138 research outputs found

    Single-machine bicriteria scheduling

    Get PDF

    Seven criteria for integer sequences being graphic

    Get PDF

    Earliness-tardiness scheduling around almost equal due dates

    Get PDF
    The just-in-time concept in manufacturing has aroused interest in machine scheduling problems with earliness-tardiness penalties. In particular, common due date problems, which are structurally less complicated than problems with general due dates, have emerged as an interesting and prolific field of research

    Scheduling with target start times

    Get PDF

    Scheduling around a small common due date

    Get PDF
    A set of n jobs has to be scheduled on a single machine which can handle only one job at a time. Each job requires a given positive uninterrupted processing time and has a positive weight. The problem is to find a schedule that minimizes the sum of weighted deviations of the job completion times from a given common due date d, which is smaller than the sum of the processing times. We prove that this problem is NP-hard even if all job weights are equal. In addition, we present a pseudopolynomial algorithm that requires O(n2d) time and O(nd) space

    Stronger Lagrangian bounds by use of slack variables: applications to machine scheduling problems

    Get PDF
    Lagrangian relaxation is a powerful bounding technique that has been applied successfully to manyNP-hard combinatorial optimization problems. The basic idea is to see anNP-hard problem as an easy-to-solve problem complicated by a number of nasty side constraints. We show that reformulating nasty inequality constraints as equalities by using slack variables leads to stronger lower bounds. The trick is widely applicable, but we focus on a broad class of machine scheduling problems for which it is particularly useful. We provide promising computational results for three problems belonging to this class for which Lagrangian bounds have appeared in the literature: the single-machine problem of minimizing total weighted completion time subject to precedence constraints, the two-machine flow-shop problem of minimizing total completion time, and the single-machine problem of minimizing total weighted tardiness

    Combining column generation and Lagrangean relaxation : an application to a single-machine common due date scheduling problem

    Get PDF
    Column generation has proved to be an effective technique for solving the linear programming relaxation of huge set covering or set partitioning problems, and column generation approaches have led to state-of-the-art so-called branch-and-price algorithms for various archetypical combinatorial optimization problems. Usually, if Lagrangean relaxation is embedded at all in a column generation approach, then the Lagrangean bound serves only as a tool to fathom nodes of the branch-and-price tree. We show that the Lagrangean bound can be exploited in more sophisticated and effective ways for two purposes: to speed up convergence of the column generation algorithm and to speed up the pricing algorithm. Our vehicle to demonstrate the effectiveness of teaming up column generation with Lagrangean relaxation is an archetypical single-machine common due date scheduling problem. Our comprehensive computational study shows that the combined algorithm is by far superior to two existing purely column generation algorithms: it solves instances with up to 125 jobs to optimality, while purely column generation algorithm can solve instances with up to only 60 jobs

    Complexity of scheduling multiprocessor tasks with prespecified processor allocations

    Get PDF
    We investigate the computational complexity of scheduling multiprocessor tasks with prespecified processor allocations. We consider two criteria: minimizing schedule length and minimizing the sum of the task completion times. In addition, we investigate the complexity of problems when precedence constraints or release dates are involved

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page
    corecore