribution.
However, this final state can be reached through the production of any intermediate state
which couples to the πΣ state, since the final state interaction will reshufle the channels
as we have seen in the chiral unitary approach. Hence, the mass distribution of πΣ will
be given by

dσ

dMi
= |

∑

i

CiTi→πΣ|2qc.m. , (10)

where the Ci coefficients depend on the dynamics of the particular problem. This is
curious since practically in all approaches where the Λ(1405) is claimed to be obtained
one uses the equation

dσ

dMi
= C|TπΣ→πΣ|2qc.m. , (11)

where C is a constant, which has no justification. Indeed, if the sum in eq. (11) were
dominated by the K̄N → πΣ amplitude, then the second resonance R2 would be weighted
more, since it has a stronger coupling to the K̄N state, resulting into an apparent narrower
resonance peaking at higher energies. This can be seen in Fig. 2. In ref. [ 4] the Ci

coefficients foor K̄N and πΣ were fitted to the data. The fact is that if there were
only one resonance eqs. (10) and (11) would lead to the same shape of the distribution
since all the amplitudes would have the same resonance shape. But the existence of two
poles makes the sum in eq. (10) dependent on the weights Ci and then dependent on the
particular reaction. Hence, from now on, a theoretical claim about understanding the
Λ(1405) properties has to be substanciated by a simultaneous theoretical analysis of the
particular reaction where this resonance has been seen. In this sense, there is a recent
work [ 21] in which the dynamics of the π−p → K0πΣ, from where the nominal Λ(1405)
resonance comes, has been studied and the particular shape of the resonance found in
this reaction is traced back to a nontrivial combination of chiral mechanisms involving
the meson pole and contact term in the MB → MMB amplitudes together with the
contribution of the s-wave N∗(1710) resonance which has a strong coupling to the MMB
system, as proved by the large decay width into ππN .

It is clear that, should there be a reaction which forces the initial channels to be
K̄N , then this would give more weight to the second resonance, R2, and hence produce
a distribution with a shape corresponding to an effective resonance narrower than the
nominal one and at higher energy. Such a case indeed occurs in the reaction K−p →
Λ(1405)γ studied theoretically in Ref. [ 22]. It was shown there that since the K−p
system has a larger energy than the resonance, one has to lose energy emitting a photon
prior to the creation of the resonance and this is effectively done by the Bremsstrahlung
from the original K− or the proton. Hence the resonance is initiated from the K−p
channel.
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respectively. Units are arbitrary.

5. Conclusions

In this talk we have shown the poles appearing in the meson–baryon scattering matrix
for strangeness S = −1 within a coupled–channel chiral unitary approach, using two
different methods for breaking the SU(3) symmetry which have been used in the literature.

In both approaches a set of resonances is generated dynamically from the interaction
of the octet of pseudoscalar mesons with the octet of the 1/2+ baryons. The underlying
SU(3) structure of the Lagrangians implies that, from the combination of the two original
octets, a singlet and two octets of dynamically generated resonances should appear, but
the dynamics of the problem makes the two octets degenerate in the case of exact SU(3)
symmetry. The same chiral Lagrangians have mechanisms for chiral symmetry breaking
which have as a consequence that the degeneracy is broken and two distinct octets appear.
The breaking of the octet degeneracy has as a consequence that, in the physical limit,
one of the I = 0 octet poles appears quite close to the singlet pole, and both of them are
very close to the nominal Λ(1405). These two resonances are quite close but different, the
one at lower energies with a larger width and a stronger coupling to the πΣ states than
the one at higher energies, which couples mostly to the K̄N states. Thus we conclude
that there is not just one single Λ(1405) resonance, but two, and that what one sees in
experiments is a superposition of these two states.

Another interesting finding is the suggestion that it is possible to find out the existence
of the two resonances by performing different experiments, since in different experiments
the weights by which the two resonances are excited are different. In this respect we
call the attention to one reaction, K−p → Λ(1405)γ, which gives much weight to the
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resonance which couples strongly to the K̄N states and, hence, leads to a peak structure
in the invariant mass distributions which is narrower and appears at higher energies than
the experimental Λ(1405) peaks observed in hadronic experiments performed so far.

Finally, the findings discussed here about a possible I = 1 state close to the K̄N
threhold and the experiment done in [ 20], which shows very distinct π+Σ− and π−Σ+

distributions, deserve further attention and should lead in the near future to a clarification
on the situation of this hypothetical state.
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