EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Single-machine bicriteria scheduling

Citation for published version (APA):

Hoogeveen, J. A. (1992). Single-machine bicriteria scheduling. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Centrum voor Wiskunde en Informatica.
https://doi.org/10.6100/IR367531

DOI:
10.6100/IR367531

Document status and date:
Published: 01/01/1992

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR367531
https://doi.org/10.6100/IR367531
https://research.tue.nl/en/publications/c6670b67-1a39-499f-9ebf-6963105cd823

Single-Machine
Bicriteria Scheduling

R

Han Hoogeveen

Single-Machine Bicriteria Scheduling

Single-Machine Bicriteria Scheduling

PROEFSCHRIFT
ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint, voor
een commissie aangewezen door het College van
Dekanen in het openbaar te verdedigen op
vrijdag 7 februari 1992 te 16.00 uur -
door

JoranNEs ADZER HOOGEVEEN

geboren te Oss

1992
CWI, Amsterdam

Dit proefschrift is goedgekeurd door
de promotor:

Prof.dr. J. K. Lenstra

Foar us Heit en us Mem

Acknowledgements

The process of writing this thesis has been completed successfully thanks to
numerous people. Especially, I would like to thank Steef van de Velde, who
helped me to get acquainted with scientific research and who conducted joint
research with me. I also would like to thank Gerard Kindervater, Bart Veltman,
and Peter de Waal for their willingness to always help me in my permanent
struggle with the computer, and Tobias Baanders, who designed the cover.
Furthermore, I would like to thank the Dutch Organization for Scientific
Research (NWO) for their financial support that made this PhD-research possi-
ble.

I am truly grateful to my supervisor Jan Karel Lenstra, who spent a lot of time
on teaching me how to write proper articles in Standard American.

Han Hoogeveen

Table of contents

Introductory part

1.

Machine scheduling and multicriteria optimization: an introduction

2. Complexity of single-machine bicriteria scheduling: a survey

Seven papers

I. Minimizing maximum promptness and maximum lateness
on a single machine

II. Polynomial-time algorithms for single-machine bicriteria scheduling

III. Single-machine scheduling to minimize a function of K maximum
cost criteria

IV. A new lower bound approach for single-machine multicriteria
scheduling

V. Scheduling around a small common due date

VI. New lower and upper bounds for scheduling around a small
common due date

VII. Minimizing total inventory cost on a single machine in just-in-time

manufacturing

Samenvatting

29

51
67

83

95
117

127

157

Machine scheduling and multicriteria optimization:

an introduction

1. MOTIVATION

Scheduling theory was introduced in the 1950’s. Since that time, the scheduling
models that have been addressed by researchers have become more and more
complex in order to better resemble the underlying practical situations. Although
many characterizations of practical problems have been included, the simplifica-
tion of evaluating a solution with respect to only one criterion has remained com-
mon practice. The vast majority of the papers on scheduling deals with problems
in which the quality of a solution is measured in terms of a single criterion.

In practice, however, quality is a multidimensional notion. A firm, for instance,
judges a production scheme on the basis of a number of criteria, for example,
work-in-process inventories and observance of due dates. If only one criterion is
taken into account, then the outcome is likely to be unbalanced, no matter what
criterion is considered. If everything is set on keeping work-in-process inventories
low, then some products are likely to be completed far beyond their due date,
while, if the main goal is to keep the customers satisfied by observing due dates,
then the work-in-process inventories are likely to be large. In order to reach an
acceptable compromise, one has to measure the quality of a solution on all impor-
tant criteria.

An important drawback of considering such problems lies in the difficulty of
defining an appropriate notion of optimality and, given such a notion, finding an
optimal solution. Obviously, the situation becomes more complicated when more
criteria are involved, unless the criteria are not in conflict with each other;
roughly speaking, two criteria are not in conflict if a solution that performs well
on one criterion is likely to perform well on the other criterion. If the criteria are
conflicting, then the different solutions have to be weighed against each other. To
that end, various options exist. The first one is to specify an upper bound on the
value of the most important criterion; a solution is then selected that performs

2

well on the other criteria while satisfying the bound. The second option is to
aggregate the criteria into a single objective function; a solution is chosen that is
optimal for this objective function. The third option is based upon an interactive
version of decision making: an analyst determines a candidate solution and
presents it to a decison maker, who either decides to accept it or tells the analyst
on which criterion the score should be improved. Unfortunately, the determina-
tion of » candidate solutions usually takes more time than solving n times one of
the basic single-criterion problems; sometimes, it is not even possible to guarantee
that one reasonable candidate solution is found in a reasonable amount of time. It
is of great importance to know beforechand what the consequences are of taking
extra criteria into account. If it is difficult to find a good set of candidate solu-
tions, then one might prefer to look for a solution of a somewhat lesser quality
that is more easily obtained.

An important issue concerns the question what constitutes a representative set
of candidate solutions. An obvious choice is the set of all nondominated solutions.
A solution is said to be nondominated if it outperforms any other solution on at
least one criterion. If the number of nondominated solutions is large, then an
analyst may impose extra restrictions upon the set of candidate solutions; for
example, he can impose an upper bound on the value of a criterion. We analyze
this kind of strategies in the next section, in which the problem setting is intro-
duced.

2. PROBLEM SETTING

The setting of our problems is as follows. A set of n independent jobs has to be
scheduled on a single machine, which can handle no more than one job at a time.
The machine is assumed to be continuously available from time 0 onwards. Job
J; (j = 1,...,n) requires processing during a given uninterrupted time p;; to each
job are assigned a given weight w;, denoting its relative importance, and a given
due date dj, at which J i should be delivered. It is assumed that all values p s Wjs
and d; are positive and integral.

A schedule o defines for each job J; a completion time C; (o) such that the
capacity and availability constraints of the machine are not violated. We assume
that the quality of a schedule is measured in terms of two criteria; the scheduling
cost is measured by a function F(f,g), where f and g are two performance criteria
defined on ¢. We consider the following performance criteria:

- the sum of completion times 2C; = Z7=1 C; (o),

- the sum of weighted completion times Zw;C; = 271 w;C; (0},

- the maximum lateness L = max <<, (C;(0) — d;),

- the maximum earliness E n;, = maXi<j<q (d; — C;(0)),

- the maximum cost frnax = MaX) <<y f;(C;(0)), where all penalty functions f;
(j = 1,...,n) are assumed to be nondecreasing in the job completion times.

We illustrate these notions by a 4-job example. The data are found in Table 1.
An arbitrary schedule o is represented in the Gantt chart in Figure 1. The values of
o for the performance measures 2C; and L., are easily computed;
2Ci(0)=3+7+12+18=40, and Ly, (0)=max{3—20,7—-16,12—11,
18—5} = 13. Note that, if there is no machine idle time between the jobs, then a

3

schedule is completely characterized by the order in which the jobs are executed.
Such a schedule is called a permutation schedule.

T\ J, Js J4
7 |3 4 5 6
20 16 11 5

4

TABLE 1. Processing times and due dates.

J Jy J3 Ja
0 3 7 12 18
FIGURE 1. Gantt chart.

In this thesis, two methods are used to combine conflicting criteria: hierarchical
minimization and simultaneous minimization. In case of hierarchical minimiza-
tton, the performance criteria are ranked in order of importance; the less impor-
tant criterion is minimized subject to the constraint that the schedule is optimal
with respect to the more important criterion. In case of simultaneous minimiza-
tion, the criteria are aggregated into a single composite objective function, which
is then minimized. Note that simultaneous minimization turns into hierarchical
minimization for an appropriate choice of the composite objective function.

We assume that any composite objective function is nondecreasing in both
arguments. This assumption reflects the belief that a dominated solution should
not be chosen as the optimal solution. We show that under this assumption there
is a Pareto optimal point in which the minimum is attained.

DEFINITION 1. A feasible schedule ¢ is Pareto optimal with respect to the perfor-
mance criteria fand g if there is no feasible schedule 7 such that f (7) < f (¢) and
g(m) < g(o), where at least one of the inequalities is strict.

THEOREM 1. If the composite objective function F of (f,g) is nondecreasing in both
arguments, then there exists a Pareto optimal point for (f,g) in which the function F
attains its minimum.

Proor. Let (f1,g,) be a point in which F attains its minimum. If (f1,g,) is not
Pareto optimal, then there exists a Pareto optimal point (f,,g,), with f, < f} and
g2 < g:. Hence, F(f3,82) < F(f1,g1), implying that F also attains its minimum
in(f2,82). O

We use our example to illustrate this definition. We generate the set of all
schedules that are possibly Pareto optimal. As it is easily seen that insertion of
idle time cannot improve the quality of the schedule on ZC; or Ly, we know
that we can restrict ourselves to the 4! = 24 permutation schedules. The values of
these schedules with respect to (L max ,2C;) have been plotted in Figure 2; each

4

point corresponds to a schedule, and the Pareto optimal points are in boid. The
essence of Pareto optimality is shown at the point (7,43): it is Pareto optimal as
there is no point in its lower-left quadrant; this is the area to the south-west of the
dotted lines. Note that we can profit from the knowledge that F is nondecreasing
in both arguments if we are able to determine the set of Pareto optimal points in
less time than needed for complete enumeration.

50{ e
49 1) * *
48 + *
47 1 * * *
46 | . .
>C 45 ¢ * *
44 4 . *
A3 b . * *
4 | %
41 ¢ ® *

40 1 ®

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Lmax

Figure 2. Outcomes of the example'.

Once the set of Pareto optimal points has been obtained, we can solve the prob-
lem for any composite objective function F that is nondecreasing in each of its
arguments. If we do not have any information on F except that F is nondecreasing
in each of its arguments, then we are forced to determine the set of Pareto optimal
points to solve the problem. If we have some additional information on F, then
there may be quicker ways to solve the problem. A common property of F is
linearity, that is, F(f,g) = a; f + a,g, where a;,a, are assumed to be nonnega-
tive. We show that, in case of a linear composite objective function, we can restrict
ourselves to determining the set of extreme points with respect to (f,g). Before
defining the concept extreme, we need two preliminary definitions.

5

DEFINITION 2. A feasible schedule o is efficient with respect to (f ,f>) if there
exist real nonnegative values (0q,00) such that
ay f1{0) + a; f(6) < a; [} () + & f7 () for all feasible schedules #.

DEFINITION 3. The efficient frontier is the shortest curve that connects all efficient
points.

50 |
49 |
48 |
47 |

Sc; 45 |
43 1

42 |
41 +

40 1

o 1 2 3 4 5 6 7 8 9 10 11 12 13
FIGURE 3. The efficient frontier for the example.

DerINITION 4. A feasible schedule o is extreme with respect to (f,g) if it
corresponds to a vertex of the efficient frontier.

THEOREM 2. If the composite objective function F of (f,g) is linear, then there exists
an extreme point for (f,g) in which F attains its minimum.

PROOE. Let (f),g1) be a point in which F attains its minimum. If (f), gl) is not
extreme, then there exists a line segment of the efficient frontier containing a
point (f,,g,) with > < f} and g, < g; hence, F(f,,22) < F(f1,£1). Due to the
linearity of F, at least one of the endpoints of the line segment must have cost no

6

more than F(f3,g,), implying that F attains it minimum in one of these extreme
points. O

These notions are applied to our example in Figure 3. Note that the number of
interesting points has decreased from 7 to 4. Obviously, we can gain in speed from
the knowledge that F is linear if we are able to determine the set of extreme points
faster than the set of Pareto optimal points.

If Fis known exactly, then another solution strategy is to solve the problem
directly, that is, without determining the set of extreme points. Unfortunately,
this approach has been seldomly applied successfully.

Throughout this paper, we denote scheduling problems by the three-field nota-
tion scheme « | 8]y introduced by Graham, Lawler, Lenstra, and Rinnooy Kan
(1979), where a describes the machine environment, 8 the job characteristics, and
y the objective function.

The most commonly used job characteristics are ‘preemption’, denoted by the
acronym pmtn, ‘no machine idle time’, denoted by nmit, ‘precedence constraints’,
denoted by prec, ‘release dates’, denoted by r;, and ‘deadlines’, denoted by d;. In
case preemption is allowed, the execution of a job can be interrupted and resumed
later; in case of no machine idle time, all jobs have to be executed between time 0
and time Epj; in case of precedence constraints, for each jobJ; (j = 1,...,n),a
set of jobs has been given that have to precede J; and a set of jobs has been given
that have to succeed J; in any feasible schedule; in case of release dates, for each
jobJ; (j = 1,...,n), alower bound r; on the start time S; has been specified; in
case of deadlines, for each job J; (j = 1, ..., n), an upper bound d; on the comple—
tion time C; has been given.

For example the smgle-machme scheduling problem in which the sum of the
job completion times and the maximum lateness have to be minimized is denoted
by 1[|F(ZEC;,Lny) if F is a general composite objective function, by
1| |Fi(2C;,Lye,) if F is linear, and by either 1||F;(2C;,Lyy) or by
1] | F, (L jnax »2C;) if the minimization is hierarchical, where the first mentioned
performance measure is assumed to be the more important one.

In case of a general composite objective function F, we will only consider solu-
tion approaches that determine all Pareto optimal points to solve the problem. In
case of a linear composite objective function F;, we will determine the set of
extreme points to solve the problem, unless we are able to present a successful
direct approach.

3. QUTLINE OF THIS THESIS
The thesis consists of three parts: two introductory chapters, seven papers, and a
‘samenvatting’ (a summary in Dutch).

The second introductory chapter gives a survey of the complexity of the single-
machine bicriteria problems that arise when two of the performance criteria men-
tioned in Section 2 of the present chapter are combined.

The first paper, ‘Minimizing maximum promptness and maximum lateness on
a single machine® (Hoogeveen, 1990), addresses the problems
1| nmit | F(E pax s Lmax) and 1| | FE pax ,Lmax). For both problems a

polynomial-time algorithm is presented.

The second paper, ‘Polynomial-time algorithms for single-machine multlcrl-
teria scheduling’ (Hoogeveen and Van de Velde, 1990), addresses the problems
L | F(fmax »2C)), H | F(Lpax »2C)), 1|pmitn | F(E nax ,2C)), and
1| |0} 2C; + o E a5 With a; = ;. Polynomial-time algorithms are presented for
each of these problems.

The third paper, ‘Single-machine scheduling to minimize a function of X max-
imum cost criteria’ (Hoogeveen, 1991), presents polynomial-time algorithms for
the problems 1| | F(fimax » & max)> Where fax and g .« are two arbitrary maximum
cost criteria, and for 1|nmit | F(E yx, E max), Where Ep,, and E,, are two dif-
ferent maximum earliness criteria.

The fourth paper, ‘A new lower bound approach for single-machine multicri-
teria scheduling’ (Hoogeveen and Van de Velde, 1991A), presents a new lower
bound approach, which we call ‘objective splitting’. This lower bound approach
can be applied to single-machine multicriteria scheduling problems with a linear
composite objective function. It is shown to dominate previously proposed lower
bound approaches for this problem in terms of both speed and quality.

The fifth and the sixth paper deal with common due date problems. The first of
these, ‘Scheduling around a small common due date’ (Hoogeveen and Van de
Velde, 1991B), addresses the 1| | Zw; | C; — d | problem. This problem is shown
to be 9P-hard for general d even if w;=1 for j=1,. a
pseudopolynomial-time optimization algorithm is presented. The next paper,
‘New lower and upper bounds for scheduling around a small common due date’
(Hoogeveen, Oosterhout, and Van de Velde, 1990), deals with the 1| | 2| C,—d|
problem. Lower and upper bounds are presented that coincide for virtually all
instances, provided that the number of jobs is not too small.

In the last paper, ‘Single machine scheduling to minimize total inventory cost’
(Hoogeveen and Van de Velde, 1991C), the 1| |aZC; + BZE; problem with
0 < a < Bis solved by branch-and-bound. This problem turns out to be very hard
to solve in practice. Although we present no less than six lower bound procedures,
the largest instances solvable in reasonable time by our algorithm consist of no
more than 20 jobs.

REFERENCES

R.L. GRaHAM, E.L. LAWLER, J.K. LENSTRA AND A .H.G. RinnoOY KAN (1979).
Optimization and approximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathematics 5, 287-326.

J.A. HOOGEVEEN (1990). Minimizing maximum earliness and maximum lateness on
a single machine, Report BS-R9001, CWI, Amsterdam.

J.A. HOOGEVEEN (1991). Single-machine scheduling to minimize a function of K
maximum cost criteria, Report BS-R9113, CWI, Amsterdam.

J.A. HOOGEVEEN, H. OOSTERHOUT, AND S.L. VAN DE VELDE (1990). New lower
and upper bounds for scheduling around a small common due date, Report BS-
R9030, CWI1, Amsterdam. _

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Polynomial-time algorithms for
single-machine multicriteria scheduling, Report BS-R9008, CWI1, Amsterdam.

8

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1991A). A new lower bound approach
for single-machine multicriteria scheduling. To appear in Operations Research
Letters.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1991B). Scheduling around a small
common due date. European Journal of Operational Research 55, 237-242.

J.A. HOOGEVEEN AND S.L. vAN DE VELDE (1991C). Minimizing total inventory
cost on a single machine in just-in-time manufacturing, Report BS-R91xx,
CWI, Amsterdam.

Complexity of single-machine bicriteria scheduling:

a survey

As already mentioned in the previous chapter, it is of the utmost importance to
know beforehand whether an optimal solution is gnaranteed to be found within a
reasonable amount of time; otherwise, one may decide to look for a quickly deter-
mined solution that is not necessarily optimal.

Of course, we first have to specify what amount of time should be considered
reasonable to be spent on searching for an optimal solution. Obviously, the deci-
sion should involve the size of a problem, that is, the number of jobs and so on.
An optimization problem is said to be easy if there exists an algorithm that solves
the problem in time polynomially bounded in the input size. Next to the optimiza-
tion variant of a problem, there exists the decision variant of a problem. The deci-
sion variant of a scheduling problem is defined as the following question: given an
instance of the problem and a threshold value y, does there exist as schedule with
. value no more than y? All easy decision problems constitute the class #. This class
is a subset of the class NP, which, in the present context, contains all decision
problems for which it is possible to check in polynomial time if the answer is ‘yes’
for a given schedule. A decision problem is said to be 9P-complete if it belongs to
NP and if every problem in 9P is polynomially reducible to it. A problem 4 is said
to be polynomially reducible to a problem B if and only if an arbitrary instance of
A can be solved by solving a corresponding instance of B that is constructed in
time polynomially bounded in the size of 4. The optimization variant of an NF-
complete problem is called 9¥-hard; these problems are at least as hard as all
problems in NP. For details concerning NP-hardness, we refer to the excellent
textbook by Garey and Johnson (1979).

In Section 1, we repeat some basic concepts for the smgle—machme single-
criterion scheduling problems underlying our bicriteria problems. In Section 2,
we present a survey of bicriteria scheduling problems, thereby providing some
straightforward polynomial-time optimization algorithms and 9%-hardness

10

proofs. These complexity results are displayed in three tables in Section 3. The
first one concerns hierarchical minimization, while the second and third concern
simultaneous optimization with a general and a linear composite objective func-
tion, respectively. Some concluding remarks are made in Section 4.

1. BASIC CONCEPTS

Before analyzing the bicriteria problems, we first show how to solve the single-
criterion problems in which one of the performance criteria mentioned in Section
1.2 is involved. Four of these problems are solved by scheduling the jobs accord-
ing to a priority order that is specified in terms of the parameters of the problem;
only the minimization of f,,,, needs a more intricate procedure.

Instead of the definition of E ,,, given in the previous chapter, we will use from

" now on a refinement of it, proposed by Garey, Tarjan, and Wilfong (1988). They
define E; = d; — p; —), for j = 1,...,n, where S; denotes the start time of J;,
and E . = max;<; <, E;. If 2 job is executed during an uninterrupted period of
time, then both definitions coincide. However, if we allow preemption, that is, a
job may be interrupted and resumed later, then the new definition resembles the
idea that earliness should be measured in terms of a deviation of the actual start
time from a target start time.

Note that all performance criteria under consideration, except E .., are regu-
lar; that is, the objective function cannot be decreased by inserting idle time into a
given feasible schedule. In case of a regular performance criterion, we can restrict
our attention to active schedules. An active schedule is a schedule in which no job
can start earlier without increasing the completion time of at least one other job.
Hence, if all jobs are allowed to start at time 0, then all jobs in an active schedule
are processed in the interval [0,Zp;]. In order to avoid unbounded solutions in
case of a nonregular performance measure like E ,,,,, we impose the constraint
that no machine idle time is allowed, implying that all jobs have to be processed in
the interval [0,2p;]. This constraint is denoted by putting #nmit (‘no machine idle
time’) in the second field of the three-field notation scheme.

THEOREM 1 (Smith, 1956). The problem 1| |ZC; is solved by scheduling the jobs
according to the shortest processing time (SPT) rule, that is, in order of nondecreas-

ing Py

Proor. The proof is based upon showing that every schedule o can be transferred
into an SPT schedule by applying adjacent interchanges that do not increase 2C;.
Consider an arbitrary schedule o in which the jobs are not in SPT order. Hence,
there exist two adjacent jobs J; and J; in o that are not in SPT order, withp; > p;.
It is easily checked that swapping J; and J; decreases 2C;{¢) by p; — p;. This
interchange argument can be applied until all jobs are in SPT order, implying
that an SPT schedule is optimal. [J

Similar proofs hold for the Theorems 2 through 4.

11

THEOREM 2 (Smith, 1956). The problem 1| | Zw;C; is solved by scheduling the jobs
in order of nondecreasing ratiosp;/w;. [

THEOREM 3 (Jackson, 1955). The problem 1| | L a5 is solved by scheduling the jobs
according to the earliest due date (EDD) rule, that is, in order of nondecreasing d,.
O

THEOREM 4. The problem 1| nmit | E 1, is solved by scheduling the jobs according to
the minimum slack time (MST)} order, that is, in order of nondecreasing d; — p;. [

Lawler (1973) presents an on?) algorithm for 1 |prec | fax, where the acronym
prec indicates that precedence constraints have been specified; that is, for each
jobJ;(j =1,...,n), aset of jobs has been given that have to precede J; and a set
of jobs has been given that have to succeed J; in any feasible schedule. The algo-
rithm is based upon the following observation. Let L denote the index subset of
jobs that may be processed last, let 7 denote the sum of the processing times of all
the jobs, and let J; be a job in L such that f; (T) = min;e f; (T). Then there
exists an optimal schedule in which J is last.

LAWLER’S ALGORITHM

O T<Zaipi {1, Jn}

(1) Determine the set L containing the jobs that have no successorsin §.

(2) Choose from L the job J; that has minimal f; () value, settling ties arbitrarily;
J; is processed from time T —p; to time 7.

OT<T—pji§—{J;}
(4 1f § £ &, then go to Step 1; otherwise, stop.

THEOREM 5. Lawler’s algorithm solves 1| prec | fnax-

Proor. We adopt the proof presented by Baker, Lawler, Lenstra, and Rinnooy
Kan (1983). Let N = {1,2,...,n} be theindex set of all jobs, and let L CN be the
index set of jobs without successors. For any subset S CN, let p(S) = 2, c5p;
and let fi.,(S) denote the cost of an optimal schedule indexed by S. Clearly,
Jmax (V) satisfies the following inequalities:

Srnax @) = min; 7 fi(p (V)

Froac(N) = foax (N — {j}) forall j EN.
Now let J, with / € L be such that

Si(p(N)) = min; ¢ f{(p(N)).
We have

Swax (V) = max{fi(p (N)), frmax N —{I})}.

But the right-hand side of this inequality is precisely the cost of an optimal
schedule subject to the condition that J; is processed last. It follows that there

12

exists an optimal schedule in which J; is in the last position. As J; is the job that is
selected by Lawler’s algorithm, repeated application of the above procedure
yields the proof of correctness. [

Lawler’s algorithm determines an optimal schedule in O (n?) time, as for each
position the job in L with minimal cost has to be found.

2. A SURVEY OF SINGLE-MACHINE BICRITERIA SCHEDULING
In this section, we review results on single-machine bicriteria scheduling. We use
the opportunity to provide a number of elementary results, in the form of either
9UP-hardness proofs or polynomial optimization algorithms. It seems that these
results, in spite of their simplicity, have not been published before. The more com-
plicated results will be derived in the Papers I through III.

2.1. MINIMIZING A COMBINATION OF 2w;C; AND Zw;C; -

We start by analyzing a combination of EW C; and Ew C;. The results of this sec-
tion can be easily extended to the spe(nal case that w} or w; is equal to 1, for
j=1,...,n. Note that, if the p;/w; and the p;/w; ratios are similarly ordered,
then there exists a schedule that is optimal for both criteria; hence, this schedule
solves the problem of minimizing any nondecreasing function of Zw jC and
Zw C;. Therefore, we assume from now on that the p;/w; and the ? /W ratios are
not smnlarly ordered.

First, we analyze the 1| | F,(Zw;C; ,Zw;C;) problem. Typical for a solution of
the hierarchical minimization problem in which Zw;C; is involved as the primary
criterion is that Smith’s ratio rule leaves us no freedom to schedule the jobs, unless
there are jobs with equal p;/w; ratio. In that case, however, we have complete
freedom to schedule these jobs so as to minimize the secondary criterion. This
implies that the problem of hierarchically minimizing the primary criterion Zw;C;
and a secondary criterion fis as hard as minimizing f subject to the ‘no machine
idle time’ constraint.

THEOREM 6. The problem 1| | Fy(Zw;C; EW C)) is solved by scheduling the ;oés in
order of nondecreasing p; ;/ w; ratios, settlmg t:es according to nondecreasing p;/ w
ratios. []

THeOREM 7. The 1| | F(Zw;C; ,2w;C,) problem is NF-hard in the ordinary sense.

PrOOF. Our proof is based upon showing that the number of Pareto optimal
points is not polynomially bounded. Suppose that w; = 1 and w; = 2p;—1, for
J=1,...,n As 2p;C; = 22, <4 ppr = A is constant for every schedule without
idle time, a schedule o in which the jobs are executed in the interval [0,Zp;]
corresponds to a point (2C;(0),24 — ZC;(0)), and all such points are Pareto
optimal. We will establish 91%-hardness of the problem by constructing an
instance that yields 2" consecutive Pareto optimal points; Schrijver (1989) proves
that the problem of minimizing an arbitrary nondecreasing function over 2"

13

consecutive integer points is NP-hard in the strong sense (see Hoogeveen (1990);
Paper I in this thesis). There are 2n -+ 1 jobs with processing times

Pr=1py=pua =2, fori=1,....n

Let B be equal to the sum of the completion times when the jobs are in SPT order.
Note that interchanging the jobs J,;_; and J, increases =C; by 2/~ !, for
i =1,...,n. Hence, the points (B + K, 24 — B —K) are all Pareto optimal, for
K =40,...,2"—1, and Schrijver’s reduction can be executed. [J

Note that this reduction only proves M$-hardness in the ordinary sense as the
processing times are exponential; this is all we can hope for when using this
approach, as the number of Pareto optimal points for (Ew;C;,Zw;C,) is pseudo-
polynomially bounded by n(max; w;)Z;p;. It is yet an open question whether
there exists a pseudopolynomial optimization algorithm for this problem.

Another discouraging result has been provided by Lenstra (1979), who proves
that 1|2w;C; < 4 | Zw;C; is already 9P-hard in the ordinary sense by a reduc-
tion from PARTITION.

"THEOREM 8 (Lenstra, 1979). The 1|2w;C; <y | Zw;C; problem is NF-hard in the
ordinary sense.

Proor. We have to prove that the decision variant of the problem is NP-
complete. The decision variant of the problem is defined as the following ques-
tion: given an arbitrary instance of the problem and a threshold value y, does
there exist a feasible schedule with cost no more than y?

The decision variant of the problem belongs to 9%, as it is possible to check in
polynomial time for a given solution whether it provides an affirmative answer.
We now show that the PARTITION problem is polynomially reducible to it; PARTI-
TION is NP-complete in the ordinary sense.

ParTtITION
Given a multiset @ = {a,,...,a,} of n integers, is it possible to partition @ into
two disjoint subsets that have equal sum?

Given an arbitrary instance {a,,...,a,} of PARTITION, define the constants B
and Cby B = 22, a;4; and C = Z}.. a;, respectively, and construct the fol-
lowing instance of 1| 2w, C; <y | Zw;C;:
pi=wj=a;; ﬁ)j":(}, for j=1,...,n,
p():l; WOZO; ‘2)0:]:
y=B+C/2;y=C/2+ 1.
The idea behind the reduction is the following: the constraint Zw;C; < y implies

that J, cannot start before time C/2, the constraint =w,C; < J implies that J,
cannot be completed after time C/2+1, and the combination of the two

14

constraints implies that the schedule cannot contain machine idle time. It is easy
to see that a schedule that satisfies these three properties exists if and only if PAR-
TITION is answered affirmatively.

We start by proving the third property. Consider an arbitrary schedule o;
2w;C;(0) + Zw,C; (6) = Zw;C; (0). A lower bound for this last term is deter-
mined by scheduling the jobs according to Smith’s ratio rule; this yields a solution
equal to y+yp. Hence, if o contains idle time, then
Zw;C;(6) + Zw;C;(0) >y + y, implying that at least one of the constraints is not
satisfied. The first and the second property are proven analogously; therefore, we
only prove the first one. Let o be an arbitrary schedule without idle, and suppose
that J is completed at time Cy. Let 4 denote the index set of jobs that are com-
pleted after Jo; Zieap; = C— So Then
2Zw;iCi(0)=B + Zjcya; =B+ C— Sy Hence, 2Zw;Ci(0)<y implies
B+C—8y<B+C/2or§Sy=C/2. O

Note that the above reduction also proves that the 1|2w;C; <y,pmmn | Zw;C;
problem is 9NP-hard, in which formulation the acronym pmin denotes that
preemption is allowed.

The situation becomes uncomparably brighter if we restrict ourselves to linear
composite objective functions. Then the objective function is simply reformulated
as Zw,C;, withw; = aw; + aw; (j = 1,...,n), and the problem is solved through
Smith’s ratio rule.

If we do know that the composite objective function is linear but the values «
and a are not specified, then the problem is to specify the set of points
(Ew;C;,Zw;C;) that correspond to an optimal solution for some choice of (a,a);
this set is exactly equal to the set of efficient points. By definition, we know that a
point is efficient if there are nonnegative values @ and a such that
aZw;C; + aZw;C; = Zw;C; is minimal. If the ratio a/a increases, then we move
from one efficient point to another by interchanging two jobs J; and J; that have
dﬂferenﬂy ordered weight over processing time ratios, that is, w; /p; < w;/p; and
w] /p; < w;/ pi- This suggests determining the set of efficient pomts by computing
for every pair of JObS with dlfferently ordered weight over processing time ratios
the values and a such that both w; /p; ratios are equal. As a normalization con-
straint, we put a equal to 1. We generate the efficient points in order of nonde-
creasing « value. Then we compute w;C; and Zw;C; in constant time, given the
previous efficient point. Hence, the set of efficient points is generated in
O (n’logn) time, the time needed to order the O (n?) a-values. This approach was
followed by Bagchi (1989) in the slightly different context of minimizing a nonde-
creasing linear function of 2C; and 2| C; — ;.

2.2. MINIMIZING A COMBINATION OF 2C; AND f 5
As the results for minimizing a combination of £C; and L, are almost identical
to the results for minimizing 2C; and f,, we devote a single section to these
problems.

The first paper on a problem of this type is by Smith (1956), who shows that

15

1| Lpax < 0| 2C; is solved by the following backward scheduling rule: assign the
job that has largest processing time from among the set of jobs that are allowed to be
scheduled on that position. Heck and Roberts (1972) solve 1| | Fj(L ax ,2C;) by
this rule. Emmons (1975) applies Smith’s rule to solve 1| | Fj(fmax ,2C;)- Van
Wassenhove and Gelders (1980) and Nelson, Sarin, and Daniels (1986) show that
by iterative application of Smith’s rule all Pareto optimal points for (2C;, L pax)
can be determined. John (1989) extends their algorithm to determine the efficient
frontier. Hoogeveen and Van de Velde (1990) (Paper I in this thesis) use a similar
algorithm to solve 1| | F(fiax ,=C). The running time of their algorithm for exe-
cuting one iteration is O (nmin{n,logZp;}); furthermore, they show that every
iteration yields a Pareto optimal point.

Therefore, the polynomiality of their algorithm depends upon the number of
Pareto optimal points. With respect to (L yax ,2C;), this number has been subject
of a lot of misunderstanding. Lawler, Lenstra, and Rinnooy Kan (1979) claimed
that this number is equal to n(rn —1)/2+ 1. Van Wassenhove and Gelders, on the
other hand, supposed the number of Pareto optimal points for (L max ,2C;) to be
only pseudopolynomially bounded; hence, they presented their algorithm as
being pseudopolynomial. This inspired Sen and Gupta (1983) to present a
branch-and-bound algorithm for 1| | L e + ZC;. Hoogeveen and Van de Velde
eventually verified validity and tightness of the claimed bound on the number of
Pareto optimal points for (Lmax ,2C)); they also proved that the same bound
holds when L, is replaced by fmax Therefore, 1| | F (fmax ,EC) is solved in
O (n*min{n, logSp;}) time; 1| | F(Lpax ,2C)) is solved in o’) time, due to
appropriate preprocessing. For details, see Paper ITin this thesis.

As already indicated in the previous subsection, the problems
1| | Fy(EC), fmax) and 1| | F{(EC;, L nay) are solved in 0 (n?) and O (nlogn) time,
respectively, by the following backward scheduling rule: assign the job that has
largest processing time, where ties are settled to minimize maximum cost and max-
imum lateness, respectively.

2.3. MINIMIZING A COMBINATION OF 2C; AND E 5,
According to our knowledge, only one paper in which an objective function that is
formed as a combination of these two criteria has appeared in the literature. For
the case that preemption is allowed, Hoogeveen and Van de Velde (1990; Paper I1
in this thesis) show that, although the number of Pareto optimal points for
(2Cj,E nax) 1s not polynomially bounded, the number of efficient points is at
most equal to n(n —1)/2+1 and that each of these points can be found in O (n?)
time. Hence, 1 |pmin | F(2C; ,E pax) is solved in O (n 4y time. They also prove that
1|pmtn | F(2C;,En,x) has a nonpreemptive optlmal solution when XC;
outweighs E .., 1mp1y1ng that 1| |&;2C; + ey E sy is solvable in O(n*) time if
23] = (L

Allowing preemption is never advantageous in case of the hierarchical minimi-
zation problem with 2C; as the primary and E ., as the secondary criterion;
1| | Fy(EC; ,E may) is solvable in O (nlogn) time through Smith’s rule, where ties
are settled according to nondecreasing slack time values. The prohibition of
preemption does have impact on the other hierarchical minimization problem in

16

which these two criteria are involved; the problem 1| nmit | Fy(E pay ,2C}) is NP-
hard in the strong sense. We have included the ‘no machine idle time’ constraint
to avoid unbounded solutions.

THEOREM 9. The 1 | nmit | F(E pnax ,2C;) problem is RP-hard in the strong sense.

PROOF. We establish 9P-hardness in the strong sense for 1| nmit | Fy(E ey ,2C))
by showing that its decision variant is P-complete, or, in other words, that it
belongs to NP and that an NP-complete problem is polynomially reducible to it.
The reduction is from the decision variant of 1|r;,nmit | 2C;, which has been
proven to be NP-complete in the strong sense by Lenstra, Rinnooy Kan, and
Brucker (1977). In this formulation, r; denotes that for each job a release date has
been specified; that is, job J; cannot be started before time r; (j = 1,...,n). As
the machine is not available before time zero, we assume without loss of generality
that the release dates are nonnegative. The decision variant of 1|, ,nmit | 2C; is
defined as follows: given n jobs Jy,...,J, with processing time p; and release
date r; 20 (j=1,...,n), and a threshold value y, does there exist a feasible
schedule with value no more than »?

Given an arbitrary instance of the decision variant of 1|r; ,nmit | 2C;, we con-
struct the following instance of 1|nmit | Fy(E g ,2C;). There are n jobs
J1;...,J, that correspond to the jobs in the instance of 1| r; ,nmit | 2C;. The pro-
cessing times of two corresponding jobs are equal; the due date of the job belong-
ing to the instance for 1 |nmit | F,(E e ,2C)) is equal to the sum of the process-
ing time and the release date of the corresponding job belonging to the instance
forl]rj nmit lECj.

Unless 1|7, ,nmit | 2C; is infeasible, a schedule without idle time is obtained if
we schedule the jobs in order of nondecreasing release dates. As r; =0
(j = 1,...,n), this implies that the outcome of 1|nmir | E,,, for the instance
constructed above is equal to 0, so that 1|nmit | Fy(E nay, 2C)) is identical to
1| E pax < 0,nmit | 2C;. Now consider the constraint £y, < 0t it implies E; <0
(j=1,...,n), and thereby dj—Sj —pjé() or S;?c{; = pj for j=1,...,n
Therefore, this constraint induces a set of release dates ryp= aﬁ, —pj G=1...,n),
so that the problems 1| E ,ox << 0,nmit | 2C; and 1|7, ,nmit | £C; are identical. If
we choose equal thresholds for both decision problems, then we have that an affir-
mative answer for the one problem always corresponds to an affirmative answer
for the other problem. The only thing left to prove is that the decision variant of
1| nmit | Fy(E yax ,2C;) belongs to NP, which is obvious. O

The above result shows that 1|nmit|F(2C;,Ey,) and the general
1| nmit | F(EC; ,E nay) problem are NP-hard in the strong sense. Hence, the
problem becomes harder when E ., becomes more important. It is easy to show’
that 1| |1 ZC; + &y E ax and 1| amit | &, Z2C; + oy E o become JF-hard when
some critical o / a; ratio is exceeded; this ratio amounts to (# —1) for the first
problem and to (» — 1)(max; p; —min,; p;) for the second problem. The question
whether these critical values can be bounded more sharply is still open.

17

2.4. MINIMIZING A COMBINATION OF 2w;C; AND A MAXIMUM COST CRITERION

We now consider the problems that arise when combining 2w;C; with either
L yax: fmaxs OF E ax. The only well-studied problem that falls in this context is the
1| Lpax < L | Zw;C; problem, for some upper bound L on L. Smith (1956)
developed a heunstlc for this problem proceeding in the same way as his algo-
tithm to solve 1| Ly, << 0| 2C;. Heck and Roberts (1972) claimed that Smith’s
heuristic always produces an optnnal schedule. This claim was disproved by
Burns (1976) by means of a counterexample; Lenstra, Rinnooy Kan, and Brucker
(1977) proved that the problem was 9¥-hard in the strong sense. Burns applied
neighborhood search to improve Smith’s heuristic for 1| L e < 0|2w;C;. Inits
turn, this heuristic was improved by Miyazaki (1981). The general
1| Lyax < L | Zw;C; problem has been studied by Chand and Schneeberger
(1986), who dlstmgmsh some special cases of the problem that are solved to
optimality through Smith’s heuristic.

We prove that, except for the hierarchical minimization problems with 2w, C;
as the primary criterion that were already indicated as being easy, all variants of
the problems with criteria Zw;C; and Ly, Zw;C; and fre,, and 2w;C; and E 1,4
are strongly ¥-hard.

TueoreM 10. The problems 1| |F,Ew;C;,Lyg), 1| | Fa(Ew;Ci fmax), and
L] | F,(Ew; C; E nax) are solved by sequencing the jobs according to nondecreasing
p; ! wj ratio, where ties are settled such that the secondary criterion is minimized. [J

THEOREM 11. The 1| | Fy(L max , 2w, C;) problem is NIF-hard in the strong sense.

PrOOF. We establish P-hardness in the strong sense for 1| | Fy(L e ,2w;C;) by
showing that its decision variant belongs to 1% and that an N¥-complete prob-
lem is polynomially reducible to it. The reduction is from the decision variant of
the 1|d; | Zw;C; problem, which has been proven to be N¥-complete in the strong
sense (Lenstra, Rinnooy Kan, and Brucker, 1977). In this formulation, d; denotes
that for each job a deadlme has been specified; that is, J; is not allowed to be com-
pleted after time d (j = 1,...,n). The decision variant of 1]d [Zw;C; is defined
as follows: given n jobs J 15 - - - »J, with processing time p;, welght W and dead-
lined; (j=1,...,n),and a t}n'eshold value y, does there exist a feasible schedule
with value no more than y?

As the weights are nonnegative, there is an optimal solution for 1 [d [Zw;C;
without idle time. Therefore, we may assume without loss of generahty that all
deadlines are at most equal to Zp;. Given an arbitrary instance of the decision
variant of 1] d |Z2w;C;, we construct the following instance of
U] | Fu(Lmax »2W; _e) There are n jobs Jy,...,J, that correspond to the jobs in
the instance of 1 |d;| 2w, C;: the processing times and the weights are the same,
and the due dates are equal to the deadlines.

Since all deadlines are assumed to be at most equal to 2p;, the outcome of
1] | Liex is equal to 0, unless the instance of 1|d;|2w;C; is infeasible. Hence,
1] | Fy(L max ,2w;C;) is identical to 1| Ly, < 0,nmit | Zw;C;. Since the constraint

18

Ly <0 induces a deadline d;=d; for each job, the problems
1| Lyax < 0| 2w;C; and 1|d; | 2w, C; are identical. Therefore, if we choose equal
thresholds for both decision problems, then we have that an affirmative answer
for the one problem always corresponds to an affirmative answer for the other
problem. The only thing left to prove is that the decision variant of
H | Fp(L max »2w;C; belongs to P, which is obvious. [

THEOREM 12. The 1| | Fy(fmax »2w; C)) problem is N3-hard in the strong sense.
ProOF. This follows immediately from Theorem 11. O

THEOREM 13. The 1|nmit | Fy(E oy ,2w;C;) problem is NP-hard in the strong
sense.

PROOF. This follows immediately from Theorem 9. [

2.5. MINIMIZING A COMBINATION OF TWO MAXIMUM COST CRITERIA

We now consider the problems that arise when combining two criteria of the type
L naxs fmax> and E 4. The only combination that has attracted many researchers
concerns Ly, and F,,,. Two problems within this context have been studied
extensively.

The first one is 1| |max{E .« ,Lmax }- This problem has been addressed by
Garey, Tarjan, and Wilfong (1988) as the problem of sequencing tasks to minimize
maximum discrepancy; they show that it is solvable in O (nlogZp;) time.

The second one is 1|nmit | E y, + L. This problem is known as the prob-
lem of minimizing the range of lateness, since E 1,y = — L. It was introduced by
Gupta and Sen (1984), who provide a branch-and-bound algorithm for it, with a
lower bound based upon the maximum improvement method. Tegze and Vlach
(1988) also provided a branch-and-bound algorithm for this problem with an
improved lower bound based upon the method of objective splitting; see
Hoogeveen and Van de Velde (1991; Paper IV in this thesis) for a comparison of
these two lower bounding methods. A pseudopolynomial algorithm for this prob-
lem is due to Liao and Huang (1991). Hoogeveen (1990) proved that
1| nmit | F(E pax ,Lmax) is solved in O(n?) time, thereby making the aforemen-
tioned approaches obsolete. Furthermore, in this paper an O(n*logn) algorithm
is given for determining the trade-off curve of E ,x and L,,, when idle time is
allowed; the trade-off curve provides for each value E of E,,, the outcome of
1| Epax < E | Lypax. Hence, 1| | FAE pax » Linay) is solvable in O (n*logn) time.

The 1| | F(fmax »fmax) problem has been addressed by Tuzikov (1991), who
proposed a method for determining the so-called e-approximation of the set of
Pareto optimal points, and by Hoogeveen (1991; Paper III in this thesis).
Hoogeveen proves that 1| | F(fmax »fmax) can be solved in O(n?) time, even if
there are arbitrary precedence constraints between the tasks. The special case
1] | F(L max »fmax) is solved in O (n*logn) time; this algorithm can also be applied
to solve 1|nmit | F(E pux ,E max). He further shows that this analysis can be

19

extended to the K criteria case, thereby presenting an O (n*®*D~6) algorithm
for 1| | F(fhax, - - foax)-

The only combination remaining is fi,.x and E .. We show that all variants of
the problem combining these criteria are strongly 9t®-hard by proving that
1| nmit | Fy(E pax > fmax) 804 1| | F(finax » E max) are strongly 9(P-hard.

THEOREM 14. The problems 1| nmit | Fy(E nax » fmax) @7d 1| | Fy(fmax - E max) are
NP-hard in the strong sense.

Proor. We simultaneously prove both problems to be 9®-hard in the strong
sense. The reduction is from the strongly 9¥-complete problem 3-PARTITION.

3-PARTITION
Given an integer B and a multiset @ = {a,, ..., as,} of 3n positive integers with
B/a< a;<B/2(j=1,...,3n)and E}":, a; = nB, is there a partition of @into n
mutually disjoint subsets &, . .., &, such that the elements in & add up to B, for
j=1...,n?

Given an arbitrary instance {a,,...,a3,} of 3-PARTITION, define the following
problem instance. There are 4n tasks: n enforcer jobs V4, ..., V,, and 3n partition
jobsJy,...,J3,. The enforcer tasks have unit processing times, due dates equal to
d=jB+1) (=1...,n, and penalty functions f(T)=0 for
0=<T=<jB+1) and o otherwise, for j = 1,...,n. The partition tasks have
processing times p; = a; (j = 1,...,3n), due dates that are equal to processing
times, and penalty functions f(T) = 0if 0 < T <n(B + 1)~ 1, and cc otherwise,
for j =1,...,3n. Straightforward computations show that E*, the outcome of
1| nmit | E .y, and f*, the outcome of 1] | fy,ax, are both equal to zero. Hence, if
we choose the thresholds for the decision variants of 1 |nmit | Fy(E nax fmax) and
1| | Fa(fmax » E max) both equal to zero, then both decision variants boil down to
the same question: does a schedule without idle time exist in which ¥ is executed
from time j(B +1)—1 to time j(B +1), for j =1,...,n7 As such a schedule
corresponds to a partitioning of the set @ that provides an affirmative answer to
3-PARTITION, the decision variants of both scheduling problems are answered
affirmatively if and only if 3-PARTITION is answered affirmatively. As both deci-
sion problems are in NP, the problems 1|nmit|F(E . Lmax) and
1| | F5(fmax » E max) are both 91P-hard in the strong sense. [J

COROLLARY 15. The problems 1||F(Epax fmax) 1|nmit | F(E oy »fmax)
| | FAE max s fmax) 1| nmit | FAE ax , fmax) are XP-hard in the strong sense. [

3. COMPLEXITY TABLES

Our complexity results are summarized in Tables 1, 2, and 3. Table 1 gives the
results for hierarchical minimization, Table 2 for a general nondecreasing compo-
site objective function, and Table 3 for a linear nondecreasing composite objec-
tive function. An exclamation point ‘I’ indicates 9%-hardness in the ordinary
sense; a double exclamation point ‘!!” indicates N¥-hardness in the strong sense.

20

secondary — 21 of 2} w; C; L Eax Zmax
i= i=
primary |
¢ O(nlogn) Ofnlogn) Of(nlogn) O(nlogn) O(n?)
j=1
> w; C; O(nlogn) Of(nlogn) O(nlogn) Of(nlogn) O(n?)
i=t
Loas O (nlogn) 1" O(nlogn) O(n*logn) O(n?)
E o H 1 O(nlogn) Of(nlogn) "
Snax oY " o(n?) 1 on?
TaBLE 1. Complexity results for hierarchical minimization.
E Cf 2 A/ Cj L nax Eax 8 max
3¢ | Onlogn) ! o) 1" 0"
j=1
2w G ! ! 1 i "
j=1
Lo ow) " O(n’logn) " O (n’logn)
E ox i " " O(n’logn) 1
Saax onY) " O(n’logn) " o@Y

TasLe 2. Complexity results for a general composite objective function.

21

26 E0G bm Ew gm
j= ot
>C O(nlogn) O(nlogn) on® 1" oY

> w;C; | O(nlogn) O(nlogn) 1 n)

L s o i O(n’logn) O(n’logn) O(n’logn)
E 1 4 O(nYlogn) O(n’logn) 1
Frmax o I O(n’logn) n on*

TasLE 3. Complexity results for a linear composite objective function.

4. CONCLUDING REMARKS

In this survey, we have presented a review of the complexity results on single-
machine bicriteria scheduling. This survey is complete with respect to the criteria
under consideration. An interesting performance criterion that we not have dealt
with concerns the number of late jobs 22U, where U, is an indicator function with
value equal to 1if J; is late and 0 otherwise. The 1 f | Z2U; problem is solvable in
O(nlogn) time by an algorithm due to Moore and Hodgson (Moore, 1969). All
of the single-machine bicriteria scheduling problems that are obtained by com-
bining 2U; with another performance criteria are still open.

REFERENCES

U. Baccnr (1989). Simultanecus minimization of mean and variation of flow
time and waiting time in single machine systems. Operations Research 37, 118-
125.

K.R. BAKER, E.L.. LAWLER, J.K. LENSTRA, AND A H.G. RinnNooy Kan (1983).
Preemptive scheduling of a single machine to minimize maximum cost subject
to release dates and precedence constraints. Operations Research 31, 381-386.

R.N. Burns (1976). Scheduling to minimize the weighted sum of completion
times with secondary criteria. Naval Research Logistics Quarterly 23, 125-129.

S. CuaND AND H. SCHNEEBERGER (1986). A note on the single-machine schedul-
ing problem with minimum weighted completion time and maximum allow-
able tardiness. Naval Research Logistics Quarterly 33, 551-557.

H. BEmMons (1975). A note on a scheduling problem with dual criteria. Naval
Research Logistics Quarterly 22, 615-616.

22

M.R. GAREY AND D.S. JOHNSON (1979). Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, San Fransisco.

M.R. GAREY, R.E. TARJAN, AND G.T. WILFONG (1988). One-processor schedul-
ing with symmetric earliness and tardiness penalties. Mathematics of Opera-
tions Research 13, 330-348.

S.K. Gurra AND T. SN (1984). Minimizing the range of lateness of a single
machine. Journal of the Operational Research Society 35, 853-857.

H. Heck aND S. ROBERTS (1972). A note on the extension of a result on schedul-
ing with secondary criteria. Naval Research Logistics Quarterly 19, 59-66.

J.A. HOOGEVEEN (1990). Minimizing maximum earliness and maximum lateness on
a single machine, Report BS-R9001, CWI, Amsterdam.

J.A. HOOGEVEEN (1991). Single-machine scheduling to minimize a function of K
maximum cost criteria, Report BS-R9113, CWI, Amsterdam.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Polynomial-time algorithms for
single-machine multicriteria scheduling, Report BS-R9008, CWI, Amsterdam.
J.A. HOOGEVEEN AND S.L. vaN DE VELDE (1991). A new lower bound approach
for single-machine multicriteria scheduling. To appear in Operations Research

Letters.

J.R. JACKSON (1955). Scheduling a production line to minimize maximum tardiness,
Research Report 43, Management Sciences Research Project, UCLA.

T.C. JonnN (1989). Tradeoff solutions in single machine production scheduling for
minimizing flow time and maximum penalty. Computers and Operations
Research 16, 471-479.

E.L. Lawerer (1973). Optimal sequencing of a single machine subject to pre-
cedence constraints. Management Science 19, 544-546.

EL. LawiLer, JK. LENSTRA, AND A.H.G. RiNnooY KAN (1979). Unpublished
manuscript.

J.K. LENSTRA (1979). Unpublished manuscript.

J.K. LensTRA, A H.G. RINNOOY KAN AND P. BRUCKER (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

C.-J. L1a0o AND R.-H. HUANG (1991). An algorithm for minimizing the range of
lateness on a single machine. Journal of the Operational Research Society 42,
183-186.

S. MiyazAki (1981). One machine scheduling problem with dual criteria. Journal
of the Operations Research Society of Japan 24, 37-50.

J.M. MOORE (1968). An n job, one machine sequencing algorithm for minimizing
the number of late jobs. Management Science 15, 102-109.

R.T. NeLsoN, R.K. SARIN AND R.L. DANIELS (1986). Scheduling with multiple
performance measures: the one-machine case. Management Science 32, 464-
479.

A. SCHRUVER (1989). Private communication.

T. SEN AND S.K. GuprA (1983). A branch-and-bound procedure to solve a bicri-
terion scheduling problem. I1E Transactions 15, 84-88.

W.E. SmrtH (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 1, 59-66.

23

M. TeGZE AND M. VLACH (1988). Improved bounds for the range of lateness on a
single machine. Journal of the Operational Research Society 39, 675-680.

AV, Tuzikov (1990). One approach to solving bicriterion scheduling problems,
Report 33, Academy of Sciences of Byelorussian SSR, Minsk.

L.N. VAN WASSENHOVE AND F. GELDERS (1980). Solving a bicriterion scheduling
problem. European Journal of Operational Research 4, 42-48.

This paper has been submitted for publication.

Minimizing maximum prompiness and
maximum lateness on a single machine

J.A. Hoogeveen

29

Minimizing maximum promptness and
maximum lateness on a single machine

J.A. Hoogeveen
Department of Mathematics and Computing Science,
Eindhoven University of Technology
P.0. Box 513, 5600 MB Eindhoven, The Netheriands

A set of n jobs has to be scheduled on a single machine that can handle
only one job at a time. Each job J; requires processing during a given
positive uninterrupted time p;, and has both a given target start time s; and

“agivendue date g, withO0< o, — s, p. Foreachjob J;(/ =1,...,n),
its promptness P, is defined as the difference between the target start time
and the actual start time, and its lateness L, as the difference between the
completion time and the due date. We consider the problem of finding a
schedule that minimizes a function of maximum promptness
Prax = MaXy«icn Py @nd maximum lateness L = MaXqgixn Liy Which
is nondecreasing in both arguments. We present O(n? log n) aigorithms
for the variant in which idle time is not allowed and for the special case in
which the objective function is linear. We prove that the problem is 9(9-
hard if neither of these restrictions is imposed. As a side-result, we prove
that the special case of minimizing maximum lateness subject to release
dates that lie in the interval [d, — p; —~ A, d, — Al {(i=1, ...,), for some
constant A, is solvable in O(nlog n) time if no machine idle time is allowed
andin O(n? log n) time if machine idle time is ailowed.

1980 Mathematics Subject Classification (1985 Revision): 90B35.
Key Words & FPhrases: single-machine scheduling, bicriteria scheduling,
Pareto optimal points, maximum promptness, maximum earliness.

1. INTRODUCTION

Suppose that n independent jobs have to be scheduled on a single machine that
can handle only one job at a time. The machine is assumed to be continuously
available from time 0 onwards. Job J; (i = 1,...,n) requires processing during a
given positive uninterrupted time p;, should ideally be started at a given rarget
start time 5;, and should ideally be completed at a given due date d;. A schedule
defines for each job J; a starting time S; and a completion time C; = §; + p; such
that the jobs do not overlap. Given a schedule o, the promptness and the lateness
of job J; are defined by P; = 5; — §; and L, = C; — d,, respectively. Accordingly,
the maximum promptness and the maximum lateness are defined by
Ponax = MaX i<, P and L, = MaxX;<; <, Ly, respectively. I the target start
times s; are equal to d; — p; for i = 1,...,n, then the maximum promptness cri-
terion coincides with the well-known maximum earliness criterion
E hax = MaXj«; <4 (di — C;). We consider the problem of finding a schedule o

30

that minimizes the scheduling cost f(6) = F(Py (0),Lnax (6)), where Fis a
given function that is nondecreasing in both arguments, subject to the constraint
s;€ld; — p; .d;], for j=1,...,n. We will also consider a variant of the problem
in which idle time is not allowed. Using the three-field notation scheme a|B|y
introduced by Graham, Lawler, Lenstra, and Rinnooy Kan (1979), where a
describes the machine environment, B the job characteristics, and y the objective
function, the first problem is denoted by 1| | F(P max ,Lmax) and the second by
1} nmit | F(P pax L max)» Where nmit expresses the no machine idle time restric-
tion.

Although the first bicriteria scheduling problem was already solved by Smith
[1956], only a few bicriteria scheduling problems have been investigated since
then. Most of these problems are concerned with minimizing a hierarchical type
of objective function: the secondary criterion has to be minimized subject to the
constraint that the schedule is. optimal with respect to the primary criterion.
Examples are minimizing the sum of completion times subject to minimal max-
imum lateness [Smith, 1956], and minimizing maximum lateness subject to a
minimal number of late jobs [Shanthikumar, 1983]. Only a few of the papers on
bicriteria scheduling consider simultaneous optimization, in which the criteria are
transformed into a single composite objective function. An example is minimizing
the number of late jobs and maximum lateness simultaneously [Nelson et al.,
1986]. Most contributions to the area of bicriteria scheduling concern branch and
bound algorithms. There are some notable exceptions, however. Garey, Tarjan,
and Wilfong [1988] present an O(n(log2p;)) algorithm to solve
1| |max{E px ,Lma }- Hoogeveen and Van de Velde [1990] present an
O (n*min{n ,log =p; }) time algorithm for 1| | F(finax »2C;); fumax iS an arbitrary
maximum cost function, defined by fua (0) = max{f,(C;(e))|i=1,...,n},
where all functions f; are assumed to be nondecreasing in the job completion
times. Furthermore, they present an O (n*) time algorithm for 1| |aE p, + 2C;,
witha < 1.

The organization of this paper is as follows. In Section 2, we repeat some basic
theory, and we present a strategy to obtain the set of Pareto optimal points. In
Section 3, we derive a dominance rule, which can be applied to both variants of
the problem. We further show that the subclass of 1|r;,nmit | Ly, with
r E[a} -pi— A,d;,- —A]({j = 1,...,n), for an arbitrary constant 4, is solvable in
O(nlogn) time. In Section 4, we apply the strategy formulated in Section 2 to
determine the set of Pareto optimal points for the case in which no machine idle
time is allowed. In Section 5, we drop this constraint and analyze the general
problem, which we prove to be 9%tP-hard in Section 6, but solvable in O (n* logn)
time if the function F(P ., , L max) 18 linear.

2. BASIC CONCEPTS

The 1] | F(Pmax>Lmax) problem originates from 1|nmit | Py, and 1] | Ly,
where the ‘no idle time’ constraint is added to 1| |Ppm,, in order to avoid
unbounded solutions. Both problems are solvable in O (n logn) time.

31

MiNiMUM TARGET START TIME (MTST) RULE. If no idle time is allowed, then P,y
is minimized by sequencing the jobs in order of nondecreasing values of s;.

EARLIEST DUE DaTE (EDD) RULE [Jackson, 1955). L.« is minimized by sequenc-
ing the jobs in order of nondecreasing due dates d;.

The MTST rule forms a generalization of the EDD rule (see Theorem 3). If both
orderings coincide, then the corresponding job sequence solves both
1} | FOPwax »Lmax) and 1| amit | F(P 5 . L oy). However, in general both order-
ings will differ and it is unlikely that a single sequence minimizes both P,,, and
L ax- Hence, in order to solve 1| | F(P pax » L max) With or without idle time, we
see no other way than to determine the set of feasible schedules that correspond to
a Pareto optimal point with respect to the scheduling criteria Py, and L.

DEerINITION 1. A feasible schedule o is Pareto optimal with respect to the objective
functions f),...,fx if there is no feasible schedule 7 with fi (7) << fi (o) for
k = 1,..., K, where at least one of the inequalities is strict.

THEOREM 1. Consider the composite objective function F(f,(6),. .. ,fx (o)), where
F is nondecreasing in each argument. Then there is a Pareto optimal schedule with
respect 10 f1,..., fx that minimizes the function F. []

It follows immediately from Theorem 1 that, if the number of Pareto optimal
points is polynomially bounded in » and if all these points can be determined in
polynomial time, then the function F can be minimized in polynomial time.

We start by analyzing 1 | nmit | F(Py , L max). In order to determine the set of
Pareto optimal points with respect t0 (P pax , L max) Subject to the constraint rmit,
we apply the following strategy. First, given a value P of P, that corresponds to
a possibly Pareto optimal point (P,L) for (Puax-Lomax), we solve
1| P ax < P,nmit | L ;5 to obtain L. Second, we determine the next P p,,-value
that corresponds to a possibly Pareto optimal point.

There are three difficulties hidden in applying the above strategy. The first
problem concerns the choice of the start value P of P,,,,. This problem can easily
be overcome by choosing P equal to the P, -value of the MTST schedule; obvi-
ously, there can be no Pareto optimal point with smaller P ,,,,-value.

The second problem is how to solve 1| P,y << P,nmit | Ly, The constraint
P nax < P induces for each J; a release date r;, that is, a lower bound for the start
time Sj; Py < P implies s; — S; <P, for j = 1,...,n, and hence S; =s5; — P,
for j=1,...,n. Hence, the problems 1|P, <P,nmit|L,, and
1|7; = s; — P,nmit | Ly, are identical. Although the 1|r; ,nmit | Ly, problem
with general release dates is 919-hard in the strong sense [Lenstra, Rinnooy Kan,
and Brucker, 1977], we show in Section 3 that 1|r; =s; — P,nmit | L,y is solv-
ablein O(nlogn) timeifs; €ld;, —p; .4,]

The third problem is how to determine the next P ,,,-value that corresponds to
a possibly Pareto optimal point in such a way that the total number of generated
points is not too great. Obviously, if we increase the P ;. -value by one every time,

32

then we will certainly determine all Pareto optimal points, but this approach will
not yield a polynomial time algorithm.

Finally, we have to determine the complexity of the algorithm, and hence, we
have to find a bound on the number of points that need to be generated in order
to determine all Pareto optimal points.

We will extend the above strategy to deal with the 1| | F(P yax , L max) problem
in Section 5.

3. A POLYNOMIALLY SOLVABLE SUBCLASS OF 1|r; ,amit | Loy

Lenstra, Rinnooy Kan, and Brucker [1977] prove that the general
1|r; ,nmit | L,y problem is 9P-hard in the strong sense. The problem is solvable
in polynomial time, however, if all release dates are equal, if all due dates are
equal, if all processing times are equal, or if preemption is allowed, that is, if the
processing of a job can be stopped and resumed later. For a review, we refer to the
survey by Lawler, Lenstra, Rinnooy Kan, and Shmoys [1989]. Furthermore, if the
release dates and the due dates are similarly ordered, then the corresponding
1]7; | L is solvablein O(n log n) time, as follows immediately from the analysis
in Section2 by the choices; =, (f = 1,...,n), F(P nax s Linax) = 00 if Py >0,
and F(P oy ,Linax) = Lmaximeax <0.

In this section, we consider a subclass of the 1|7; nmit | L 4, problem in which
the release dates do not depend on the jobs, but on the position; we use [k] as a
subscript to denote the kth position. Let K =(K,,...,K,), with K; <K,
{{=1,...,n—1) denote a vector in R". The problem under consideration is
denoted as 1 |r) =s; — Kj ,nmit | Ly, J; can be started at the kth position in o
if 5; — Ki < Cpi—1y(0). Note that the 1| P, < P,nmit | Ly, problem belongs
to this subclass. We prove that this problem can be solved by the extended Jack-
son rule: always keep the machine assigned to the available job with the smallest due
date. We have modified the rule such that ties are settled according to nondecreas-
ing value of s;.

ALGORITHM A,

OT0;ke-L; Ue{Jy,....J,}, Ve 8.

{Initialization: T"denotes the start time of the job in the kth position.}

(1) ForeachjobJ; € U:ifs; — Ky < Tthen V< VU{J;} and U< U\ {J; }.

{U denotes the set of unscheduled jobs that are not allowed to start at time 7, V'

denotes the set of unscheduled jobs that are allowed to start at time 7.}

(2) If V is empty, then stop. Otherwise, determine the job with the smallest due
date in the set V. If there are ties, then choose the job with the smallest target
completion time. If there are still ties, then choose the job with the smallest
index. Suppose that J; is chosen. Assign J; to the kth position.

O Te«THpskek+ 1L VeV —{J}

(4) If there are unassigned jobs left, then go to 1.

We need a preliminary lemma and a dominance rule before proving that Algo-
rithm A solves 1 | ry; = s; — Ky ,nmit | Loy,

33

LEMMA 1. Consider an arbitrary schedule 0. Let J; and J; be two jobs, where J; is
scheduled before J; in o. If J; cannot be started as soon as J; is finished, or, if
Li(0)> L;(0), thenboths; > s; and d; > d,.

ProOF. Let J; be assigned to the kth position in 6. If J; is not available at time
Ci(o), then s, — Ki 41 > Ci(0). As Ci(0) —p; =5 — K, and as K < Kj 44,
we obtain s; >s; + p;, and hence d; = 5; > s, + p; = d; — p; + p; = d;. As to the
second case, L;(0)>L;(0o) implies C;(0)—d;>C;(0)—d;. As J; is
scheduled before J;, C;(0) = C; (o) + p;. The combination of these two inequal-
itiesyieldsd; — p; >d;, and hence s; = d; — p; > d; =s;. U

DOMINANCE RULE. Let J; and J; be two arbitrary jobs. If both s; <s; and d; < d,,
where at least one of the inequalities is strict, then there exists an optimal schedule for
U rgy =s; — Ky ,nmit | Ly in which J; precedes J ;.

Proor. We will show that an optimal schedule o that does not satisfy the domi-
nance rule can be transformed by applying interchanges (not necessarily adja-
cent) into a feasible schedule o that is optimal and that satisfies the dominance
rule.

Consider an optimal schedule o that contains two jobs J; and J; that satisfy the
conditions of the dominance rule, while J; precedes J; in 0. Let J; and J; be
chosen such that the jobs scheduled between J; and J; in o satisfy the order of the
dominance rule, implying that there is no job J; scheduled between J; and J; that
has both s5; <s; and d; < d}, or both s; > 5, and d; > d;.

Consider the schedule o, obtained by interchanging J; and J;. In order to prove
that o is also an optimal feasible schedule, it suffices to prove the following two
claims.

(1) o is feasible with respect to the release dates.

(2) The lateness in o of J; and of the jobs scheduled between J; and J; in ¢ does
notexceed L; (o) < L, (a).

Proof of (1). As s; <s;, o is feasible with respect to the release dates of J; and
J;. Suppose that there is a job J; in o scheduled between J; and J; that starts
before its release date in 0. Hence, J; can not be started when J; is completed,
while J; precedes J; in 0. Application of Lemma 1 yields s; > s; and 4, > d;, con-
tradicting the assumption.

Proof of (2). As d; << d;; the second claim holds with respect to J; and J;. Sup-
pose that there is a job J; in o scheduled between J; and J;, with L; (o) > L, (o).
As d;<dj, wehave Li(0) = C;(0) — d;= Ci(0)—d; = C;(s)—d; = L;(0),
so the lateness of J; is greater than the lateness of J; in schedule ¢ while J; pre-
cedes J;. Application of Lemma 1 yields s; > s; and d; > dj, contradicting the
assumption. .

The interchange argument can be repeated until a schedule is obtained that
satisfies the dominance rule. This schedule is also feasible and optimal. [J

34

THEOREM 2. The 1|ry =s; — Ky ,amit | L,y problem is solved to optimality by
Algorithm A.

ProoF. Suppose that Algorithm A yields a schedule o that is not optimal. Let o be
an optimal schedule that satisfies the dominance rule.

Compare o and o, starting at the front. Suppose the first difference occurs in the
kth position; let J; be scheduled in the kth position in ¢ and let J; be scheduled in
the kth position in o.

Let 6 be the schedule that results when J; and J; are interchanged in 6. It now
suffices to prove the following claims in order to prove that o is an optimal
schedule that is feasible with respect to the release dates.

(1) o is feasible with respect to the release dates.

(2) o is also optimal.

(3) o can be transformed into a new schedule o that is optimal, feasible with
respect 1o the release dates and equal to ¢ with respect to the first k positions,
while this new schedule o also satisfies the dominance rule.

Proof of (1). Analogous to the proof of claim (1) in the dominance rule.

Proof of (2). Analogous to the proof of claim (2) in the dominance rule, this is
proven by showing that the lateness in 6 of J; and the jobs scheduled between J;
and J; in o does not exceed L; (o). Because of the construction of ¢, we must have
d;<d;, and hence, L; (6)<L;(0). Consider an arbitrary job J,, scheduled
between.l andJ; ino. Suppose that L,(6) >L (6).AsLi(e)=L; (0), we then
have L;(a) > L;(6), while J; precedes J; in 6. Application of Lemma 1 yields
s; > 5, and d > d,, contradicting the assump‘uon that o satisfies the dominance
ru]e This mphes that for each J, scheduled between J; and J;, the lateness of J;
in o does not exceed the value of L oy (0). This completes the proof of (2).

Proof of (3). Unfortunately, ¢ does not necessarily have to obey the dominance
tule, as a job J; can exist that is scheduled between J [and J; in o, with
di>d; =d; and 5,>s>5;; in that case, interchanging J; and J; yields a
schedule that does not satisfy the dominance rule. From the proof of the domi-
nance rule, however, it follows immediately that & can then be adjusted to a new
schedule, named o again, that is also feasible and optimal, that satisfies the domi-
nance rule, and in which the first k jobs are the same asin o.

The interchange argument can be repeated until the schedule o and the newly
obtained schedule ¢ are the same. This proves that o, obtained through Algorithm
A, is an optimal schedule that is feasible with respect to the release dates, and that
satisfies the dominance rule. [

THEOREM 3. Algorithm A solves the probléms 1| P nax =< P,nmit | Ly, and
1| Lax << Lonmit | P,y to optimality.

Proor. The proof of the first part follows immediately from Theorem 2, as
1| P gy < P,nmit | L, isidentical to 1|7; = s; — P,nmit | Lay

35

As to the second part of the proof, consider an arbitrary instance
Vi={p11,411:511s - sPu158n1 s5n1,L} of 1| Ly < L,nmit | Py,,. Now con-
struct the following instance V, = {p1y.d13,812,...,Pn2,dy2.892,P} for
1| Prax << P,nmit | Ly,

P2 =Pt fori=1,...,n,

#
dp= 2 ppn—sa fori=1,...,n,
=

R

sip= S pp—dy fori=1,...,n,
=

P =1

Suppose that the application of Algorithm A to V', yields 0,. An optimal schedule
oy for V' is then obtained by reversing o,, since

n
Li(oy) = C03)—d; 2 = Ci(02) ~sumpy, +s;1 = 5,1 Si01) = Pi(0y).

Pyo3) = 5,2 Si(02) = 2 Pi.1—di 1= 8i(02) = Ci(o)—d; 1 = Li(oy).

j=1
This implies that oy is optimal and feasible if and only if o, is optimal and feasi-
ble. [J

4. PARETO OPTIMAL POINTS IF NO IDLE TIME IS ALLOWED

We now present an algorithm to determine all values P of P, that may
correspond to a Pareto optimal point. Once such a value P is known, the
corresponding value of L, can be determined in O (n logn) time by solving the
corresponding 1| P . < P,nmit | L,y problem through Algorithm A. Further-
more, we prove that the number of Pareto optimal points with respect t0 P ¢
and L ., is no more than », and that at most n values P of P,,, have to be con-
sidered to determine all Pareto optimal points. We start by proving the following
lemma.

LemMA 2. Consider an arbitrary job Jy. in o, where o is the schedule constructed by
Algorithm A to solve 1| P .y < P,nmit | Lyy,,. There are no two jobs J; and J;
before J; in o with a due date larger than d,.

ProoF. Suppose to the contrary that there are two such jobs J; and J;. Without
loss of generality, let J; be scheduled before J;. Because of the construction of o,
job J; cannot be available when J; is selected, and hence, it cannot be started as
soon as J; is finished. Application of Lemma 1 yields that therefore d; > d;, con-
tradicting the assumption. [J

36

Given an optimal schedule o for 1| P, < P,nmit | L, obtained by Algorithm
A, where P is an arbitrary value of the upper bound on P, it is possible to
decrease L., only by interchanging two jobs that are not scheduled in EDD
order. We prove that o can be partitioned into blocks that have the property that
an interchange necessary to decrease Ly, can only take place within such a
block. Partition the schedule ¢ into blocks according to the following algorithm.

PARTITIONING ALGORITHM.

(0) Start at the beginning of the schedule.

(1) Select the next job J; to be the first job in a block. Compare the due date of J;
with the due date of its successors, until a job is found that does not have a
smaller due date. Let this be J.. The block contains J; and all its successors up
toJ,.

(2) Proceed until the schedule has been completely partitioned into blocks.

PROPOSITION 1. Let o be an optimal schedule for the 1| P p,x < P,nmit | L,y prob-

lem obtained by Algorithm A, where P is an arbitrary upper bound on P ,,, with

P = PMTST where PMTST s equal to P oy (MTST). Partition o into blocks, accord-

ing to the Partitioning algorithm. Any block B has the following properties.

(1) If job J; is the first job in B, then all jobs J; in ¢ with smaller due date scheduled
after J; also belong to block B.

(2) The jobs in B are scheduled in the following order: the job with the largest due
date is scheduled first, the other jobs are scheduled in EDD order.

PRrOOF. (1) Suppose that there exists a job J; with d; < d| that is scheduled after J;
and that does not belong to B. According to the Partitioning algorithm, there
must exist a job J;, scheduled between J; and J,, with d; = d; > d;. But then, both
J; and J; have larger due date and are scheduled before J;, contradicting Lemma
2. This contradiction proves Property 1.

(2) Property 2 follows immediately from Lemma 2 and the Partitioning algo-
rithm, [J

THEOREM 4. Let P and P, be two arbitrary values of the upper bound on P .y, with

P, < P,. Let 0, and o, be the optimal schedules obtained by applying Algorithm A

10 1| P ux < Py, nmit | Ly and 1| P << Py nmit | Lo,y respectively. Partition

o) into blocks according to the Partitioning algorithm. Let B be an arbitrary block of
oy, let T and T, be the start and completion time of block B in 0, respectively. Then

the jobs belonging to B are processed in o, during the interval [T, T,]

Prookr. Consider the first block B of 0. Let J; be an arbitrary job that does not
belong to B. As P, = P, it is feasible to schedule all jobs of B in the same posi-
tion as in o;. As J; does not belong to B, its due date is at least as large as the due
date of the first job in B and therefore Algorithm A will not choose J; until all
jobs that belong to B have been scheduled. This argument can be repeated for the
second block in 0, and so on, until only the last block remains. [

37

THEOREM 5. Let o be an optimal schedule for 1| Py, < P,nmit | Ly, obtained by
Algorithm A, where P is an arbitrary upper bound on P ... Let B be a block that
contains a job J; with L;(6) = L.« (o). In order to decrease L ., {0, it is neces-
sary to increase P such that another job within block B can be scheduled first.

PROOF. L 1, (0) can only be decreased by decreasing the completion time of job
J;. Application of Theorem 4 implies that a decrease of the completion time of job
J; has to be achieved by changing its position within the block B. As all jobs in B,
except the job in the first position, are scheduled in EDD order, another job has to
be scheduled in the first position of B to change the scheduling orderin B. O

Theorem 4 and 5 provide the basis for the algorithm we present for determining
all Pareto optimal points. First we prove that the number of Pareto optimal points
is at most equal to x.

THEOREM 6. Let o) and o, be two schedules obtained by Algorithm A, which both
correspond to a Pareto optimal point, (P ,L) and (P, ,L,), respectively. Suppose
P < P,. Partition o, and e, into blocks by applying the Partitioning algorithm. The
number of blocks into which o, has been partitioned is smaller than the number of
blocks in which o, has been partitioned.

PrOOF. Application of Theorem 4 proves that o, has been partitioned in at least
as many blocks as o,. Furthermore, Theorem 5 implies that, in order to achieve a
lower value of Ly, at least one of the blocks, in which o, has been partitioned,
must have been split in at least two blocksin 0,. [

COROLLARY 6.1. The number of Pareto optimal points is bounded by n, and this
bound is tight.

Proor. The number of blocks is at most equal to the number of jobs. From
Theorem 6 it follows immediately that there are no two different Pareto optimal
points that have the corresponding schedules, obtained by Algorithm A, parti-
tioned by the Partitioning algorithm into the same number of blocks. Hence, the
number of Pareto optimal points is bounded by #.

The following example shows that the bound is tight:

pi=1 fori=1,...,n—1,
di =2, diyy=di+i+2fori=1,...,n-2,d,=p,=d,; +1.

It is easily verified that the schedules (J,,J1.J2,..-.Ju=1),
iwlnd2 3o idnt) U102, 03,...,J,) all correspond to Pareto
optimal points. []

From Theorem 5 it follows immediately that a new Pareto optimal point can only
be obtained by increasing the value P of the upper bound on P, such that for
every block B that contains a job J; with L; = L., another job can be scheduled

38

in the first position in B. This observation forms the basis for an algorithm that,
given an optimal schedule ¢ for 1| P, < P,nmit | L, determines the next
P nax-value that corresponds to a Pareto optimal point.

ALGORITHM NEXT P

(0) Partition o into blocks, according to the Partitioning algorithm.

(1) Determine for each block B that contains a job J; with L; (0) = L, (o) the
value of the upper bound P such that another job in B is allowed to be
scheduled in the first position. If J; is the only job in B, then L, cannot be
decreased; stop.

(2) Choose the maximum of the values found at Step 1. This maximum is the new
value P.

A straightforward implementation of all properties derived above yields an algo-
rithm that determines all Pareto optimal schedules in O(n? logn) time. We can,
however, gain a little by not determining the Pareto optimal schedules but the
Pareto optimal points; after selecting the point that yields minimal F(P y, , L pax)
value, the corresponding schedule is easily obtained.

The algorithm highly depends upon the properties of the blocks. Assume that
the jobs are numbered in order of nondecreasing due dates, where ties are settled
according to nondecreasing target start times. Consider an arbitrary block B; sup-
pose that it contains the jobs {J;,...,J;}. Then the completion time of each one
of the jobs {J;, ..., J;_1} is equal to its completion time in the EDD schedule plus
p1- Hence, the blockwise maximum lateness for B, that is, the maximum lateness
within B, is attained by the jobin {J;,...,J;_, } that has maximum lateness in the
EDD schedule. Furthermore, the job in B that will occupy the first position in B
when the upper bound on P ,,, is increased minimally is the jobin {J;, ..., J; -1}
that has minimum target start time; the necessary minimal increase of P is equal
tOSj - Ci-l (EDQ) —P.

The above observations show that, once the necessary orders are stored per
block, we can determine the L ;.-value within B and the upper bound value that
is needed to alter the sequence within B in constant time. Hence, if we store the
blockwise L ,-values and the next upper bound values in an ordered tree, then
we can determine the next interesting P .., -value and the corresponding L .4~
value in O (logn) time. As partitioning of the orders according to the blocks takes
O(n) time, the running time of Algorithm B is O(n 2). The proof of correctness
follows from the observations made above.

ALGORITHM B

(0) Solve 1 | nmit | P 1y, yielding PM7ST and solve 1| P oy < PMTST pmit | Loy,
yielding o; store (P pax (), L sy (0)). Partition o into blocks by applying the
Partitioning algorithm.

(1) Determine the MTST-order, the L;(EDD)-order, in which the jobs are
ordered according to nonincreasing lateness in the EDD-schedule, and
C,(EDD), for j=1,...,n. Partition the MTST and the L;(EDD) order

39

according to the partitioning of 6. Determine for each block B its blockwise
maximum lateness value and its next upper bound value. Store these values in
an ordered tree.

(2) Determine the minimum element in the ordered tree containing the blockwise
next upper bound values; let this be P. If P = oo, then go to 5; all interesting
points have been discovered. Suppose that P originates from job J; let this job
be contained in the block B that contains the jobs {J;, ..., J;}.

(3) Split B, the MTST-order, and the L, (EDD)-order in two parts; the first part
contains the jobs J,,...,Jy, while the second part contains the jobs
Ji +1s - - « »J;. Determine for both parts the blockwise maximum lateness value;
store these values in the ordered tree and delete the former maximum lateness
value corresponding to B from the tree. Determine for the second part the
blockwise next upper bound value; let this be P,. If P| < P, then the second
part has to be split further. This can be done in the same fashion as described
above. This process repeats until the current P-value has become greater than
P.1f P, > P, then we have obtained an interesting point with P ,.-value equal
to P and L ,,-value equal to the maximal element in the ordered tree contain-
ing the blockwise maximum lateness values.

(4) Store this point, and go to 2. :

(5) Compute for each of the interesting points its F-value, and choose the
minimum. Suppose the minimum is attained by the point (P,L). The
corresponding optimal schedule is then determined by solving
1| P jax << P,nmit | L, through the extended Jackson rule.

5. PARETO OPTIMAL SCHEDULES IF IDLE TIME IS ALLOWED

We prove that the 1| P, < P | L o, problem can be solved in O(n* logn) time,
given P. Furthermore, we show that the trade-off curve of P, and L., defined
as the curve that connects all points (P,L), where L is the outcome of
1| P yax =< P | Ly, is piecewise linear with gradient alternately —1 and 0 and
that it can be computed in O (n? logn) time.

Consider the 1| P, <P |Lpy, problem. As L., is a regular performance
measure, implying that its value cannot be decreased by inserting idle time into a
given schedule that is feasible with respect to P ,;, = P, we may restrict our atten-
tion to active schedules. An active schedule is a schedule in which no job can start
earlier without increasing the completion time of at least one other job.

The possibility of inserting idle time in a schedule has an important conse-
quence. Consider a partial schedule without idle time in which the first k —1 jobs
have been fixed. Instead of scheduling the available job that has the smallest due
date in the kth position, it now may be advantageous to wait until another job
with smaller due date becomes available. Although this looks similar to increasing
the upper bound P to allow a job with smaller due date to be sequenced next, as in
the previous section, both situations differ tremendously with respect to the
consequences. Inserting idle time affects the completion times of all jobs still to
come, even if the sequence in which the remaining jobs are scheduled stays the
same, in contrast to increasing P in the previous section. We need position

40

dependent release dates, as defined in Section 3, in order to prevent unnecessary
changes in the beginning of the schedule that possibly increase L ,,. We show
that we can use the insight gained in the analysis of the 1| P,y < P,amit | Ly,
problem to deal with the 1| P < P | Loy problem.

The 1| P yay < P | Ly problem is not easily accessible itself. Therefore, we
will solve it by formulating it in a different way. To this representation we apply a
strategy that is very similar to the one used in Section 4. Consider an optimal
schedule o for 1| Py =< P | Lyy; let o denote the corresponding sequence that
remains after removing the idle time. Define Py;; (o) as the promptness of the job
in the ith position in o; define K; = maX;<x«; Py ((=1,...,n). The total
amount of idle time that has to be inserted into o before J|;; to make it feasible
with respect to the constraint P, << P is equal to max{K; — P, 0}. Hence, the
1| Ppax < P| Ly, problem can alternatively be formulated as the problem
1| Py < K; ,nmit | max<; <, {Lj;) + max{K; — P,0}}, where the set of con-
straints P;) <K, induces the set of positional release dates rj;)=s; — K,
(i=1,...,n;j=1,...,n). One way to solve this problem is by using a step-wise
approach: given a nondecreasing vector of upper bounds K’ that possibly
corresponds to an optimal solution of the above problem, determine K/*! by
increasing at least one component of K/ such that Ly, is decreased, where J|;; is
the job that attains max; < <, {L) + max{K, — P,0}}. Note that, given a vec-
tor K/ = (K4, ...,K}) of upper bounds with K{ < Kf ,; fori = 1,...,n—1, the
optimal set of Ly-values is found by solving 1| P < K¥ ,nmit | Ly, through
Algorithm A; hence, for simplicity, we denote the problem of determining the
Ly;j-values given a vector K/ of upper bounds as 1| Py < K ,nmit | Lyp,y. As the
sequence without idle time has to be made feasible with respect to P, << P by
inserting idle time, there is no use in considering vectors K = (K;,...,K,,) that
are not nondecreasing, that is, that do not satisfy K; <K, fori=1,...,n— 1.
Further note that every component of K/ ™! has to be greater than or equal to the
corresponding component of K/. Otherwise, the schedule that solves
1| Py < Ki™1 .nmit | L,y does not lead to a smaller Ly;j-value than the schedule
that solves 1|P;< K% nmit | Lmax» where Jy;; is the job that attains
maxX; <k <, { L) + max{K, — P,0}}, and where K7 = min{K{ ,Ki*'}; hence,
K7*1 then cannot correspond to an optimal schedule. Let {K',...,K™ } be the
set of vectors that are obtained by applying the above step-wise approach. Define
o; as the sequence obtained by solving 1|Py;; < K/ ,nmit | L, through Algo-
rithm A; define o; (P) as the active schedule that is obtained when o; is made
feasible with respect to the constraint P, < P. Obviously, the vectors
{K L .,K"™} have to be minimal, that is, if one of the components of Ki
G=1,....m)is de(;reased, then 0; must become infeasible with respect to the
constraints P, < Ki.

We have now come to the point of implementing the above step-wise approach
to determine the set of upper bound vectors {K',...,K™} that yield a possibly
optimal schedule o, (P) for 1| P, < P| Ly, We show that the set of vectors
(K',...,K™} is obtained in a similar fashion as the set of P, -values
corresponding to a possibly Pareto optimal point in the previous section.

41

Consider a vector K from the set {K L K™}, Let k and ! be such that
Ky -y <Ky =..=K; <K ;. The set of positions {j, ..., k} is called a group of
positions, the set of jobs {Jyy,...,Jy} is called a group of jobs. Note that the
corresponding schedule o(P) contains no idle time within a group of jobs. Define
the maximum lateness within the group G as L{G)pmax = max{Ly;(0)|J; € G}
and define K (G) as the common K-value for the group of positions corresponding
to G.

ProposiTION 2. Consider a sequence o; obtained when solving
V| Py < Ki ,nmit | L.y through Algorithm A, where K/ e{K',...,K™). Parti-
tion a; in groups, let G| and G, be two arbitrary groups of jobs, where G, is com-
pleted before G,. Let Jy; and J ;) be two arbitrary jobs in G| and G, respectively.
Then d[i] < d[}]

PROOE. Let Jy;; be the first job in G,. As K/ is minimal, K cannot be decreased,
hence, J|;; cannot be started as soon as J|;; is completed. Application of Lemma 1
yields s;) <sy; and dp;) < djy;. As o; is obtained by Algorithm A, either s = sy
or d(j; = dy;. As to the first case, Jj;) cannot be started as soon as Jy;; is com-
pleted, implying dy;; > d|;}; as to the second case, we obtain dy;y = dy; > dp;). O

THEOREM 7. Let K/ and K* be two arbitrary vectors from the set {K',. .. ,K™). Let
K* be the larger of the two. Let o; and oy, be the optimal sequences obrazned by apply-
ing Algorithm A 1o 1| Py < Ki ,nmzz | Linax and 1| Py < K¥ ,nmit | Ly, respec-
tively. Partition 6; and oy in groups. Let Gy and G be two arbitrary groups of jobs in
o;, where G| is completed before G, in o;. Let J |,y and Jp) be two arbitrary jobs in
G and G, respectively. Then J ;) precedes J) in .

ProOF. The proof follows from Prdposition 2 and the way the jobs are chosen in
Algorithm A. [0

From Theorem 7 it follows immediately that if we start with a vector X for the
upper bound on Py;) then the only way to decrease L(G)pyax is to increase the
value of the upper bound for the whole group G or for a part of the group. This
observation provides the basis for the following algorithm.

ALGORITHM NEXT K.

(0) Let X be a given vector of upper bounds on Py;. Let o be the sequence
obtained by applying Algorithm A to 1 | Py < K ,nmit | L sy

(1) Let G be the first group in the schedule that attains max{L (Gl + K(G)}.
Partition this group of jobs into blocks by the Partitioning algorithm.

(2) Determine the set of blocks % in G that contain a job J; with
Li(0) = L(G)max-

(3) Determine for each block B in % how much the upper bound K(G) has to be
increased to let another job within B be scheduled in the first position in B.
Denote this value by K(B). If B consists of a single job, then K(B) = oo and

42

hence, L (G)yax cannot be decreased; stop.

(4) The next vector of upper bounds K can be computed from the old upper
bound vector as follows. Let the first block in 9 start in the (k + 1)th position.
The first k elements stay the same. Now consider the remaining positions in G,
suppose these are the positions £ +1, .. ., L The new upper bound value K; ,;
becomes equal to max{K; ,K(B)}, where B is the block that contains position
i +1. The elements of the new upper bound vector K corresponding to posi-
tions after G become equal to the maximum of X and their old value.

Because every group of jobs G has the same K-value for every job J; in G, the
correctness of this algorithm follows from Theorem 5. The time complexity of the
algorithm is O (n).

We are now able to formulate an algorithm to determine all vectors K LY <4
and the corresponding sequences oy, . . . ,0,,. Let KMT57 denote the vector with
KMTT = max{P;) (MTST)|j = 1,...,i},fori=1,...,n

ArcoriTeM C.

(0) Determine the vector KM5T; [1; K! « KMTST,

(1) Solve 1| Py;; < K} ,nmit | L, by applying Algorithm A; this yields sequence
Oy,

(2)l«1+1. Compute the next vector K/ by applying Algorithm Next K. If
K < co,thengotol.

(3 Allvectors K€ {K LI ¢ 71 have been determined.

Screen the set of vectors {K LI ¢ 1 in to remove all vectors that lead to dom-
inated sequences. A sequence o;,; is dominated by sequence o; if
L ax (0;) << Lipax (0 +1). We now prove that at most »n upper bound vectors are
determined by Algorithm C.

THEOREM 8. Let K/ and K* be two arbitrary vectors from the set {(K',... ,K™). Let
K* be the larger of the two. Let o; and oy be the optimal sequefzces obz‘amed by apply-

ing Algorithm A to 1| Py <KJ} ,amit | g, and 1| Py < K¥ ,nmit | L gy, respec-
tively. Partition o; and o, into blocks according to the Partitioning algorithm. Then
o, is partitioned into more blocks than o,. Hence, Algorithm C computes at most n

J
schedules, and therefore, its time complexity is O (n* logn).

Proor. The proof is analogous to the proof of Theorem 6 and Corollary 6.1. [

Let o; (P) be the active schedule obtained by inserting idle time in o; to make o;
feasible with respect to the constraint Py, <P, for j =1,...,m. Let J;; be an
arbitrary job in o, (P). We now have that
Ly (0;(P)) = Ly (o) + max{0, Kf P}. Therefore, the trade-off curve of P
and L ax (0 (P)) is obtained by combining the trade-off curves of

Ly (o;) + max{(} K{ — P} fori=1,...,n; hence, the trade-off curve of P and

max(‘{, (P)) forms a continuous, piecewise linear step-function with alternate

43

gradients —1 and 0, for j = 1, ..., m. Furthermore, the number of breakpoints in
every trade-off curve is no more than n. These trade-off curves can be combined
to one trade-off curve by choosing for each value of P the minimum value of
Lax (0, (P)) for j = 1,. .., m. The number of breakpoints in this trade-off curve
is no more than mn < n?. As 1| P, < P | L,y is solved by one of the schedules
61 (P), ..., 0, (P)forevery value of P, the trade-off curve derived above is exactly
equal to the trade-off curve of P and L 5, where L, is equal to the outcome of
the 1| P pmax < P | L pax problem. The trade-off curve is determined in on? logn)
time, this is the time needed to determine the set of upper bound vectors
{K LK™ } and to determine the set of sequences {oy,...,0, }. Hence,
1] Pmax < P | L yax is solved in O (n? log n) time

THEOREM 9. The 1|r;|Luy problem is solvable in O(n*logn) time if
ri€ld, —p;i— Cd; — Clforj=1,...,n, for some constant C. 01

6. SOLVING THE 1| | F(P pax , L max) PROBLEM 18 NP-HARD

In this section we prove that 1| | F(P pax , Lmax) 1 NP-hard in the strong sense.
First, we need to prove that the problem of minimizing an arbitrary function
f (x), where x belongs to an arbitrary set U of integers, is %%-hard, by showing
that the corresponding decision problem is NP-complete. The reduction is from
the Hamiltonian circuit problem [Schrijver, 1989].

HAMILTONIAN CIRCUIT PROBLEM [Garey and Johnson, 1979]: Given a graph
G = (V,H), does G contain a Hamiltonian circuit?

We start by describing a reduction from the Hamiltonian circuit problem to the
problem of minimizing an arbitrary function f (x), where x belongs to an arbi-
trary set U of integers. Let G = (V,H) be an arbitrary graph and let the edges in
H be numbered 1,..., |H |, where |H | denotes the cardinality of H. Define
U=1{0,...,2|#1} Every integer x € U can be described by | H | zeros and ones,
by using binary encoding. Further define for every x €U a subset U, CH in the
following way: the ith edge in H belongs to U, if and only if the jth digit in the
binary representation of x is equal to 1. Now we define the following function
£).

0 if [U,| = n andif U, is Hamiltonian,

J)= { 1 otherwise.
Clearly, the value of f (x) can be established in every point x in polynomial time.

TurEOREM 10. Given a set of integers S and a nonnegative integer y, the problem of
deciding whether there exists an integer x €S with f (x) < y is NF-complete.

ProoF. The decision problem is clearly in 9. For any given instance of the -
Hamiltonian circuit problem, we construct a set of integers S and a function f (x)
as described above, and set y = 0. This reduction requires polynomial time. The

44

decision problem will be answered affirmatively if and only if the graph G con-
tains a Hamiltonian circuit. [

THEOREM 11. The 1| | F(P ynax » L max) problem is NP-hard in the strong sense.

ProoF. The trade-off curve is piecewise linear with gradient — 1 and 0 alternately.
This implies that the number of Pareto optimal points with respect to the criteria
P pnax and L, is unbounded, as every value P €Z, with P not larger than the P-
value of the first breakpoint, corresponds to a Pareto optimal point. Therefore, we
are able to select 2/#1 consecutive Pareto optimal points (with H equal to the
edge set of an arbitrary graph) and hence, we can carry out the reduction from the
Hamiltonian Circuit %)roblem, with F(P pax ,Lmax) = f (P — ¢), where ¢ is such
that 0 < P —¢ < 2/#1 for every selected P-value. [J

Note that, if we impose the restriction that P ,,, has to be nonnegative, then only
a pseudo-polynomial number of Pareto optimal points remains, and hence,
1| | F(P pax »Lomax) 18 solvable in polynomial time. Suppose that a polynomial
algorithm exists for this restricted problem. In that case, given a graph
G = (V,H), all processing times can be multiplied by a factor O(2!#1), after
which we can select 217 | consecutive Pareto optimal points (the idle time can still
be changed by one unit at a time) and we can carry out the reduction as described
above. Therefore, even in case P, is bounded from below there is no polyno-
mial algorithm for 1| | F(P yax ,Liax), unless $=NP. Further, note that the
reduction from the Hamiltonian circuit problem is not polynomial anymore,
when P, is assumed to be nonnegative and therefore, we cannot conclude that
this special case of 1| | F(P pax » L max) is P-hard in the strong sense.

Note that this example is artificial. In practice, it will be very seldom that a
function F is considered such that F(x,C —x) cannot be minimized in polyno-
mial time. If we restrict ourselves to linear objective functions
F(P pax s Lmax) = 01 Ppax + 09 Loy, With & 05 = 0, then the situation is much
brighter. If a; > a3, then the optimum cost value will be equal to — co, otherwise
an optimum is found in one of the breakpoints; hence, 1| | &) Pppx + @3 Lipax is
solved in O (n? log n) time, the time needed to determine the trade-off curve.

In case the function F(P,y .Lma) 1S convex, then we can solve solve
1| | F(P max »Lmax) by applying binary search in O (max{n?logn , log Zp; }) time,
provided that we impose the restriction that P, is nonnegative.

ACKNOWLEDGEMENT
The author is grateful to Jan Karel Lenstra for his helpful comments.

REFERENCES

M.R. GAREY, D.S. JOHNSON (1979). Computers and Intractability: a Guide to the
Theory of NP-Completeness, Freeman, San Francisco.

M.R. Garey, RE. Tarian, G.T. WiLFONG (1988). One-processor scheduling
with symmetric earliness and tardiness penalties. Marthematics of Operations
Research 13, 330-348.

45

R.L. GrauaMm, E.L. LawiER, J. K. LENSTRA, AND A H.G. RinNoOY KAN (1979).
Optimization and approximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathematics 5, 287-326.

JA. HooGEvVEEN, S.L. vAN DE VELDE (1990). Polynomial-time algorithms for
single-machine multi criteria scheduling, Report BS-R9008, CWI, Amsterdam.

J.R. JACKSON (1955). Scheduling a Production Line to Minimize Maximum Tardi-
ness, Research Report 43, Management Science Research Project, University
of California, Los Angeles.

E.L. LawLer, JK. LeEnstrRA, A H.G. RinnooYy Kan, D.B. SHMOYS (1989).
Sequencing and scheduling: Algorithms and complexity, Report BS-R8909, CWI,
Amsterdam.

JK. LenstrA, A H.G. RiINNoOY KAN, P. BrUcker (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

R.T. NELsoN, R.K. SARIN, R.L. DaNIELs (1986). Scheduling with multiple perfor-
mance measures: the one-machine case. Management Science 32, 464-479.

A. SCHRUVER (1989). Private communication.

J.G. SHANTHIKUMAR (1983). Scheduling » jobs on one machine to minimize the
maximum tardiness with minimum number tardy. Computers and Operations
Research 10, 255-266.

W.E. SmirH (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 1, 59-66.

Polynomial-time algorithms for
single-machine bicriteria scheduling

J.A. Hoogeveen
S.L. van de Velde

This paper has been submitted for publication.

51

Polynomial-time algorithms for
single-machine bicriteria scheduling

J.A. Hoogeveen
Department of Matheratics and Computing Science,
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

S.L. van de Velde

School of Managernent Studies, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

We address the problem of scheduling n independent jobs on a single
machine so as to minimize an objective function that is composed of total
completion time and a minmax criterion. First, we show that, if the second
criterion is maximum cost, then the problem is solvable in
O(n*min{(n,1og n +10g Prax }) time, where P, is the maximum job pro-
cessing time, for every nondecreasing composite objective function; the
algorithm can be improved to run in O(n®) time for the special case that
the second criterion is maximum lateness. Second, we show that, if the
second criterion is maximum earliness, then the problem is solved in
O(n*) time for every nondecreasing linear composite objective function if
preemption is allowed or if total completion time outweighs maximum ear-
liness.

1980 Mathematics Subject Classification (1985 Revision): 90B35.

Key Words & Phrases: single-machine scheduling, bicriteria scheduling,
composite objective function, Pareto optimal points, extreme points,total
completion time, maximum cost, maximum lateness, maximum earliness.

1. INTRODUCTION

A single-machine job shop can be described as follows. A set of n independent
jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can process at most one job at a time. Each job
J;(j =1,...,n) requires an uninterrupted positive processing time p; and has a
due date d;. Without loss of generality, we assume that the processing times and
due dates are integral. A schedule o defines for each job J; its completion time C;
such that the machine availability constraints are satisfied. A performance meas-
ure or scheduling criterion associates a value f (6) with each feasible schedule o.
Well-known measures are total completion time XC;, maximum lateness Ly,
defined as max;<;«<,(C;—d;), and maximum earliness E ., defined as
max; <<, (d;—S;—p;), where S; denotes the start time of J;. In addition, we
define fi,, as max <; < ofj(C;), where f; is an arbitrary regular cost function for

52

J; (j=1,...,n); regular means that f;(C;) does not decrease when C is
increased. Correspondingly, a performance measure is called regular if it is non-
decreasing in the job completion times; total completion time and maximum late-
ness are of this type. A schedule o* is optimal for a given performance measure if
f(o*) = min, ¢ g f (6), where denotes the set of feasible schedules. Note that in
case of a regular performance measure there is an optimal schedule such that no
job can start earlier without affecting the start time of any other job. In that case,
a sequence or permutation of the n jobs defines a unique schedule.

We consider the bicriteria problems that arise when the criterion 2C; is com-
bined with one of the minmax criteria f,uy, L pax, and E . A second criterion is
taken into account to prohibit a solution from being unbalanced; with unbal-
anced we mean that the schedule performs perfectly well on one criterion,
whereas its performance on the other criterion is very poor.

The performance ecriteria under consideration are commonly used to model
economic aspects. Total completion time is used to measure the work-in-process
inventories; the elements needed in the processing of the job have to be stored
until the job is completed. Maximum lateness measures the observance of due
dates, whereas maximum earliness measures the observance of start times. The
maximum cost criterion can be used to make the penalties job-dependent or to
penalize large completion times more severely; f; (C;) = w; (C;—d)), for example,
resembles the first option, whereas f;(C;) = (max{(} G d })? resembles the
second option.

Basically, there are two methods to cope with multiple criteria. If the objectives
are subject to a hierarchy, then the objectives are considered sequentially in order
of relevance. An example hereof is the problem of minimizing maximum tardiness
subject to the minimum number of tardy jobs (Shanthikumar, 1983); the primary
criterion is to minimize the number of tardy jobs, and subject to this maximum
tardiness is minimized. Note that in case of hierarchical minization we do not
mind the schedule being unbalanced.

This paper, however, is concerned with the simultaneous optimization of several
criteria. In this approach, the performance measures, specified by the functions
fe(k=1,...,K), are transformed into a single composite objecnve function
F:Q - R. With each schedule o we associate a point (f,(0), . . ., fx(0)) in RX and
a value F(fi(0),...,fx(0)). In the remainder, the terms schedule and point are
used interchangeably. The associated problem, from now on referred to as prob-
lem (P), is formulated as

- min,eg F(fi(0), - . ., fx(0)), (P)

where F is nondecreasing in each of its arguments. Minimizing the number of
tardy jobs and maximum tardiness simultaneously (Nelson, Sarin, and Daniels,
1986) is an example of this method.

A natural question is whether problem (P) is solvable in polynomial time for a
given function F. It is straightforward that we can solve this problem in polyno-
mial time for any function F that is nondecreasing in its arguments if we can iden-
tify all of the so-called Pareto optimal schedules in polynomial time.

53

DEFINITION 1. A schedule o € © is Pareto optimal with respect to the objective
functions [, . . ., fx if there exists no feasible schedule 7 with f,(7) < /(o) for all
k=1,...,Kand fi(m) < fi(o) foratleastone k, k = 1,..., K.

Once the Pareto optimal set, that is, the set of all schedules that are Pareto optimal
with respect to the functions {f1, ..., fx), has been determined, problem (P) can
be solved for any function F that is nondecreasing in each of its arguments by
computing the cost of each Pareto optimal point and taking the minimum. As a
consequence, if each Pareto optimal schedule can be found in polynomial time
and if the cardinality of the Pareto optimal set is bounded by a polynomial in the
problem size, then problem (P) is polynomially solvable.

An interesting subclass of (P) is one in which the composite objective function
is linear. The associated problem, hereafter referred to as problem (P,), is formu-
lated as

minaEQFa(o) = min(,egzlle akﬁc(o)’ (Pa)

where a = (ay, ..., ag) is a given real-valued vector of nonnegative weights. In
analogy to problem (P), we wish to determine the set of schedules that contains an
optimal solution to problem (P,) for any weight vector a = 0. We define this set as
the set of extreme schedules.

DEFINITION 2. A schedule 6 €8 is extreme with respect to the objective functions
f1s - .., fx if it corresponds to a vertex of the lower envelope of the Pareto optimal

setfor f1,...,fx.

Once the set of extreme schedules with respect to the objective functions
f15 .., fx has been identified, problem (P,) can be solved for any given « = 0 by
computing the cost of each extreme point and taking the minimum.

Throughout the paper, we adopt and extend the notation of Graham, Lawler,
Lenstra, and Rinnooy Kan (1979) to classify scheduling problems with multiple
criteria. For instance, 1| | F(EC},Lyay) denotes the problem of minimizing an
arbitrary nondecreasing function of total completion time and maximum lateness
on a single machine, while 1| |) 2C; +ay L« denotes its linear counterpart.

This paper is organized as follows. In Section 2, we present some fundamental
algorithms for the underlying single-criterion problems. In Section 3, we consider
the 1| |F(EC),fmax) problem. We establish the polynomiality of Van
Wassenhove and Gelders’s conjecturedly pseudo-polynomial algorithm for
1] | F(EC;,Lyax) (Van Wassenhove and Gelders, 1980), thereby proving a con-
jecture by Lawler, Lenstra, and Rinnooy Kan (1979). We show that
H | F(EC), finax) is solvable in O (n*min{n,logn +logp .. }) time, where
Pumax = max; p;, and that 1||F(EC;,Ly,y) is solvable in O(n®) time. These
results make the branch-and-bound algorithms proposed by Sen and Gupta
(1983) and Nelson et al. (1986) obsolete.

In Section 4, we consider 1|pmin | F(2C;,E ,); the notation pmin signifies
that job splitting is allowed, that is, the execution of a job can be interrupted and

54

resumed later. The main results are that 1 | pmin | a; 2C;+ay E 4 and, in the case
that a; = &y, also 1| | a1 ZC; + 0, E 1,y are solvable in 0(n4) time.

2. FUNDAMENTAL ALGORITHMS AND NOTATION

There are four single-machine single-criterion scheduling problems related to the
bicriteria problems under consideration. These involve the minimization of 2Cj,
Lyaxs Emaxs and frax, respectively. The first three problems are solvable by
arranging the jobs in a certain priority order that is specified in terms of the
parameters of the problem type.

TueoreM 1 (Smith, 1956). The problem of minimizing total completion time,
denoted as 1| |ZC; is solved by sequencing the jobs according to the shortest-
processing-time (SPT) rule, that is, in order of nondecreasingp;. [

THEOREM 2 (Jackson, 1955). The problem of minimizing maximum lateness,
denoted as 1| | L,y is solved by sequencing the jobs according to the earliest-due-
date (EDD) rule, that is, in order of nondecreasingd;. U

THEOREM 3. The problem of minimizing maximum earliness subject to no machine
idle time, denoted as 1 | nmit | E py, is solved by sequencing the jobs according to the
minimum-slack-time (MST) rule, that is, in order of nondecreasing d;—p;. U

The no-machine-idle-time constraint amit is imposed on the 1| | E 5, problem to
avoid unbounded solutions.

The fundamental argument that validates each algorithm is the following. Sup-
pose that there is an optimal schedule with two adjacent jobs that are not
scheduled according to the indicated priority order. The interchange of the jobs
will possibly improve but certainly not worsen the objective value. An improve-
ment contradicts the claimed optimality, whereas in the other case we can repeat
the argument to obtain a schedule with equal objective value that matches the
priority order.

THEOREM 4 (Lawler, 1973). The 1| | finax problem is solved as follows: while there
are unassigned jobs, assign the job that has minimum cost when scheduled in the last
unassigned position to that position. []

3. MINIMIZING TOTAL COMPLETION TIME AND MAXIMUM COST

Let j} N —R denote a regular cost function for job J; (j = 1,...,#n); accord-
ingly, f,(C;) denotes the cost incurred by completing job J; at time C;. In addi-
tion, let fn.x = max; f(C;). We show that 1| |F(ZC fmax) is solvable in
O (n*min{n,logn +10gp ma }) time, with p ,, = max; S P for any function F that
is nondecreasing in both 2C; and fi.x. Note that 1]]F(ECJ,LM) corresponds
toaspecialcaseof 1| | F(2C fmax)

In Theorem 4, we recalled Lawler’s O(n?) time algorithm for 1| | fpe- An

extension has been provided by Emmons (1975), who considered the hierarchical
problem of minimizing ZC; subject to the constraint that fy,y is minimal; this

55

problem is denoted as 1| frax < f* | 2C;, where f* denotes the solution value of
the outcome of 1| | fax. Once f* has been determined by Lawler’s algorithm,
Emmons’s algonthm requires O (n?) time to minimize total completion time sub-
ject to minimal maximum cost. Observe, however, that an upper bound on f(C;)
induces a deadline a? on the completion time of J;. Each deadline can be deter-
mined in O (log(Zp ;)i time by binary search over the O(2p;) possible completion
times. Furthermore, d; is computed in constant time if f; has an inverse. Once the
deadlines have been computed, the problem in the second phase is to minimize
total completion time subject to deadlines, denoted as 1|d; | 2C;, which requires
only O(nlogn) time (Smith, 1956).

We state the algorithm for 1| fia < f | 2C;, where fis some upper bound on
the cost of the schedule.

ALGORITHM I (Smith, 1956)

Step L Compute for each job J; the deadline d induced by f{(C)) < f.

Step2. T« Zp;.

Step 3. Determine U « {J; €J | d = T} as the set of jobs that are allowed to be
completed at time 7.,

Step 4. Determine J; such that p; = max{p; |J; € U}; in case of ties, J; is chosen
to be the job with smallest cost when completed at time 7.

Step5.J «J —{J;}; T« T —p;.

Step 6. If T > 0, then go to Step 3.

THEOREM 5. Algorithm I determines a Pareto optimal point with respect to 2C; and

Smax:

Proor. It suffices to show that the algorithm generates a schedule o that solves the
problems 1|fp <f|2C; and 1|2C; <ZCy(0)| frnax simultaneously. Evi-
dently, o solves 1|fm <f |Z2C;. Assume that not o, but 7 is optimal for
1|2C; < 2Cy(0) | fmax- This implies that fr,,(7) < fax(0) < f; hence, 7 is also
feasible for 1] frax < f | 2C;. Therefore, we have 2C(m) = ZC;(0). Compare the
two schedules, starting at the end. Suppose that the first difference occurs at the
kth position, which is occupied by jobs J; and J; in o and =, respectively. Since
Jmax(m) < f and because of the choice of job J; in the algorithm, we have p; = p,.
If p; > p;, then 7 cannot be optimal, as the schedule that is obtained by inter-
changing J; and J; in « is feasible with respect to the constraint fi,,; < fand has
smaller total completion time. Hence, it must be that p; = p h and, because of the
choice of job J; in the algorithm, fi(C,(6)) < f;(C;()). This implies, however, that
the jobs J; and J; can be interchanged in = without affecting the cost of the
schedule. Repetition of this argument shows that 7 can be transformed into ¢
without affecting the cost, thereby contradicting the assumption that
Jmax(7m) < fmax(6). Therefore, o also solves 1|2C; < 2C(0)| finax, and is hence
Pareto optimal for 2C; and frac. O

It is obvious that the maximum cost of each Pareto optimal schedule ranges from
J* 10 fnax(SPT), where SPT denotes the schedule obtained by settling ties in the

56

SPT-order to minimize maximum cost. The next algorithm, which is similar to
Van Wassenhove and Gelders’s algorithm for 1| | F(EC;,L 4y), €xploits this pro-
perty for finding the Pareto optimal set.

Avcoriram I1

Step 1. Compute f* and [, (SPT); letk «1.

Step 2. Solve 1| finax < fmax(SPT)| ZC;; this produces the first Pareto optimal
schedule, denoted as o, and the first Pareto optimal point, denoted as
EC(6D), fmax (V).

Step 3.k <k +1. Solve 1|fmax < /%" |2C;; this produces the kth Pareto
optimal schedule, denoted as ¢, and the kth Pareto optimal point,
denoted as (EC;(0®), finax (6®)).

Step 4. If f110x (%)) > f*, then go to Step 3.

A crucial issue is the number of Pareto optimal points generated by Algorithm II.
In the remainder of this section, we prove that there are O (n?) such schedules,
thereby establishing the polynomial nature of the algorithm.
We define the indicator function §;; (o) as
1 if Si(o) < Sj(0) and p; > p;,

8;(0) = {O otherwise,

and A(o) = Z; ; §,;(0). Note that §;(s) = 1 implies that the interchange of the jobs
J; and J; will decrease total completion time. In that respect, §;,(¢) = 1 signals a
positive interchange. Observe that A(SPT) =0 and A{o) < +n(n —1) for any
o € Q. In addition, we define a neutral interchange with respect to ¢ as the inter-
change of two jobs J; and J; withp; = p;.

LeMMA 1. If schedule m can be obtained from schedule o through a positive inter-
change, then A(7r) << A(o).

ProOF. Suppose that J; and J;, with p; > p;, are the jobs that have been inter-
changed. The interchange affects only the jobs scheduled between J; and J;. Let J;
be an arbitrary job that is scheduled between J; and J; in o. Then it is easy to ver-
ify that §;(0) + 8;(6) = 8;(m) + §y(m). O

THEOREM. 6. Consider two arbitrary Pareto optimal schedules o and =. If
2Ci(0) < ZCy(m), then A(0) < A(m).

Proor. We show that schedule o can be obtained from schedule 7 by using posi-
tive and neutral interchanges only. Compare the two schedules, starting at the
end. Suppose that the first difference between the schedules occurs at the kth
position; J; occupies the kth position in o, whereas job J; occupies the kth posi-
tion in 7. Because of the choice of J; and J; in Algorithm 1, we have p; = p;; the
interchange of J; and J; in 7 is therefore positive or neutral. We proceed in this
way until we reach schedule o. As ZCj(0) <ZCy(m), at least one of the

57

interchanges must have been positive, and application of Lemma 1 yields the
desired result. [0

THEOREM 7. The number of Paréto optimal schedules is bounded by tn(n —1)+1,
and this bound is tight.

Proor. The first part follows immediately from Theorem 9. For the second part,
consider the following instance of 1| | F(ZC}, L,y): there are # jobs with process-
ing times p; =n—2+j and due dates d; =Z{=;p,+n—}j, for j=1,...,n
Straightforward computations show that this example generates +n(n —1)+1
Pareto optimal schedules. [

COROLLARY 1. The V| |F(EC), frmax) problem is solvable in
O (n*min{n,logn +10gp pna }) time.

Proo¥. Emmons’s algorithm requires O (1%) time 10 solve 1| finax < f| ZC;. An
alternative is to determine the induced deadlines, which requires O (log(Zp;))
time, and to apply Smith’s algorithm subsequently. There are Q(n?) of such prob-
lems to be solved.] »

COROLLARY 2. The 1 | | F(ZC), Lmax) problem is solvable in O (n 3) time.

ProoF. First, note that an upper bound L on maximum lateness induces a dead-
line d; = d; + L, which is determined in constant time. Furthermore, in view of
Smith’s algorithm, it suffices to sort the deadlines only once, since a change of the
value of the upper bound L does not affect the order of the deadlines. Once the
processing times and deadlines have been sorted, Algorithm II can be imple-
mented to take only linear time per iteration. [l

4. MINIMIZING TOTAL COMPLETION TIME AND MAXIMUM EARLINESS

In this section, we analyze the problem of minimizing total completion time and
maximum earliness simultaneously. First, we make the additional assumption
that machine idle time is forbidden, implying that all jobs are to be scheduled in
the interval [0, 2 p;]; we show how the insight gained from analyzing this special
case can be used to deal with the general problem.

Due to the no-machine-idle-time constraint, it is evident that in each Pareto
optimal schedule o we have that £, (6) ranges from E*, defined as the solution
value of the outcome of 1|nmit | E oy, t0 E o (SPT), and that 2Cj(0) ranges
from 2C;* to 2C;(MST), where ties in the SPT and MST schedule are settled in
order to minimize slack time and completion time, respectively. Observe that an
upper bound E on E., induces for each job J, a release time
r; = max{0,d;,—p; — E}. The associated value of ZC; can then be computed by
solving 1|r;,nmit | 2C;. Lenstra, Rinnooy Kan, and Brucker (1977), however,
show this problem to be 9P-hard in the strong sense (Garey and Johnson, 1979).

58

Therefore, we make the additional assumption that preemption of jobs is
allowed. This is an important relaxation, since the 1{pmitn, r;|ZC; problem is
solvable in O(nlogn) time by Baker’s algorithm (Baker, 1974): always keep the
machine assigned to the available job with minimum remaining processing time.
Note that this algorithm always generates a schedule without machine idle time if
E = E*.

The introduction of preemption has also a less convenient effect. Any value of
E ax in the range [E*,E . (SPT)] is now attainable, and therefore corresponds
to a Pareto optimal point. Since E 4, (SPT) — E* < Z p;, the number of Pareto
optimal schedules is only pseudo-polynomially bounded. These O (Z p;) schedules
are generated by the following algorithm.

ALGoritaM 111

Step 1. Let E?V « E ., (SPT) and k «1.

Step 2. Solve 1| pmm, r; =d;~) —E®|2C;; this yields the kth Pareto optimal
schedule, dcnoted as

Step3.k «k+ 1 E®W EC"D_1;if E® = E* . then go to Step 2.

COROLLARY 1. The 1|pmin,nmit | F(ZC}, E yay) problem is solvable in O(nZp))
time.

Proor. A decrease of E does not affect the order of the release dates; hence, we
have to sort the release dates only once. [J

As to the complexity of 1|nmit,pmin | F(2C;,E ,), note that we can obtain a
series of 2" consecutive Pareto optimal points by multiplying the processing times
by 2". As the problem of minimizing an arbitrary function F(x,y) that is nonde-
creasing in both arguments over 2" consecutive integral y values is 91%-hard in the
strong sense (Schrijver; see Hoogeveen, 1990), we have that
1| nmit,pmin | F(EC;,E pax) is NP-hard in the ordinary sense (but not in the
strong sense, as the processing times are exponential).

It follows immediately from the above reasoning that 1 |pmin | F(2C; ,E nay) is
NP-hard in the strong sense.

In the remainder of this section, we restrict ourselves to linear objective func-
tions o} 2C; +a E - TO solve the linear variant, we only have to determine the
set of extreme points. We start again with the assumption that machine idle time
is not allowed; hence, we only have to consider E,, values in the interval
[E, E qmax(SPT)]-

Let o(E) denote the schedule obtained by Baker’s algorithm for
1| pmin, E . < E | 2C}; o(E) corresponds to (E, 2C;(o(E))). We say that a com-
plete interchange has occurred in o(E) if there are two }obs J; and J; such that J is
started beforeJ; in o(E — 1), whereas J; is started before J; in o(E).

LeEMMA 2. An upper bound E on E ,, can only correspond to an extreme point for
(2C; ,E max) if a complete interchange has occurred in o(E).

59

ProoF. Consider an arbitrary extreme point (E,2ZCj(o(E))). Define
A =ZC{(o(E —1))—ZCi(o(E)). As (E,ZC;(o(E)) is extreme, we must have
ZCj(a(E)) — 2Cj(o(E +1)) < A. Itis easy to see that this can only be the case if a
complete interchange has taken placein o(E). [

Obviously, the next step to determine the extreme set is to select the candidate
values E; these should be such that a complete interchange takes place in o(E).
Given a pair of jobs J; and J; with p; > p; and J; started before J; in o(E), the
increase necessary to enable a complete interchange of J; and J; is equal to the
difference between the release date for J; that follows from the constraint
E ,.x =< E and the start time of J; in o(E). However, if J; is executed between the
start and completion time of a preemptive job Jj, then an increase of E will first
result in a shift of J; and J; to the left; the complete interchange of J; and J; can-
not take place before a complete interchange has taken place between J;, and both
JiandJ;.

These observations are used in Algorithm IV that, given an upper bound value
E and the corresponding schedule o(E), computes the smallest value E > E that
possibly corresponds to an extreme point. The variable a; (j = 1, ..., n) signifies
the increase of E necessary to let a complete interchange involving J; take place.

ALGORITHM IV

Step 1. Let T «~0and q; « oo for j = 1,.

Step 2. LetJ; be the _]Ob that starts at time T Con81der the followmg two cases:
@ J is a preempted job. Then g; is equal to the length of this portion of
Jj. Let J; be the first job that starts after time C;(o(E)) with p; = a;. Set
T « Sy(o(E)).
®) J; is not a preempted job. Then
a; < min{d,—p,—E —S;(o(E)) | J; € J}, where J denotes the set of jobs
for whichd, —p;—E > S;(o(E)) and p; > p;. Set T «— C(6(E)).

Step 3. If T < 3 p;, then go to Step 2.

Step 4. Put E < min;{a;} +E.

THEOREM 8. All values E that may correspond to an extreme point (E , 2C(a(E)))
are generated by the iterative application of Algorithm IV.

PrOOF. Suppose that E, although corresponding to an extreme point, was not
determined by iteratively applying Algorithm IV. This implies that there is a value
E< E such that Algorithm IV determines a value E; > E when initialized with
E . Hence, we have the situation that Algorithm IV did not notice the complete
interchange of two jobs J; and J;, which implies that the start time of J; in o(E)
was not considered in Step 2. This, however, could take only place in Step 2(a): J;
is started in the time interval [S) (o(E)),C; (o(E +1))], where J, is some
preempted job. This, however, conflicts with the earlier observation that the inter-
change of J; and J; has to wait until J; has been interchanged with both J; and J -
O

60

We prove that the number of values E of E ,,, generated through Algorithm IV is
polynomially bounded, thereby establishing that 1|pmin,nmit |, ZC;+ 0y E ax
is solved in polynomial time. We define for a given schedule o the indicator func-
tion §,; (o) as

1 if Co) < Sj(0) and p; > p;,
8j(0) = {0 otherwise.

We further define A; (o) as the sum of the number of preemptions in J; plus
E?:l 8,'1', and A(O’) = 2,-,/85](0).

THEOREM 9. Let E,| and E, be two E ., values that are generated through Algo-
rithm IV, with E| > E,. Then A(o(E)) < A(o(E,)).

PrOOF. We start by showing that A(o(E)) < A(o(E,)). Suppose to the contrary
that A(o(E))) > A(6(E;)). Then there must exist a job J; for which
A;(o(E 1)) > A;(o(E3)). There are two possibilities for an increase of A,.

First, the number of preemptions of J; in o(E) may be greater than in o(E3).
An extra preemption of J; can only occur when some job J; with p, < p; is started
after C; in o(E;) but before C; in o(E;). We then have, however, that
8;x (6(E)) = 0 and 8 (6(E;)) = 1. This implies that an extra preemption of J;
decreases some A; by the same amount; hence, an extra preemption does not
increase A.

Second, we may have 8;;(o(E)) = 1, whereas §;; (0(E;)) = 0. This implies that
there exists some job J; with p; > p; that is completed before J; is started in o(E)
but not in o(E,). As E; > E,, this can only occur if there exists a job J, that is
completed before J; in o(E,) but after J; in o(E,). Hence, 4 is then increased by
1, but A, is decreased by at least 1, implying that A does not increase. The same
argument holds if there are some jobs scheduled between J; and J; in o(E ;). Note
that the decrease of A; is always greater than the increase of A;, unless J; is
preempted at the start of J; in o(E).

As E; has been determined by Algorithm IV such that either a preemption is
removed or an interchange has been completed, we have that
Alo(E1)) < A(o(E,)). O

COROLLARY 2. If preemption is allowed, then the number of extreme schedules with
respect to E ,, and 2C is bounded by ~n(n —1)+1.

Proor. It is easy to show that A(e) is at most equal to +n(n —1) for every
schedule o. Therefore, Theorem 9 yields the desired result. [

Although it is easy to construct an instance such that Algorithm IV determines
+n(n —1)+1 different E ,,,, values, it is yet an open question whether this bound
is tight for the number of extreme points.

61

COROLLARY 3. The 1|pmin,nmit | a)2C;+ay E oy problem is solvable in on*)
time. [

THEOREM 10. If a; = ay, then there exists a nonpreemptive schedule that is optimal
Jor 1|pmtn,nmit |, Z2C;+ayE oy If ay > ey, then any optimal schedule for
1| pmin,nmit |) Z2C;+ ar E 1,5 is nonpreemptive.

PROOF. Suppose that the optimal schedule contains a preempted job. Start at time
0 and find the first preempted job J; immediately scheduled before some
nonpreempted job J;. Consider the schedule obtained by interchanging job J; and
this portion of job J;. If the length of the portion of job J; is A, then E; is increased
by A, while C; is decreased by A. As a; = a3, the interchange does not increase
the objective value. The argument can be repeated until a nonpreemptive
schedule remains. In case a; > a,, then such an interchange would decrease the
objective value contradicting the optimality of the obtained schedule. [] ’

We now drop the no-machine-idle-time constraint. As the insertion of idle time
does not decrease a; 2C; + oy E 54 if total completion time outweighs maximum
earliness, we have the following corollary.

COROLLARY 4. If) = oy, then 1| [, 2C;+ ey E 1y is solvable in O (n 4y time. [

If a; < a, then the insertion of idle time can decrease the value of the objective
function. Consider the schedules o(F) and o(E + 1), with E << E*. The idle time
inserted between the jobs displays the same behavior as a preemptive job that is
completed last: if E is increased by one unit then all jobs that have idle time
between their start time and time 0 are shifted one unit to the left. Hence, given
the E . -value E of the first extreme point we can determine the set of extreme
points by adding an extra job J, to the instance with
po=dg = E* —E+py,+1. The value E depends on the ratio ¢ = ay/ay. If
g > n, then the insertion of idle time always decreases the value of the objective
function and the optimal solution is unbounded. If ¢ < n, then the insertion of
idle time decreases the value of the objective function as long as there are no more
than [g —1] jobs that have idle time between their start time and time 0. The
corresponding value of the upper bound on E ,,, is easily determined.

As the number of extreme points is at most equal to +n(n + 1)+ 1, and as each
E ,x-value that corresponds to an extreme point is determined by iterative appli-
cation of Algorithm IV, the 1|pmin | a;ZC; +ay E 1y problem is solved in O (n*)
time.

ACKNOWLEDGEMENT
The authors would like to thank Jan Karel Lenstra for his helpful comments.

62

REFERENCES

K.R. BAKER (1974). Introduction to Sequencing and Scheduling, Wiley, New York.

H. EmMons (1975). A note on a scheduling problem with dual criteria. Naval
Research Logistics Quarterly 22, 615-616.

M.R. GaRgY AND D.S. JOHNSON (1979). Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, San Fransisco.

R.1. GrauaMm, EL. LAWLER, J.K. LENSTRA, AND A H.G. RiNNOOY KAN (1979).
Optimization and approximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathematics 5, 287-326.

J.A. HOOGEVEEN (1990). On the minimization of maximum earliness and maximum
lateness, Report BS-R9001, CWI, Amsterdam.

J.R. JACKSON (1955). Scheduling a production line to minimize maximum tardiness,
Research Report 43, Management Sciences Research Project, UCLA.

E.L. LAwLER (1973). Optimal sequencing of a single machine subject to pre-
cedence constraints. Management Science 19, 544-546.

E.L. LawLER, J K. LENSTRA, AND AH.G. RiNNoOY KaN (1979). Unpublished
manuscript.

JK. LENSTRA, A.H.G. RINNOOY KAN, AND P. BRUCKER (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

R.T. NeLsoN, RK. SariN, AND R.L. DanieLs (1986). Scheduling with multiple
performance measures: the one-machine case. Management Science 32, 464-
479.

T. SEn AnND S.K. Gupra (1983). A branch-and-bound procedure to solve a bicri-
terion scheduling problem. I1E Transactions 15, 84-88.

L.G. SHANTHIKUMAR (1983). Scheduling # jobs on one machine to minimize the
maximum tardiness with minimum number tardy. Computers and Operations
Research 10, 255-266.

W.E. SmitH (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 1, 59-66.

L.N. VAN WASSENHOVE AND F. GELDERS (1980). Solving a bicriterion scheduling
problem. European Journal of Operational Research 4, 42-48.

Single-machine scheduling to minimize a function
of K maximum cost criteria

J.A. Hoogeveen

This paper has been submitted for publication.

67

Single-machine scheduling to minimize a function
of K maximum cost criteria

J.A. Hoogeveen
Department of Mathematics and Cornputing Science,

Eindhoven University of Technology
P.Q. Box 518, 5600 MB Eindhoven, The Netherlands

A number of jobs has to be scheduled on a single machine, which can
handle no more than one job at a time. Each job requires processing dur-
ing a given positive uninterrupted time. For each job, there are K arbitrary
non-decreasing penalty functions. The quality of a schedule is measured
by Kperformance criteria, the kth one being given by the maximum value
of the kth penalty function that is attained by any job. The problem is to
find the set of Pareto optimal points with respect to these performance
criteria. We present an algorithm for this problem that is polynomial for
fixed K. We also show that these algorithms are still applicable if pre-
cedence constraints exist between the jobs or if all penalty functions are
non-increasing in the job completion times.

1980 Mathematics Subject Classification (1985 Revision): 90B35.
Key Words & Phrases: single-machine scheduling, multicritiria scheduling, Pareto
optimal points.

1. INTRODUCTION

Since the introduction of scheduling theory in the 1950’s, most research has been concen-
trated on single-criterion optimization. In real-life problems, however, multiple and usu-
ally conflicting criteria play a role. There are two methods to cope with conflicting cri-
teria. The first one is hierarchical minimization. The performance criteria { L ..., f are
indexed in order of decreasing importance. First, f! is minimized. Next, f* is minimized
subject to the constraint that the schedule has minimal f! value. Then, f° is minimized
subject to the constraint that the values for f! and f? are equal to the values determined
in the previous step; and so on. The first results on multicriteria scheduling (e.g., Smith,
1956) concern this approach. The second method is simultaneous minimization. The cri-
teria are aggregated into a single composite objective function P(f', ..., f*), which is
then minimized.

In this paper, we choose the second approach. We address the following single-
machine multicriteria scheduling problem. A set of n independent jobs has to be
scheduled on a single machine, which can handle no more than one job at a time. The
machine is assumed to be continuously available from time 0 onwards. Job
Ji (i =1,...,n) requires processing during a given positive uninterrupted time p;. A
schedule o defines for each job J; its completion time C; (o) such that the jobs do not
overlap in their execution. The cost of completing J; (i = 1,...,n) is measured by K

68

penalty functions f¥ (k = 1,...,K); each of these penalty functions is assumed to be
non-decreasing in the job completion time. Given a schedule o, the penalty functions
induce K performance criteria f<,(0) (k=1,...,K), defined as
j*m(o) MaX;«; <n f‘ (G (o)) respectively. Given a functmn P ‘RXSR, we wish to
find a schedule o that minimizes P (f},(0), .. -+ foax(9)). We additionally assume that
P is non-decreasmg in each of its arguments. We denote this problem by
TP (Pl - foan)-

Due to this additional assumption, we know that there is a Pareto optimal point with
respect to (fiax, - - - » fraax) i Which P attains the optimum. A schedule o corresponds to a
Pareto optimal point if there is no feasible schedule » with j"m(w) = jﬁm(a), for
k =1,...,K, where at least one of the inequalities is strict; in this case, we say that o is
not dominated.

The organization of the paper is as follows. In Section 2, we recall Lawler’s algorithm
(Lawler, 1973) for 1|prec | fmax, Where the acronym prec indicates that precedence con-
straints have been specified; that s, for each job J; (i = 1,...,n) thereis a set of jobs that
have to precede J; and a set of jobs that have to succeed J; in any feasible schedule.
Furthermore, we show that we can solve 1|4, ,prec | fnax by adjusting Lawler’s algorithm
appropriately, where d indicates that for each job a deadline on the completion time has
been specified. In Secnon 3, we present an O (n*) time algorithm to determine all Pareto
optimal points for the two-criteria problem. In Section 4, we analyze the three-criteria
problem, and show how this analysis can be extended to the K-criteria problem, for any
fixed K = 4. Finally, in Section 5, we consider two problems that are solved analogously.
The first problem allows precedence constraints; the second one has non-increasing
penalty functions.

2.LAWLER’S ALGORITHM TO MINIMIZE MAXIMUM COST FOR ONE CRITERION

Lawler (1973) presented an O(n?) algorithm to solve 1|prec | fina- The algorithm is
based upon the following observation. Let S denote the subset of jobs that may be pro-
cessed last, let T denote the sum of the processing times of all jobs, and let J;, be a job in
S such that f; (T) = min; s {f; (T)}. Then there exists an optimal schedule in which J is
last.

LAWLER’S ALGORITHM

(U)T(— 1p],§/<——{11,...,1n}.

M Determme the set A containing the jobs that have no successorsin §.

(2) Choose from % the job J; that has minimal f} (T) value, settling ties arbitrarily; J; is
processed from time 7"~ p ; totime 7.

T eT—p; §eG— {J;}-

(4) If §== @, then go to Step 1; otherwise, stop.

THEOREM 1. Lawler’s algorithm solves 1| prec | fmax.
PROOF. Let o be the schedule obtained by Lawler’s algorithm, and let o be an optimal

schedule for 1|prec | fiax. Compare both schedules, starting at the end. Suppose that the
first difference occurs at the kth position; let J; occupy the kth position in ¢. Adjust o by

69

assigning J; to the kth position; the sequence of the other jobs stays the same. The new
schedule o is feasible; J; can be assigned to that position as ¢ is feasible, and the sequence
of the other jobs has not been changed. Furthermore, its cost has not been increased; J;
was chosen by Lawler’s algorithm, so it must have minimal cost among the unassigned
jobs that could be scheduled in that position. Proceed in the same way until o and o are
identical, implying that f,,,(0) < fmax(¢). Hence, o is optimal. [

Lawler’s algorithm is easily adjusted to deal with 1|d; ,prec | fiax- If 2 job J) is a candi-
date for the last position, then we have to check whether.J, has no successors and d = T.
Hence, the set A contains the jobs that have no successors in $ and that have a deadline
greater than or equal to 7. Alternatively, we can incorporate the deadlines by redefining
Ji(D)«oo for T>d; (j=1,...,n) and apply Lawler’s algorithm to the adjusted
1|prec | fmax problem.

The deadlines do not have to be given explicitly, but may be induced by given upper
bounds on other criteria. For example, if g; is a non-decreasing penalty function, for
i =1,...,n, then the constraint g ,,, = G induces a deadline for each job J,.

3. ANALYSIS OF THE TWO-CRITERIA PROBLEM

For notational convenience, we denote the penalty functions for J; i = 1,...,n) by f;
and g;, respectively. Correspondingly, the maximum cost criteria are called fy,,, and
£max» Fespectively. There are basically two ways to deal with the 1| | P(fipax »&€max) prob-
lem. The first one is to solve it directly, for instance through branch-and-bound. The
second one is to solve it in a roundabout way by determining the Pareto optimal set, that
is, the set of points that are Pareto optimal with respect t0 (finax »&max)> and then selecting
the one that minimizes P (fax .2 max)- We take the second option. From now on, when-
ever we refer to the problem 1| | P(fhax, - - - »fax) it is assumed that we are going to
determine all Pareto optimal points with respect t0 (fiax, - - -»fmax)- For instance,
1]d; | P(fmax ;g max) denotes the problem of determining all Pareto optimal points with
respect to (fmax »g max) SUbject to deadlines.

In order to determine the Pareto optimal set, we apply the following strategy. We start
by solving 1| | fax; this yields the first value F that corresponds to a candidate Pareto
optimal point (F,G). Next, we determine the corresponding value G by solving
1| fmax = F | g max through Lawler’s algorithm, Then, we determine the next larger value
F that corresponds to a possibly Pareto optimal point (F,G), solve 1| finax < F | gmax t0
obtain G, and so on.

There are two difficulties with the application of this strategy. The first one is how is
the next value of F determined. The second one concerns the question of how many of
these values are to be computed before all Pareto optimal points have been found.

We start by addressing the first problem. Let 6 be the schedule obtained by solving
1| fmax < F | gmax through Lawler’s algorithm, and let J; be a job that attains gma(o),
thatis, g; (C;(0)) = max g; < & (Ci(0)). As g; is non-decreasing, a Pareto optimal point
with smaller g, value can be obtained only if the completion time of J; is decreased.
Hence, some job J; that is before J; in o and that has g; (C; (0)) << g has to be com-
pleted no earlier than time C; (o).

70

This observation provides the basis for our algorithm to determine the increase of F
that is necessary to reach a new candidate Pareto optimal point.

ALGORITHM NExT UPPER BOUND (NUB)

(0) Given a schedule o obtained by Lawler’s algorithm, determine the set § of jobs that
attain g, (o).

(1) Determine for each J, €5 the set @, of jobs J; that are scheduled before J; in ¢ and
that have g;(Ci(0)) < gmax(0). If ; = & for some J; €4, then gy, (o) cannot be
decreased; stop. For each jobJ; €%, define F; = min{f; (Ci(0))|J; €Y}

(2) The new upper bound F on fi,, is the maximum of the values F;.

THEOREM 2. Let (F,G) be a Pareto optimal point with respect 10 (f pax sZ max) nd let ¢ be
the corresponding schedule. Let F be the new upper bound on [,y that is obtained by apply-
ing Algorithm NUB, given o. There is no Pareto optimal point corresponding to a value F,
withF>F>F. [

A decrease of C; does not necessarily induce a decrease in g;(C}), and hence the new
upper bound F does not necessarily correspond to a Pareto optimal point. The remaining
question is how many values F are determined by Algorithm NUB, before all Pareto
optimal points have been found.

THEOREM 3. The Algorithm NUB determines at most n{(n — 1)/ 2 values F.

ProOF. Every new value F obtained by applying Algorithm NUB to ¢ corresponds to a
combination of two jobs {J;,/;}, where g;(C;(0)) = gnax(0) and £, (Cj(0)) = F. We
will show that every upper bound value F that is obtained by Algonthm NUB
corresponds to a different combination of jobs.

Define f* and g* as the outcome of 1| | finax and 1] | gmax, respectively. Let oy be the
schedule obtained by Lawler’s algorithm when solving ll Smax < f* | gmax- For
a=1,...,4, apply Algorithm NUB to schedule g, to obtain F* and determine o, «;
by so]vmg | fnex < F**' | gmax; 4 is such that §'max(o) =g" Suppose that the combi-
nation {J; ,J;} corresponds to both F**! and F**', with a < b. Without loss of general-
ity, let J; attam Emax(9a); i (C; (o)) = F° 1 We have to consider two cases: either J;
or J, attains Zmax(0p)- Fl_rst suppose that g; = guu(05); fi(Ci0p)) = F°*'. As
gj(c (oa)) gmax(aa);' gmax(ob) g](c (0;,)), we must have C (oa):)(; (Gb)
This implies that J; is allowed to be completed at time C; (o,) when o;, is constructed
because F* > F2+1_ As Lawler’s algorithm selected J; to be completed at time C; (03),
we must have that either J; had already been scheduled or g;(C; (03)) < g (C; (a;,). In
both cases, Algorithm NUB will not take J; into consideration, when applied to 6. In the
same fashion, we prove that J; will not be taken into consideration by the algorithm if J;
attains gmax (0,). Hence, every pair of jobs (/;,J;) corresponds to at most one of the
values F obtained by Algorithm NUB. This proves the theorem. [J

COROLLARY 1. The number of Pareto optimal points with respect 10 (fiax »8 max) is at most
equalton(n—1)/2+ 1. 11

14l

The following example shows that this bound is tight, even if both maximum cost func-
tions are of the maximum lateness type, thatis, f;: C; > C, —d;, and g;: C; - C; — ¢,
fori=1,...,n

d=m—Dn—i+3)/2, fori=1,...,n,

H

ei:i_1+2(11+1, fOrizl,...,n_l,
j=2

€y = €y +1,

pi=n—i fori=1,...,n~1

Pn=dy—(m—1D(n—2)/2;

It is easy to check that the Pareto optimal schedules for this example are:
/SRR Y S TN ¢ P SRV s RIS (SN S SO)
(SR P SUSUSN I £ NENI @ ST 4}

For sake of completeness, we list the algorithm to determine all Pareto optimal points
and the optimal solution value. Its correctness follows from Theorems 1 and 2.

ALGORITHM A

(0) Determine f* and g* by solving 1| | fiax and 1| | g max, respectively; put F e f*,

(1) Solve 1| finax = F | gmax; let G denote the outcome. Add (F,G) to the set of Pareto
optimal points, unless it is dominated by the previously obtained Pareto optimal
point. If G = g*, then go to Step 3.

(2) Determine the next value of F by applying Algorithm NUB to the schedule obtained
in the previous step. Go to Step 1.

(3) The Pareto optimal set has been obtained. The 1| | P (fipax »& max) problem is solved by
computing the value of the objective function for each point of the Pareto optimal set,
and by choosing the optimurn.

The running time of Algorithm A is O (n*); this is the time needed for solving O (n?)
instances of the 1 | fix < F | g max problem.

4. ANALYSIS OF THE K-CRITERIA PROBLEM
We prove that the K-criteria problem can be solved by solving a polynomial number of
(K — D)-criteria problems. First, we analyze the three-criteria problem; later on, we show
how this analysis can be extended to the K-criteria problem. For notational convenience,
the criteria are called fy.x, Zmax> and Ay, respectively; correspondingly, the penalty
functionsfor J,; (i = 1,...,n)arecalled £, g;, and h;, respectively.

Note that each Pareto optimal point (F,G) for (fmax -8 max) yi€lds a Pareto optimal
point (F,GH) for (fmax,8max:-"max)» Where H is obtained by solving
1| fmax < F.gmax < G | Amax, and that each dominated point (¥,G) can only correspond

72

to a Pareto optimal point (F,G,H) if H is attractive enough. Note further that, if (F,G, H)
is Pareto optimal, then (F,G) is a solution of 1|4 nax < H | P (f1nax »& max)- These observa-
tions provide the basis for our strategy to solve the three-criteria problem
1 | P (frmax »& max »# max)-

We will determine all Pareto optimal points (F,G, H) for (fmax » & max -#max) bY consid-
ering all &y, values that correspond to a candidate Pareto optimal point. The A,y
values under consideration lie in the interval [A*,H]; h* is the solution of 1| | A, and H
is an upper bound on the A,, value of any Pareto optimal point that we will establish
now. Obviously, H should be such that solving 1|4 e < H | P (fimax »&max) yields the set
of Pareto optimal points for (fyax,g8max)- Hence, H is determined by solving
1 fomax < Fogmax < G | Amax for every Pareto optimal point (F,G) for (fipax »gmax) and
selecting the maximum. If we want to determine new Pareto optimal points (F,G,H),
then we have to decrease the upper bound on 4 ,,,, such that at least one of the currently
determined Pareto optimal points is eliminated. This leads to the following outline for an
algorithm to determine all Pareto optimal points for (finax »&max »# max)-

(0) Determine the set of Pareto optimal points (F,G) with respect t0 (fipax »g&max)- FoOI
each of these points, compute the corresponding 4, value, say, H. Store these Pareto
optimal points (F,G,H)in a set U.

(1) Determine H as the maximum of the /,,, values in U,;. Remove the Pareto optimal
points with A ,,, value equal to H and store themin a set U.

(2) If H = h¥, then stop; the set of Pareto optimal pointsis equal to U; U U,.

(3)Solve 1|hyu < H|P(fimax-gmax)» and compute for these points (F,G) the
corresponding 4 ., values H. Add these points (F,G,H)to U;. Goto 1.

We s0lve 1| Apax < H | P(fmax »8max) by adjusting Algorithm A such that every solution
that is generated by Algorithm A satisfies /., << H. As observed before, this is easily
achieved by adjusting the penalty functions appropriately.

Before proving that this strategy determines all points (F,G,H) that are Pareto optimal
with respect t0 (fmax »& max »# max), W€ prove two preliminary results.

THEOREM 4. Let (F,G) be an arbitrary Pareto optimal point that is obtained when solving
12 gax < H | P(fmax s§ max)- S0ve 1| frax S Figmax S G | Amax, let H be the outcome. The
point (F,G,H) is Pareto optimal for (f max »& max »Pmax)-

PROOF. Suppose that there exists a Pareto optimal point (F,G,H) that dominates
(F,G,H). This implies that (F,G) is obtained when solving 1|2 5 < H | P (finax »§max)-
As H < H < H, the constraint /i, < H is at least as restrictive as Ay, < H, implying
that the point (F,G) is also obtained when solving 1|4 pay < H | P (fimax € max)- Hence,
F =F and G = G, implying that H = H, as both values are equal to the outcome of
1 fmax S Fogmax < G [gy, O

COROLLARY 2. Let (F,G,H) be an arbitrary point with H < H that is not found when solv-
ing 1| hoppx <H|P(finax&max)- Then there exists a Pareto optimal point (F,G,H) with
H < H such that F < F and G < G, where at least one of the inequalities is strict. [1

73
THEOREM 5. Every Pareto optimal point with respect to (f max »8 max >/ max) i5 found.

Proor. Let (F,G,H) be an arbitrary Pareto optimal point with respect to
(fmax »& max »Amax)- If (F, G) is Pareto optimal with respect 0 (fnax 8 max)> then (F,G,H) is
determined at the initialization. Otherwise, there must exist a Pareio optimal point that
dominates (F,G,H) with respect t0 (fpax &max). Suppose that (F,G,H) is the Pareto
optimal point with the smallest 4,,,, value that dominates (F,G,H) with respect to
(f max -8 max)- Hence, (F,G,H) will be generated as soon as the upper bound on 4 4, has
become smaller than H. [

A straightforward implementation of the strategy leads to an O (n* | Z |) time algorithm,
where | Z | denotes the cardinality of the set of Pareto optimal points. The factor O (n*)
stems from solving an 1| fiax < F,gmax = G | hmax problem for every point (F,G) that is
obtained when solving 1 | 45, < H | P(fmax »8max)- Note that we have not yet taken pre-
cautions to avoid a point (F, G) being generated more than once. Hence, we may improve
the time complexity by determining a quick way to generate every Pareto optimal point
only once. This is achieved by generating only the Pareto optimal points that are not
present in the current set Uy, when solving 1|/ o < H | P(finax »€max); these are exactly
the points that are dominated with respect 10 (fiax8max) by a Pareto optimal point
(F,G,H) with H = H, but not by any other Pareto optimal point (F,G,H) in U, with
H < H. In order to determine only these Pareto optimal points, we derive lower and
upper bounds on the f,,, value such that a new Pareto optimal point must have a f,,«
value that is in between. We then search within this region for f,,, values that
correspond to a possibly Pareto optimal point by applying Algorithm NUB. The
schedule we need to start with is obtained simultaneously with the bounds.

Order the Pareto optimal points in the set U lexicographically, that is, put the points
in non-decreasing order of f,, value, settling ties according to non-decreasing gmax
values. Let (F' ,G' ,H") be the last point before (F,G, H) in the list with H' < H, and let
0, be the corresponding schedule. If there is no such point, then F! is equal to the out-
come of 1Ay < H | frnax, G to the outcome of 1] frnax < F' oy < H | gmax, and H'
to the outcome Of 1|fipa <F',gmax < G'|hma, respectively; o' is then the
corresponding schedule. Let (F?,G%,H?) be the first point after (F,G,H) with A,
value smaller than H. If such a point does not exist, then F2 = co.

The new Pareto optimal points are determined by an iterative procedure. Apply Algo-
rithm NUB to o;; this yields an fp, value F. Determine G by solving
1] fomax = F,hmax < H | gmax, and H by solving 1| frax <F,gmax < G | A,y call the
corresponding schedule 6. If F = F?, then stop; otherwise repeat the above procedure, in
which Algorithm NUB is applied to o.

THEOREM 6. Let (F,G,H) be an arbitrary Pareto optimal point that is dominated with
respect 10 (fmax s8max) by (F,G,H), but that is not dominated with respect t0 (fmax g max) by
a point in Uy with hy,, value smaller than H. Then F < F < F%; these Pareto optimal
points (F,G,H) are all determined by the procedure described above.

74

ProoF. First, we prove the validity of the bounds on F. The lower bound F follows by
definition; the upper bound follows from the observation that G* < G as (F?,G* ,H?) is
not dominated by (F, G, H) with respect t0 (fmax » g max)> and hence G*> < G. As (F,G,H)is
not dominated by (F~, 2 G* H 2) with respect t0 (fax > max) F must be smaller than F2.
Second, the point (F',G') is a solution of 1 |hmax < H | P(f nax -8 max)- Applying
Algorithm NUB as described above, starting with o', yields a set of values F each
corresponding to a possibly Pareto optimal point. None of these points is dominated
with respect to (fmax ;Zmax) by a point already in U, as F is chosen such that G < G,
while (F!,G' ,H')is not dominated by a point in U, with respect t0 (fiax »&max)- 0

Note that we have to check whether the f,,,; value determined by Algorithm NUB
corresponds to a Pareto optimal point (F,G) with respect to (fiax g max) Subject to the
constraint s, << H, as an increase of the f,,,, value does not necessarily induce a
decrease of the g, value.

The theorems above show that our strategy can be implemented in such a way that all
Pareto optimal points with respect t0 (fimax »&max »#max) are found in O(n? | P |) time.
The O(n*) component per Pareto optimal point is needed to solve
LA max < H | P(fmax s8max)> 10 501ve 1| frnax < F,gmax < G | Apmax, t0 order the Pareto
optimal points in U; lexicographically, and to determine the maximum of the 4y,
values in U;. It remains to be shown that | P | is polynomially bounded in .

THEOREM 7. There are at most n* (n —1)2/4 + n(n —1) + 1 Pareto optimal points with
respect 10 (fmax »& max »M max)-

PrOOF. Immediately after the initialization, U, contains at most n(n — 1)/2 + 1 points.
Every other Pareto optimal point (¥, G, H) is dominated with respect to (fmax ;& max)» and
hence is generated in the remainder of the algonthm

Consider an arbitrary point (F,G,H) that is generated from (F,G,H). Let 3 be the
schedule corresponding to (F,G,H), and let ¢ be the schedule corresponding to (F,G, H).
Let & ax be attained by J; in o AsH>H,J ; must be completed earlier in ¢, and hence,
there must be a job J; preceding J; in o that in o is completed at or after time C;(0). As
F = F and G = G, we can prove along the same lines as in the proof of Theorem 3 that
this combination {J;,J;} will not occur again, when A, is decreased. Hence, every
point obtained in Step 0 dominates at most n(n —1)/2 Pareto Fumal points with
respect 10 (fmax »& max), Which implies that there are at most n Ym—1)/4+n(n—1+1
Pareto optimal points. []

For sake of completeness, we list the O(n®) time algorithm to determine all Pareto
optimal points. Its correctness follows from Theorems 5 through 9.

ALGORITHM B

(0) Solve 1| | P(fmax »&max)- Determine for each point (F,G) the corresponding 7,y
value by solving 1| finax < F,gmax < G | hmax. Store these points in set U, ; determine
H as the maximum of the A, values of the pointsin U;.

(1) Order the points in U; lexicographically and let H be the maximum A ,, value. Let

75

(F, G, H) be the first point in the list with A ,,, value equal to H. Determine the bound
F? and the schedule o', and solve 1|F < fio < F2 Aoy < H | P(fiax »&max) 2S
described on the previous page, and scan the solution set for Pareto optimal points
(F,G) with respect t0 (fmax » g max)- Determine the corresponding 4, value by solving
1 fmax < F.gmax < G| hmax. Remove (F,G,H) from U, and store it in the set U,.
Add the newly obtained points to U;.

(2) If H is greater than the outcome of 1] | A1, then go to Step 1. Otherwise, the union
of the sets U; and U, contains all Pareto optimal points (F,G,H) with respect to

(fmax agmax akmax)~

It is easily checked that the strategy that was followed to solve the three-criteria prob-
lem can also be applied to solve the K-criteria problem, as the Theorems 4 and 5 and
Corollary 2 still hold for the K-criteria case. Unfortunately, Theorem 6 no longer holds,
so we can no longer guarantee that each Pareto optimal point is generated only once. We
now solve O(|P |) times the problem of determining all Pareto optimal points for a
(K —1)-criteria problem with a given upper bound on fX,.; for each of the obtained
points, we determine the corresponding fi..« value.

The proof of Theorem 7 can be extended to the K-criteria case, showing that there are
at most (n(n —1)/2+1)* 7! Pareto optimal points. Therefore, our strategy can be imple-
mented to run in O (n¥& D=6y time, for K = 4.

5. RELATED PROBLEMS

We finally consider the problems 1|prec | P(fiax, - - - > foax) and 1| | P(ghaxs - - - » 85ax)s
where the functions gk, are induced by penalty functions gj? that are non-increasing in
the job completion times, for £ = 1, ..., K. We show that we can solve both problems by
Algorithm B by modifying the penalty functions appropriately.

First, we deal with 1|prec | P(fuax, - - - » frsax)- Let &; denote the set of jobs J; that have to
succeed J; in any feasible schedule 0. As C; (6) << C; (o) for each job J; €§;, the costof o
does not increase if at time T (T €[0,Zp;]) the value of the penalty functions ff
(k=1,...,K) is set equal to max{ﬂ‘ (T),f;‘ (T}, for each J; €%. The next theorem
shows that the precedence constraints can be handled by adjusting the penalty functions
as described above.

THEOREM 8. The 1|prec | P(fiax,- - - » foaax) problem is solved by adjusting the penalty func-
tions as described above, provided that ties in Lawler’s algorithm are settled according to the
precedence constraints.

PrOOF. Let gf (k = 1,..., K) denote the adjusted penalty functions. The proof consists
of two parts. First, we have to show that every Pareto optimal point for
1] | P(ghaxs - - - »85ax) corresponds to a schedule that is feasible with respect to the pre-
cedence constraints. This is guaranteed by the requirement to settle ties in Lawler’s algo-
rithm according to the precedence constraints.

Second, we have to prove that the sets of Pareto optimal points for
1|prec | P(fmax: - - - »fisax) @nd 1] | P(gmax. - - - » §hax) are the same. Note that a point

76

(F',...,F¥X) is Pareto optimal with respect to (fax, - - - » froax) Subject to precedence
constraints if and only if, for k = 1,..., K, the outcome of the problem of minimizing
fXax-subject to the constraints fi,, <F' (i=1,...,K;i%k) and precedence con-
straints is equal to F*. Furthermore, a point (F', . .., FX) is Pareto optimal with respect
10 (Zhaxs - - - s gax) if and only if, for ¥ = 1,...,K, the outcome of the problem of
minimizing g&., subject to the constraints g’ <F' (i=1,...,K;ik) is equal to
F*_ Hence, if we prove that the);() oblems 1| fha <FL, ..., A0l <FK! prec | Xy
and 1|gla < F', ... g8 < FX~1|gK,, yield the same outcome, then we are done.
To that end, we have to justify the following three claims.

(1) The outcome of the problem 1| fh. < F',..., /A 1 < FX7! prec|fX.. stays the
same if we replace the constraints f5,, < F* by gk, <F* fork=1,...,K—1.

(2) The outcome of the problem 1| gha < F',..., g5 < FX~ prec | X, stays the
same if we replace the objective function fX,, by gX...

(3) The precedence constraints in the problem
| ghax <F' ... gk ' <FX71 prec | gk, are redundant.

Proof of (1). The first claim is proven by showing that the sets of feasible schedules are
identical for both problems. The nontrivial part consists of showing that every schedule
o€ (0| frax <F',... [R5} <FX~! prec) has gk, <F*(k=1,...,K—1). Suppose
to the contrary that there exists a feasible schedule o with g¥ (C; (0)) > F* for some job
Ji, for some k. Then J; must have a successor J; such that
gF(C;(0) = f5(Ci(0)) < f4(C; (o)) < F*, contradicting the assumption.

Proof of (2). The second claim is proven by showing that /X, (o) = gX,, (o) for every
feasible sch¥dule o. By definition, fie,, (0)< gk.x (9). Let gX., be attained by J;; sup-
pose that fk, (0)<ghe (o). Hence, J; must have a successor J; with
FR(Ci(0) =X (Ci(0)). In that case, however,

max = [(Ci(0)) = fX(Ci(0)) = gF(C;(0)) = ghax, contradicting the assumption.

Proof of (3). Consider an arbitrary job J;; letJ; be a successor of J;. As gM= gj‘ (N
k=1,....K—1; T=1,...,2p)), job J; will be available for processing if job J; is.
Hence, Lawler's algorithm yields an optimal schedule for
1ghax <FL ..., gK5! < FX71|gK, that satisfies the precedence constraints, pro-
vided that ties are settled according to the precedence constraints. [

COROLLARY 3. The 1|d; ,prec | P(flax, - - - » fXax) problem can be solved in O (n*X) time for
K=23andinO(n * 08 fimefor K =4. O

The second problem we consider in this section is 1| nmit | P(ghax, - - - , g5ax), Where the
maximum cost functions gk, (K =1,...,K) are induced by penalty functions g
j=1...,nk=1,...,K) that are non-increasing functions of the job completion
times. In order to avoid unbounded solutions, we make the additional assumption that
no machine idle time is allowed. This assumption is denoted by the acronym nmit, and
implies that all jobs are processed in the time interval [0, 2p;]. We show that this problem
can be transformed into a problem that fits in the existing framework, and hence, that it
is solved in O (n%X) time for K = 2,3, and in O (n X *D7%) time for K > 4.

THEOREM 9. Lawler’s algorithm solves 1|gha <G',...,gK3! < GX~1 nmit |g8.x to
optimality.

77

PROOF Consider an arbitrary instance of the
lgha <G ... g8 <GX! ,rzmit K« problem. Now construct the following
instance of 1| f,‘mx <F .. K < FA1 | fX .. The processing times are identical for
both problems, f¥(T) = gf‘(zp} +p—DGE=1,...,nk=1,...,K;T=1,...,3p),
and F¥ = G*, for k = 1,...,K — 1. Suppose that Lawler’s algorithm yields schedule o
for 1|flx <F!, jKax l fuax- An optimal schedule o for
1| gha <G, ma',}‘ <GX ' nmit |gK,, is obtained by reversing o;
Ci(5)=23p; +p, Ci(6) (=1,...,n), and hence, gf(Ci(3))=/¥(Ci(0))
(=1,...,n;k=1,...,K). This implies that ¢ is optimal and feasible if and only if o' is
optimal and feasible. [J

COROLLARY 4. A point (F', ..., FXY is Pareto optimal with respect 10 (fyax, - - - » foax) if
and only if this point is Pareto optimal with respect to (g;mx s gha) O

From Corollary 4 it follows immediately that we can solve 1 [nmit | P(ghax, - - - »85ax) bY
transforming it to an 1| | P (fhaxs - - - » feax) problem as described in Theorem 9, and by
applying Algorithm B to this instance. As a deadline d; for the 1| | P(fiax, - - -» fhax)
problem corresponds to a release date r;, that is, a lower bound on the start time for J;,
V7, nmit, jpar'e:*c | P(ghaxs - - - »ghax) is solvable in O(n*X) time for K =2,3, and m
O(nK(X“" ®) time for K >4

ACKNOWLEDGEMENT
The author is grateful to Jan Karel Lenstra and Steef van de Velde for their helpful com-
ments.

REFERENCES

E.L. LAWLER (1973). Optimal sequencing of a single machine subject to precedence con-
straints. Management Science 19, 544-546.

W.E. SmiTH (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly 3, 59-66.

A new lower bound approach for
single-machine multicriteria scheduling

J.A. Hoogeveen
S.L. van de Velde

This paper will appear in Operations Research Letters.

83

A New Lower Bound Approach for
Single-Machine Multicriteria Scheduling

J.A. Hoogeveen
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

S.L. van de Velde

School of Management Studies, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

The concept of maximum potential improvement has played an important
role in computing lower bounds for single-machine scheduling problems
with composite objective functions that are linear in the job completion
times. We introduce a new method for lower bound computation: objec-
tive splitting. We show that it dominates the maximum potential improve-
ment method in terms of speed and quality.

(1980) Mathematics Subject Classification (Revision 1985): 90B35.
Keywords & Phrases: single-machine scheduling, multicriteria schedul-
ing, maximum potential improvement, objective spilitting.

1. INTRODUCTION

A single-machine job shop can be described as follows. A set of » independent
jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can process no more than one job at a time. Each job
J; (i = 1,...,n) requires processing during a positive time p;. In addition, it has a
due date d;, at which it should ideally be completed. A schedule defines for each
job J; its completion time C; such that no two jobs overlap in their execution. A
performance measure or scheduling criterion associates a value f (o) with each
feasible schedule 0. Some well-known measures are the sum of the job completion
times 2C;, the maximum job lateness L, = maxy <; <, (C; —4d;), and the max-
imum job earliness E), = max) «; <, {d—C)).

In this paper, we adopt the terminology of Graham, Lawler, Lenstra, and Rin-
nooy Kan (1979) to classify scheduling problems. Scheduling problems are classi-
fied according to a three-field notation «| 8|y, where a specifies the machine
environment, f the job characteristics, and y the objective function. For instance,
1| nmit | E ., denotes the single-machine problem of minimizing maximum earli-
ness, where nmit denotes that no machine idle time is allowed.

Most research has been concerned with a single criterion. In real life schedul-
ing, however, it is necessary to take several performance measures into account.
There are basically two approaches to cope with multiple criteria. If the

84

scheduling criteria are subject to a well-defined hierarchy, they can be considered
sequentially in order of relevance. An example is the problem of minimizing max-
imum lateness subject to the minimum number of tardy jobs, for which Shanthi-
kumar (1983) presents a branch-and-bound algorithm.

The second approach is simultaneous optimization of several criteria. The K
performance measures specified by the functions f,(k =1,...,K) are then
transformed into one single composite objective function F:Q —R, where @
denotes the set of all feasible schedules. We restrict ourselves to the case that Fis a
linear composition of the individual performance measures. This leads to the
problem class (P) that contains all problems that can be formulated as

X
min, <o 3 afi(o) (P)
ko

where & = (@, . . ., ag) is a given vector of real nonnegative weights. The problem
of minimizing a linear function of the number of tardy jobs and maximum late-
ness, denoted as 1| | ZU;+ L4, 18 a member of this class. Nelson, Sarin, and
Daniels (1986) present a branch-and-bound algorithm for its solution.

In addition to solving some problem in (P) for a given a =0, it may be of
interest to determine the extreme set. The extreme set for given functions
fi,-.., [k is defined as the minimum cardinality set that contains an optimal
schedule for any weight vector a = 0. The elements of this set are the extreme
schedules. If this set has been identified, then we can solve any problem for these
functions by computing the function value for each extreme schedule and choos-
ing the best. Hence, if the cardinality of the extreme set is polynomially bounded
in n, the number of jobs, and if each extreme schedule can be found in polynomial
time, then any problem in (P) with respect to these functions f3, ..., fx can be
solved in polynomial time.

Suppose that some problem in (P) is 91%-hard and that one wishes to design a
branch-and-bound method for its solution. In that case, good lower bounds are
required. Until now, virtually all lower bound computations for problems in (P)
are based upon the so-called maximum potential improvement method. We prove
in Section 2 that these bounds are dominated in terms of quality and computa-
tional effort by a much simpler method that we name objective splitting. In Section
3, we refine the basic objective splitting method.

The problem 1| | 2C;+ L, + £ 1 is our benchmark in comparing the two
lower bound approaches. It is still an open question whether this problem is NF-
hard: Sen,-Raiszadeh, and Dileepan (1988) develop a branch-and-bound algo-
rithm and derive lower bounds by means of the maximum potential improvement
method. There is an optimal schedule for this problem without machine idle time,
although E,, is nonincreasing in the job completion times. It is not meaningful
to insert idle time, as the gain for E,,, will at least be compensated by the
increase of 2C;. We recall the following fundamental algorithms for the three
embedded subproblems.

85

THEOREM 1 (Smith, 1956). The 1| | ZC; problem is solved by sequencing the jobs
according to the shortest-processing-time (SPT) rule, that is, in order of nondecreas-

ingp;.

THEOREM 2 (Jackson, 1955). The 1| | L,y problem is solved by sequencing the jobs
according to the earliest-due-date (EDD) rule, that is, in order of nondecreasing d;.

THEOREM 3. The 1 | nmit | E ,, problem is solved by sequencing the jobs according to
the minimum-slack-time (MST) rule, that is, in order of nondecreasing d; —p;.

The proof of each of these algorithms proceeds by a straightforward interchange
argument. Note that each of these problems is solved by arranging the jobsin a
certain priority order that can be specified in terms of the parameters of the prob-
lem type.

The optimal solution values for these single-machine scheduling problems will
be denoted by =C;, Ly, and Eyy,,, respectively. Furthermore, £C(0), L nax(0),
and E ,,,(a) are the objective values for the schedule o. In analogy, C;(0), L,{0),
and E (o) denote the respective measures for jobJ; (i = 1,...,n). Whenever (o) is
omitted, we are considering the performance measure in a generic sense, or there
is no confusion possible as to the schedule we are referring to. The schedules that
minimize £C;, L., and E ;,, are referred to as SPT, EDD, and MST respec-
tively. In addition, v () denotes the optimal objective value for problem .

2. MAXIMUM POTENTIAL IMPROVEMENT VERSUS OBJECTIVE SPLITTING
Townsend (1978) proposed the maximum potential improvement method to com-
pute lower bounds for minimizing a quadratic function of the job completion
times. Since then, the method has been extended to problems in (P), including
1| | 2C; + Lyax (Sen and Gupta, 1983), 1|nmit | L,y +E e (Gupta and Sen,
1984), and 1| | 2C; + L pyx + E 105 (Sen, Raiszadeh, and Dileepan, 1988). To our
knowledge, there is only one publication on objective splitting avant la lettre:
Tegze and Vlach (1988) obtained an extremely simple, but provably stronger
lower bound for 1| nmit | Ly + E s

Meanwhile, Hoogeveen (1990) and Hoogeveen and Van de Velde (1990) have
found polynomial-time algorithms for 1|nmit | Lyt+ayEp,, and
1| |&y2C; +ay L . The former problem has O(n) extreme schedules, each of
which is found in O(nlogn) time. The latter problem has O(n?) extreme
schedules, each of which is determined in O (n) time after appropriate preprocess-
ing. However, it is an interesting issue how to derive lower bounds for 9%-hard
problems in (P). The maximum potential improvement method is a cumbersome
procedure. However, by viewing it from a different angle, we derive a closed
expression for the resulting lower bound. It is then immediately clear that the
maximum potential improvement method is completely dominated by the much
simpler objective splitting method.

Objective splitting is based upon the observation that

X K
min, ¢ g [2 akﬁc(a)} > [minaeufk(o)],

k=1 k=1

86

ifqp 2 0fork =1,...,K. The application of this idea to 1| | 2C;+ L pax + E max
yields the problems 1 l 'ECI, 1] | Lmax, and 1] nmzt E max- Each problem is poly-
nomially solvable, and we obtain the bound LB% = 3C; + Lay + Emax. This
bound is computed in O (») time in each node of the search tree, provided that the
SPT, EDD, and MST sequences have been stored and that we employ a con-
venient branching strategy.

It is relatively easy to apply the maximum potential improvement method to
problems in (P) for which each embedded single-machine problem has a priority
order. The 1| | 2C;+ L 5 -+ E 1y problem has three: the SPT order for 2C;, the
EDD order for Ly, and the MST order for E ,,. Clearly, we have solved an
instance of this problem in case these orders concur; in general though, the prior-
ity orders are conflicting.

Suppose we start with the MST schedule, which we refer to as the primary
priority order. The scheduh'ng cost induced by the MST schedule is ZC(MST) +

Eax + L qax(MST); this is obviously an upper bound on the opumal solution
value. In addition, we know that any optimal schedule o' must have

Im\x(ar)= Epax, 80d 2CH0)+Lypn(6) < ZCAMST) + Loy (MST). The
maximum potential improvement method assesses the current schedule with
respect to the maximum improvement that can be obtained for each of the perfor-
mance measures separately. Accordingly, we get a lower bound by subtracting the
total maximum potential improvement from the upper bound.

First, consider the maximum lateness criterion, which is the secondary priority
order. If we interchange every pair of adja,cent jobs J; and J; for which d;>d; and
C;<<Cj, then we need to conduct O n?H interchanges hefore we have transformed
the MS T schedule into an EDD schedule. The actual effect on the objective value
by one particular interchange depends on the interchanges that have been con-
ducted thus far. It might have no effect whatsoever on the performance of the
schedule; this is true if both the maximum lateness and the maximum earliness
remain unchanged. The maximum possible decrease of the scheduling cost, how-
ever, is d;—d;; if o and o denote the schedule before and after the interchange,
respectively, then the maximum decrease is realized if L y(0)=Lj(0),
Lax(my=Li(@) and E (7)) = E ;(0). The effect that the interchange might
have on the sum of the job completion times is not considered here and dealt with
separately. Any interchange conducted to transform the MST schedule into the
EDD schedule may improve the maximum lateness by the corresponding max-
imum possible decrease. The sum of these is the maximum potential improvement
- with respect to the initial lateness L ,, (MST). Itis given by

MPI, = > (d;—dp).
ijid>d,C <C
Note that the maximum potential improvement does not depend on the order in
which the interchanges are conducted.

Second, the sum of the job completion times, which is the fertiary priority
order, is reduced by interchanging two adjacent jobs J; and J; with p; > p; and
C; < C;. The maximum potential improvement is then p; —p;, which is also the
true improvement. The maximum potential improvement with respect to

87

ZC(MST)is then

MPIy = 2 @ _Pj)'
Ljip>p, C <G
The lower bound LB*#7 suggested by Sen, Raiszadeh, and Dileepan (1988) for
1] | 2C;+ L ppax + E ax is then

LBMPl =) + Loy (MST) — MPI, + SC(MST) — MPI,.

Since SC(MST)—MPI3 = SC{(SPT)=2C; and L, (MST)—MPI; < L.,
as we have systematically overestimated the reduction in maximum lateness, we
conclude that

LBMPI = g+ 3C; + Lo (MST) — MPI, < LBYS,

The maximum potential improvement method can be generalized to problems
in (P) as follows. Let o; denote an optimal schedule for the kth individual objec-
tive. Furthermore, let the optimal sequence that goes with the kth objective be the
kth preference order. The first step is then to sequence the Jobs accordmg to the
primary preference order, which g1ves the upper bound &, f1(a1)+Z£ -, ey fi(0]).
We then have to transform the primary preference order into the kth preference
order, for £ =2,...,K, and determine the corresponding maximum potential
improvement MPI;. The lower bound is then given by

K
LB = o f1(01) + 3 eu(fie1) — MPL).
k=2
Note that this procedure requires O (n?) time for fixed K in addition to the time
requlred to determine oy, for k = 1,.. ., K. Since fi(0])— MPI, < f,(o},) for each
k =1,...,K, we have the following theorem.

THEOREM 4. For any problem in (P), the lower bound obtained by the maximum
potential improvement method is dominated in terms of both quality and speed by the
lower bound obtained by the objective splitting method. [1

Consider the following example that is taken from Sen, Raiszadeh, and Dileepan
(1988) for the problem 1| | gZC; +(1 —gX L max T Emax) With0 < g < 1.

7T T, L T
2 14 7 6 7
d 20 14 15 17

By means of the maximum potentla.l improvement method, we obtain the lower
bound LBMP = 64g +9. It is easy to verify that 2C; =73, Ly, = 14, and

= 6. This gives the bound LB = 53¢ +20. Note 'that 53¢ +20= 64 +9
forallq\mtho <g<L

88

3. IMPROVING THE OBJECTIVE SPLITTING PROCEDURE

The objective splitting procedure above was given in its simplest form: we
separated the composite objective function into K single-criterion scheduling
problems. We now propose a refinement that gives us a lower bound that is at
least as good, but requires more time. Our more general approach allows combi-
nations of objective functions. Let (Ty,...,Ty) be a partition of the set
{1,...,K}, ie., the sets T}, are mutually disjoint and U H.T,= {1,...,K}. For
any problem A in the class (P) we clearly have

H K
vd)= 3 [mino ea X %fk(ok)} =2 o [ﬁc(UZ)] =LB%.

h=1 kET, k=1
This idea can be refined even further, since it is not obligatory to match each per-
formance criterion f; with only one set T},. Hence, let us relax the assumption that
(Ty,...,Ty)isapartitionof {1,...,K}, and let ay, denote the fraction of f that
is assigned to Tj,. We must have that 2, oy, = o foreach k = 1,...,K, and also
that &y, == 0, since the composite objective function associated with the set T}, has
to be nondecreasing in each of its arguments, for 2 = 1,..., H. We can compute
the lower bound for given values of ay;, as

h=1 keT,

H
y(0S)= {mingeg s ozk;,jfk(o)}. (0S)

An interesting question is how to determine the values of ay, that maximize the
lower bound v (OS). This problem, referred to as problem (D), is to

maximize v(OS) (D)
subject to

H

Eakhzak fOIkzl,...,K,

h=1

0, =0 fork=1,....,.K,h=1,...,H

A sufficient condition for solving problem (D) in polynomial time (for fixed K)
is that the extreme set for each problem induced by T, (h =1,...,H) can be
determined in polynomial time. In that case, there is only a polynomial number of
extreme schedules involved, and problem (D) can then be formulated as a linear
programming problem with a polynomial number of constraints and variables.
Let N (h) be the number of extreme schedules for the problem associated with 7,
th=1,...,H),andleto i (k) denote the jth extreme schedule for the problem asso-
ciated with T;,. There are at most 2X~2 sets T (| T, | < K and T}, 5= @). The
linear program s then to

maximize w
subject to

H
w s 2 2 ak;,fk(oj(,,)) fij(h): 1,...,.N(h),h21,...,H,

E=1kET,

89

H

2 Ay — O forkzl,...,K,

h=1

(th;"'/() fOI'}Czl,...,K,}lzl,...,H

In general, it would be unreasonable to presume that each of the possible 2% —2
sets T, would result into a polynomially solvable problem,; it may be a formidable
challenge to identify those that will. If we touch upon a problem that appears to
be hard to solve, then we may relax the assumptions by allowing preemption. (Le.,
the processing of jobs may be interrupted and resumed at a later moment in time;
this is denoted by pmin.) This may be useful with respect to the computational
complexity, but also with respect to the lower bound quality. The latter follows
particularly from the following theorem.

THEOREM 6. The optimal objective value of 1|pmin |Zf - erf; is greater than or
equal to Say fi (1), where oy, is the optimal value for 1| | f, (k = 1,... ,K).

PrOOF. The proof follows from the observation that o also solves 1|pmmn | £z, if
fr is either monotonically nondecreasing or monotonically nonincreasing in the
job completion times. [

If we apply the refined objective splitting procedure to 1| | 2C; + L + E 1nax,
then, except for the obvious single-criterion problems, we have to consider three
problems: 1] |a; 2C;+ oy Ly, 1| nmit |) 2C;+ar E pyy, and
1| nmit | &) Ly + 03 E . Hoogeveen (1990) presents an O(n’logn) time algo-
rithm for 1|nmit | @)L +02E pnay to find the O(n) extreme schedules, and
Hoogeveen and Van de Velde (1990) present an O(n®) time algorithm for
1} |ay2C;+ oy Lyax, which has O(n?) extreme schedules. For the problem
1| nmit | ; ZC; +ap E 1y, there is only a polynomial-time algorithm available if
a; = a, (Hoogeveen and Van de Velde, 1990). The complexity of the case a) < a,
is unknown. However, 1|nmit,pmin |a)SC;+ayE pyy is solvable in O (n*) time
and has O (n?) extreme schedules.

1f we reconsider the example, we find that there is one extreme schedule for 2C;
and L, with 2C;, =73 and L_,, = 14; there are two extreme schedules for
Lax and E o, with values L, =14 and E ., =7, and L., =17 and E ,,, =6;
there are three extreme schedules for E ,, and ZC; if we allow preemption with
values E .., =6 and 2C; =96, E,,, =7 and 2C; =74, and E ,,,, =9 and ZC; =73,
respectively.

The lower bound that is obtained by the improved objective splitting method
depends on the parameter g. Suppose ¢ =+. Then we obtain LB** = 4] and
LBY =46+ 1t is easy to verify that the improved objective splitting method
gives 47+ as a lower bound. This bound is tight, since the optimal sequence
(J 2,7 3,J 4,J 1) has the same value.

90

ACKNOWLEDGEMENT
The authors are grateful to Jan Karel Lenstra for his comments on earlier drafts
of this paper.

REFERENCES

R.L. GrauaMm, E L. LAwWLER, J. K. LENSTRA, AND A H.G. RINNOOY KAN (1979).
Optimization and approximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathematics 5, 287-326.

S.K. GuptA AND T. SEN (1984). Minimizing the range of lateness on a single
machine. Journal of the Operational Research Society 35, 853-857.

J.A. HOOGEVEEN (1990). Minimizing maximum earliness and maximum lateness on
a single machine, Report BS-R9001, CWI, Amsterdam.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Polynomial-time algorithms for
multicriteria scheduling problems, Report BS-R9008, CW1, Amsterdam.

J.R. JACKSON (1955). Scheduling a production line to minimize maximuwm tardiness,
Research Report 43, Management Sciences Research Project, UCLA.

R.T. NeLsoN, R.K. SariN aNp R.L. DanieLs (1986). Scheduling with multiple
performance measures: the one-machine case. Management Science 32, 464-
479.

T. Sen AND S K. GupTa (1983). A branch-and-bound procedure to solve a bicri-
terion scheduling problem. IIE Transactions 15, 84-88.

T. Sen, F.M.E. Raiszaper AND P. DiLeepan (1988). A branch-and-bound
approach to the bicriterion scheduling problem involving total flowtime and
range of lateness. Management Science 34, 254-260.

J.G. SHANTHIKUMAR (1983). Scheduling 7 jobs on one machine to minimize the
maximum tardiness with minimum number tardy. Computers and Operations
Research 10, 255-266.

W.E. Smith (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 1, 59-66.

M. TeGZE AND M. VLACH (1988). Improved bounds for the range of lateness on a
single machine. Journal of the Operational Research Society 39, 675-680.

W. TownNseND (1978). The single machine problem with quadratic penalty func-
tion of completion times: a branch-and-bound solution. Management Science
24,530-534.

Scheduling around a small common due date

J.A. Hoogeveen
S.L. van de Velde

This paper will appear in the European Journal of Operational Research.

95

Scheduling Around a Small Common Due Date

J.A. Hoogeveen
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

S.L. van de Veide

School of Management Studies, University of Twente
P.O. Box 217, 7500 AE Eindhoven, The Netherlands

A set of n jobs has to be scheduled on a single machine which can handle
only one job at a time. Each job requires a given positive uninterrupted pro-
cessing time and has a positive weight. The problem is to find a schedule
that minimizes the sum of weighted deviations of the job completion times
from a given common due date ¢, which is smaller than the sum of the pro-
cessing times. We prove that this problem is N%-hard even if all job weights
are equal. In addition, we present a pseudopolynomial algorithm that
requires O(n?d) time and O(nd) space.

1980 Mathematics Subject Classification (1985 Revision): 90B35.
Key Words & Phrases: single machine scheduling, 1%-hardness, pseudopo-
lynomial algorithm.

1. INTRODUCTION

Recently, we have seen a growing interest in just-in-time manufacturing, This
concept decrees that products should be completed as close to their due dates as
possible in order to avoid both storage costs as a result of early completions and
penalty costs inflicted on account of late deliveries. This might induce the follow-
ing type of problems for the single machine job shop.

A set of n independent jobs has to be scheduled on a single machine, which can
handle only one job at a time. The machine is assumed to be continuously avail-
able from time 0 onwards. Job J; (i =1, ...,n) has a given positive uninterrupted
processing time p; and should ideally be completed at a given due date d;. Without
loss of generality, we assume that the processing times and the due dates are
integral. A schedule defines for each job J; a completion time C; such that the jobs
do not overlap in their execution. Given a schedule S, the earliness and tardiness
of job J; are defined as E; = max{d; — C;, 0} and T; = max{C; — d;, 0}, respec-
tively. The just-in-time philosophy is reflected in the objective function

f&= Zj;] (e E; + B T)).

For a review on problems with this type of objective function, see Baker and
Scudder (1990).

96

An important subclass contains the set of problems that deal with a common
due date d for all jobs. The common due date is either specified as part of the
problem instance, or is a decision variable that has to be optimized with the job
sequence simultaneously. As the first job may start later than time 0, the optimal
schedule is identical for both problems uniess the common due date d is restric-
tively small (d < Zp;). Therefore, the first variant is referred to as the restricted
problem and the second variant as the unrestricted problem.

We will call the earliness and tardiness penalty weights symmetricif o; = B; for
each i = 1,...,n. For the case of nonsymmetric weights, only one problem type
has been investigated, namely the case in which all ¢; are equal and all ; are
equal. Bagchi, Chang and Sullivan (1987) and Emmons (1987) present an
O (nlogn) algorithm for the unrestricted variant, while Bagchi et al. (1987) pro-
pose a branch-and-bound algorithm for the restricted problem.

If the earliness and tardiness penalty weights are symmetric, then the problem
reduces to finding a schedule S that minimizes the weighted sum of the deviations
of the completion times from the common due date:

F®)=3"_w|C—d|.

There are two notable results for the case that d = Zp,. Kanet (1981) gives an
O(nlogn) time algorithm to find an optimal schedule, if all weights are equal.
Hall and Posner (1991) show that the problem with symmetric weights is NFP-
hard.

In cotitrast, we focus our attention on the case that d << 2p,. In Section 2 we
prove some properties of an optimal schedule. In Section 3 we establish NP-
hardness of the problem, even for the case that all job weights are equal. We note
that Hall, Kubiak and Sethi (1991) independently obtained this result by a
slightly more complicated proof. This result justifies the development of enumera-
tive algorithms by Bagchi, Sullivan and Chang (1986) and by Szwarc (1989) for
minimizing 2] | C; — d | subject to a common due date d << Zp;. In contrast,
we present a pseudopolynomial algorithm in Section 4 for 1| |2w;|C; —d |,
which requires O (n2d) time and O (nd) space. Our algorithm is applicable to a
more general problem type than the pseudopolynomial algorithm of Hall et al.
(1991), which can only handle equal job weights. In Section 5 we present some
well-solvable cases.

2. BASIC CONCEPTS

It is straightforward to verify that no optimal solution has any idle time between
the execution of jobs. In case there were idle time, the scheduling cost could be
reduced by closing the gap. The next two theorems further characterize any
optimal solution.

THEOREM 1. In any optimal schedule S, the jobs J; that are completed before or at the
common due date d are scheduled in order of nondecreasing values of w; / p;, and the
Jobs that are started at or after d are scheduled in order of nonincreasing values of
w;/ Pi

97
Proor. This follows immediately from Smith’s ratio rule (Smith, 1956). O

THEOREM 2. In each optimal schedule S, either the first job starts at time 0 or the due
date d coincides with the start time or completion time of the job with the largest ratio

Wi /Pi'

PrOOF. For a given schedule S, let B(S) denote the set of jobs that are completed
before or at the common due date and A4 (S) the set of jobs completed after the
due date. Define A = Z; < g5y w; — 2y, € 4(s) Wi- We consider the cases in which
A <0 and A = 0 separately.

Suppose first A<C0. If S starts at time T >0, determine ¢=
min{ 7, min; ¢ 4(5)C; —d}. If the entire schedule is put 7 time units earlier, then
the reduction in cost equals —¢A > 0. In the new situation either schedule S starts
at time 7'=0 or one job has moved from 4 (S) to B(S). If still T >0 and A <0,
we repeat the procedure until we arrive at a situation in which 7 =0 or A > 0, and
no further improvement is possible. The latter case implies that the due date coin-
cides with the completion time of one job and the start time of another. Because
of Theorem 1, one of these jobs must be the job with the largest ratio w; /p;.

On the other hand, in the case of A = 0, reverse arguments can be applied to
show that the due date coincides with the completion or start time of the job with
the largest ratiow; /p;. [1

Note that Theorem 1 does not impose any restrictions on a job that is started
before and completed after the due date. Consider the following instance with
}2=3,p1 = 8,?2 = 10,p3 :4, Wy :5,W2 "—“7,W3 :3, andd=15.Theoptimal
solution is shown in Figure 1 and demonstrates that such a job can exist, and that
it can even have the smallest ratio w; /p;.

Js | J, | J;;J

i
0 d=15

FiGure 1

3. SCHEDULING AROUND A SMALL COMMON DUE DATE IS A$-HARD

In this section we prove that this problem is %®-hard even if w; = 1 for each job
J;, by showing that the corresponding decision problem is NP-complete. The
reduction is from Even-Odd Partition.

EVEN-ODD PARTITION (Garey, Tarjan and Wilfong, 1988): Given a set of 2a posi-
tive integers B = {b,,...,b,,} such that b; > b, ,, foreachi=1,...,2n—1, is
there a partition of B into two subsets B, and B; such that
24 e8,b; = 24 ep,b = A and such that B contains exactly one of {by; 1,02}
foreachi=1,...,n?

98

We start by describing a reduction from the Even-Odd Partition problem to the
small common due date problem with w; = 1 for all J;. Let B = {b),...,b,} be
an arbitrary instance of the Even-Odd Partition problem, with 4 = Zb;/2. Con-
struct the following set of jobs: 2n ‘partition’ jobs J; with processing times
pi =b; +nd for each i =1,...,2n, an additional job J, with po = 3(n“+1)A4,
weightsw; = 1fori =0,...,2n,and a common due date d = (n*+ 1)4. In addi-

tion, we define a threshold value yo = 27 [(i +1)py -1 + pu)l +d on the
scheduling cost.
Consider a partitioning of the set of partition jobs {J,,...,J,} into the sets

Blz{Jlla‘]zb”'anl} and BZ={J127J22>*-'3J312}) where {JflajiZ}:
{Jai—1,) foreachi=1,...,n

LeMMA 1. If the partitioning into the sets B| and B, corresponds to a solution of the
Even-Odd Partition problem, then the cost of schedule S constructed as shown in
Figure 2 equals the threshold value y .

[51 B] 7

! i i
0 d
FIGURE 2: SCHEDULE S

Proor. Note that the jobs in B, and Bz are scheduled as indicated in Theorem 1.
The verification then only requires straightforward computations. O

We now prove that, conversely, any schedule S with f(S) <y, must have the
same structure as Sy, and that the subsets B, and B, must correspond to a solu-
tion of the Even-Odd Partition problem.

PROPOSITION 1. Suppose S is a schedule with scheduling cost f (S) < y. Then S has
the following properties.

(1) At most n jobs can be completed before the due date d

(2) The first job must start at time Q.

(3) The additional job J is scheduled last.

(4) At least n — 1 jobs must be completed before the due date d.

PROOF.

(1) This is due to the choice of the processing times.

(2) This follows immediately from the first property and the proof of Theorem 2.
(3) Suppose J is not scheduled last. Then, because of Theorem 1, J, must start
before the common due date 4. Since at most » jobs can be scheduled before job
Jy, for at least n +1 jobs in § we have C;—d = py—d = 2d. This implies that
F)=2n+ l)d = (n +4)d. However, as each of the multipliers of p,...,p, in
Vo is at most (n +3),while 2! i+ = -n {n +3), we have the followmg ing-

quality:

99

o= i+ Do +pa)l Hd<3@+HZX pi+d=(n+Hd<f(S),

which contradicts the assumption.
(4) This follows immediately from the first three properties and the choice of the
processing times. [

LemMMA 2. Suppose S is an optimal schedule with f (S) < y. Then the due date d
must coincide with the completion time of the n-th job in the schedule S, the schedule
S must have the same structure as the schedule S, and provide an affirmative answer
to the Even-0dd Partition problem.

PRrOOF. Assume that s (/) denotes the index of the job that is scheduled on position
i in schedule S. We compute the scheduling cost relative to the imaginary due date
k = pgy+ ...+ Ps(ny- Then we have

P |Gk =3_[G=Dpspl + 2], | |[Qn+2=i)pe] + 3d =
S MG+ Dpspl + B2, [@n+2—ipyy] + 3d — 2k =

i=1
TG Dpsp] + Ef:][(i +Dpsn+1-p] +3d — 2k =
:’:][(i + D)y T pw) +3d—2k =y +2d — 2k
The true scheduling cost f(S) can be written as
f)=32 |G~d| =3 |G~ k| + (d—k)card(B(S)) — card(A(S))),

where card denotes the cardinality function. Because of Proposition 1, we have
only three cases to consider:

- ifd =k, then f(S) = y.

- ifd >k, then card(B(S)) = n, and therefore f (S) = yo +d —k >y,

- ifd <k, thencard(B(S))=n—1,and hence f (S) = y¢ + k — d > y,.

This implies that if f(S) <y, then Cy(,) = d, that is, the completion time of the
n-th job in § must coincide with the due date. Furthermore, f(S) < y, implies
{(JsiyIson+1-iy) = {J2i—1,F 5} for i = 1,...,n. Therefore, the schedule § has
the same structure as the schedule S depicted in Figure 2. This means that the
original Even-Odd Partition problem has an affirmative answer. [J

THEOREM 3. Given a set of jobs and a nonnegative integer y, the problem of deciding
whether there exists a schedule S with f (S¢) < y is N P-complete.

Proor. The decision problem is clearly in ¥. For any given instance of the
Even-Odd Partition problem, we construct a set of jobs as described above and
set y = yo. This reduction requires polynomial time. Theorem 3 now follows from
Lemmas1and 2. [

4. A DYNAMIC PROGRAMMING ALGORITHM
Theorem 3 implies that, unless =¥, no polynomial algorithm exists for solving

100

the small common due date problem. We present a pseudopolynomial algorithm
that requires O (n2d) time and O (nd) space, for which Theorems 1 and 2 provide
the basis. According to Theorem 2 we must consider two cases: one in which the
job with the largest weight to processing time ratio is scheduled such that either its
completion or its start time coincides with the due date, and one in which all the
jobs are scheduled in the interval [0, Zp;].

For the first option, we renumber the jobs according to nonincreasing weight to
processing time ratios. Let Fi(1) denote the optimal objective value for the first j
jobs subject to the condition that the interval [d —1, d + Z{-; p; — 1] is occupied
by the first j jobs. Then the initialization is

0 for t=0,j=0,
F0)= co otherwise,

and the recursion for j = 1, ..., nis given by
Fi(t) =min{F, (¢ —pp) +wit —p;), F;-1(t) + wj(Z{:lp,«—t)} for0<r<d

In the second case, all jobs are scheduled in the interval [0, Zp;]. In such a situa-
tion it might occur that one of the jobs is started before and yet completed after
the due date (see Figure 1). To allow for this possibility, we leave one job out of
the recursion, and repeat the recursion # times, once for each job. Since the cost of
the schedule can now only be computed relative to the endpoints of the interval, it
is assumed that the jobs have been renumbered according to nondecreasing values
of w;/p;. Consequently, we know that the first job either staris at time 0 or fin-
ishes at time 2p;. /

Assume that J;, is the job that will be scheduled around the due date. Let Gf,»’)
denote the optimal cost for the first j jobs subject to the condition that the inter-
vals[0,7] and [Z7= 1, p; +1, Zp;] are occupied by the first j jobs. The initialization
is

0 for t=0,j=0,
Aoy
Gi(t)= {oo otherwise,
and the recursionforj = 1,...,nis
G- (1) if j=h,
|G Ot WS pitt-d)ifd—p<t<d,
min{G/_;(7) + wj(z;*:j pitt—d),G}_1(t —p)) + wi(d — 1)} otherwise.

The recursion leaves the interval [4,7 +p;] idle, and it is here that we insert the job
J, and compute the resulting cost as

. Ghey +wyt +pp—d) fd—p,<t<d,
Gn()=) otherwise.

The optimal solution is then found as

101

S (S) = min{min ¢, snmind—p,, <r=d G’,‘,(t), ming <, <4 Fy(2)},

by which we have established the following result.

THEOREM 4. The dynamic programming algorithm solves the problem in O(n’d)
time and O{(nd) space.

Note that the dynamic programming algorithm can be modified to cope with any
common due date problem with nonsymmetric earliness and tardiness penalty
weights that allow for a prespecified processing order of the jobs that are com-
pleted before or started after the common due date. This includes the problem
with all &; equal and all B; equal, for which Bagchi et al. (1987) presented a
branch-and-bound algorithm. In addition, the weighted tardiness problem with a
common due date possesses this property.

5. POLYNOMIALLY SOLVABLE CASES

5.1 Identical jobs

If the jobs are identical, we have p; = p for each job J;. Since the processing times
and due date are assumed to be integral, this situation is more general than the
one in which all p; = 1. Suppose the jobs have been renumbered according to
nonincreasing weights. .

If d=p[n/2], then it is easy to show that Emmons’ matching approach
(Emmons, 1987) generates an optimal schedule S by partitioning the jobs into sets
AS)={y |i=1,...,|n/2|} and B(S)={Jy - |i=1,...,[n/2]}, where
the first job in B(S) starts at time t =d — Z; ¢ gsyps =d —p[n/2]. In this
notation, |n/2]| denotes the largest integer smaller than or equal to n/2, and
[n/2] denotes the smallest integer greater than or equal ton/2.

Conversely, if d < p [n/2], then there are two options: either the first job starts
at time 0 or the last job in B(S) is completed at time 4. It is easy to see thatin both
cases Emmons’ maiching approach generates optimal schedules, and the problem
is solved by choosing the better one.

5.2 The jobs have equal weight to processing time ratios

THEOREM 5. In the event that p; = w; for each job J;, there is an optimal schedule for
any value of d in which the jobs are scheduled according to nonincreasing processing
times.

Proor. Consider two adjacent jobs that are not scheduled according to the indi-
cated order. If both jobs are completed before or started after the common due
date, then these jobs can be interchanged without affecting the cost of the
schedule S, unless the due date lies in the interval between the start time of the
first and the completion time of the other job. We prove that even in that case, an
interchange of these two jobs does not increase the scheduling cost. Without loss
of generality, let J, and J, be the two jobs that have to be interchanged, with

102

P1=py, and let J, start at time . We have to investigate the following three
situations.

(1)t <d =<1t +p,. Then the interchange leads to a schedule with the same
cost.

Dt +py<d<t+p,. Then the interchange lowers the cost by
2py(d —p2)=0.

(3)t+py<d<t-+p;+p, Then the interchange decreases the cost by
2dpy —2dp, + 291 — 203 =2\ +py —d)(py —p2) 0. O

Assume that the jobs have been renumbered in order of nonincreasing processing
times. Suppose r is the smallest index for which 2] _, p; = 27—, 1, p;. Theorem 5
then implies that, if d=>2[.,p, the problem is solved by putting
BS)={li=1..,rjand AS)={J;|i=r+1,...,n}. f d<Z[_, p, the
first job needs to start at time 0, and the jobs are processed in order of nonde-
creasing processing times.

ACKNOWLEDGEMENT
The authors would like to thank Jan Karel Lenstra for his helpful comments.

REFERENCES

U. BagcHi, R.S. SurLivan, Y. L. CHANG (1986). Minimizing mean absolute devi-
ation of completion times about a common due date. Naval Research Logistics
Quarterly 33,227-240. V

U. Bacgcni, Y.L, CHANG, R.S. SuLLIvaN, (1987). Minimizing absolute and
squared deviations of completion times with different earliness and tardiness
penalties and a common due date. Naval Research Logistics 34, 739-751.

K. Baker, G. SCUDDER. Sequencing with earliness and tardiness penalties: a
review. Operations Research, to appear.

H. EMMONS (1987). Scheduling to a common due date on parallel uniform proces-
sors. Naval Research Logistics 34, 803-810.

M.R. Garey, R.E. TariaN, G.T. WILFONG (1988). One-processor scheduling
with earliness and tardiness penalties. Mathematics of Operations Research 13,
330-348.

N.G. HaLL, W. KuUBIAK, AND S.P. SETHI (1991). Earliness-tardiness scheduling
problems, II: Deviation of completion times about a restrictive common due
date. Operations Research 39, 847-856.

N.G. Harr, M.E. PosNer (1991). Earliness-tardiness scheduling problems, I:
Weighted deviation of completion times about a common due date. Operations
Research 39, 836-846.

J.J. KANET (1981). Minimizing the average deviation of job completion times
about a common due date. Naval Research Logistics Quarterly 28, 643-651.

W.E. Smith (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 3, 59-66.

W. Szwarc (1989). Single machine scheduling to minimize absolute deviation of
completion times from a common due date. Naval Research Logistics 36, 663-
673.

New lower and upper bounds for scheduling
around a small common due date

J.A. Hoogeveen
H., Oosterhout
S.L. van de Velde

This paper will appear in Operations Research.

167

New lower and upper bounds for scheduling
around a small common due date

J.A. Hoogeveen
Department of Mathematics and Computing Science,
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

H. Oosterhout

Department of Economics, Tilburg University
P.O. Box 80153, 5000 LE Tilburg, The Netherlands

S.L. van de Velde

School of Management Studies, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Suppose a set of n1 jobs has to be scheduled on a single machine, which
can handle no more than one job at a time. The problem is to find a
schedule that minimizes the sum of the deviations of the job completion
times from a given common due date that is smaller than the sum of the
processing times. This problem is known {o be 9%-hard. There exisis a
pseudo-polynomial algorithm that is able to solve instances up to 1000
jobs. Branch-and-bound algorithms can solve instances up to only 25
jobs. We apply Lagrangian relaxation to find in O(nlog n) time new lower
and upper bounds. Based upon this upper bound, we develop a heuristic
whose solution value is guaranteed to be no more than 4/3 times the
optimal solution value. We identify conditions under which the lower and
upper bound concur; these conditions can be expected to be satisfied by
many instances with n not too small. For processing times drawn from a
uniform distribution, all our computational experiments exhibit that the
bounds concur already for n = 40. For the case these bounds do not
concur, we present a refinement of the lower bound. This is obtained by
solving a subset-sum probiem that is of considerably smaller dimension
then the common due date problem to optimality by a pseudo-polynomial
algorithm. Finally, we indicate to what extent the analysis also applies to
the case that all early compietions are weighted by a common weight «
and all tardy compiletions by a common weight 8.

1980 Mathematics Subject Classification (1985 Revision): 90B35.
Key Words & Phrases: single-machine scheduling, common due date,
Lagrangian relaxation,, approximation algorithm, worst-case behavior.

1. INTRODUCTION
The just-in-time concept for manufacturing has induced a new type of machine

108

scheduling problem in which both early and tardy completions of jobs are penal-
ized. We consider the following single-machine scheduling problem that is associ-
ated with this concept.

A set of n independent jobs has to be scheduled on a single machine, which can
handle no more than one job at a time. The machine is assumed to be continu-
ously available from time zero onwards only. Job J; requires processing during a
given uninterrupted time p; and should ideally be completed at a given due date
d;. Without loss of generality, we assume that the processing times and the due
dates are integral. We assume furthermore that the jobs are indexed in order of
nonincreasing processing times. A schedule o defines for each job J; a completion
time Cj, such that the jobs do not overlap in their execution. The earliness and
tardiness of J; are defined as E; = max{d; — C;,0} and 7; = max{C; — 4;,0},
respectively. The just-in-time philosophy is reflected in the objective function

flo)= ﬁ:l (a; E; + B, T)),
i=

where the deviation of C; from d; is penalized by either &; or 8;, depending on
whether J; is early or tardy, for j = 1,...,n. For a review of problems with this
type of objective function, we refer to the survey by Baker and Scudder (1990).

An important subclass contains problems with a due date d that is common to
all jobs. The common due date is either specified as part of the problem instance,
or is a decision variable that has to be optimized simultaneously with the job
sequence. As the first job may start later than time zero, the optimal schedule is
identical for both problems unless the common due date d is restrictively small.
The first variant is therefore referred to as the restricted problem and the second
variant as the unrestricted problem.

Bagchi, Chang, and Sullivan (1987) propose a branch-and-bound approach for
the restricted variant with all earliness penalties equal to « and with all tardiness
penalties equal to 8. Szwarc (1989) presents a branch-and-bound approach for
the case that a = 8. These branch-and-bound algorithms are able to solve
instances up to 25 jobs. Sundararaghavan and Ahmed (1984) present an approxi-
mation algorithm for the case @ = f that shows a remarkably good performance
from an empirical point of view. Lee and Liman (1991) present an approximation
algorithm with performance guarantee 3/2; this means that for any instance their
approximation algorithm produces a solution with value no more than 3/2 times
the optimal solution value. Hall, Kubiak and Sethi (1991) and Hoogeveen and
Van de Velde (1991) establish the 9P-hardness of the problem, even if o = 8,
thereby justifying the enumerative and approximative approaches. Furthermore,
Hall et al. (1991) propose a pseudo-polynomial time algorithm running in
O(nZp;) time and space, and provide computational results for instances up to
1000 jobs. Their experiments, however, show that the algorithm is limited by
space, not time.

We present a Lagrangian-based branch-and-bound algorithm for the case
a = f. Using Lagrangian relaxation, we find new lower and upper bounds in
O(nlogn) time. We identify conditions under which the lower and upper bound
concur; these conditions can be expected to be satisfied by many instances with n

108

not too small. This is confirmed by our computational results when the processing
times are drawn from a uniform distribution.

For the case that these bounds do not concur, we present a refinement of the
lower bound, which is obtained by solving a subset-sum problem to optimality by
a pseudo-polynomial algorithm. This can be done very fast, since the subset-sum
problem in our application is of a considerably smaller dimension than the com-
mon due date problem. Computational experiments show that, if any, only a
small number of nodes are examined in the branch-and-bound algorithm.

In addition, we develop a heuristic that is based upon the Lagrangian upper
bound with performance guarantee 4/3. This means that the heuristic produces a
solution with value guaranteed to be no more than 4/3 times the optimal solution
value.

This paper is organized as follows. In Section 2, we review Emmons’s matching
algorithm (Emmons, 1987) for the unrestricted variant of the common due date
problem with general « and 8. In Section 3, we develop a lower bound based upon
Lagrangian relaxation for the restricted variant with « = §. In Section 4, we use
the insight gained in Section 3 to develop a heuristic for the restricted variant. In
Section 5, we show that this heuristic has performance guarantee 4/3. In Section
6, we describe the branch-and-bound algorithm, and in Section 7, we present
some computational results. Finally, we briefly indicate to what extent the
analysis applies to the case a = 8.

2. EMMONS’S MATCHING ALGORITHM FOR THE UNRESTRICTED PROBLEM

Kanet (1981) presents an O{rlogn) algorithm for the unrestricted variant with
a = fB. Bagchi et al. (1987) and Emmons (1987) propose O (nlogn) algorithms for
the case a = B. We briefly review the concepts of Emmons’s matching algorithm,
since they provide the insight needed for the subsequent sections.

TaeoreM 1 (Kanet, 1981). No optimal schedule has idle time between the execution
of the jobs. [

TueoreM 2 (Kanet, 1981). There is an optimal schedule for the unrestricted variant
in which the due date d coincides with the start time or completion time of the job with
the smallest processing time. [1

Emmons’s matching algorithm is based upon the concept of positional weights.
The scheduling problem reduces then to an assignment problem where jobs have
to be assigned to positions. The cost of assigning J; to the kth early position is
equal to a(k —1)p;; the cost of assigning J; to the kth tardy position is equal to
Pkp;. The assignment problem is solved in O(nlogn) time by matching the job
that has the jth largest processing time with the position that has the jth smallest
weight, forj=1,...,n

Emmons’s matching algorithm shows that in any optimal schedule the jobs
completed before or at d are scheduled in order of nonincreasing processing times
and the jobs started at or after 4 in order of nondecreasing processing times. Due
to this structure, optimal schedules are said to be V-shaped.

110

Optimal schedules for the restricted variant have the same structure, albeit that
there may be one job that is scheduled around 4. For this particular job, it holds
that the early or tardy jobs have larger processing times.

3. A NEW LOWER BOUND FOR THE RESTRICTED VARIANT

We look upon this 9P-hard problem as an ‘easy’ problem complicated by the
‘nasty’ constraint that the machine is only available from time zero onwards. If
this constraint were not present, then the problem could easily be solved through
Emmons’s algorithm. This is exactly the approach Szwarc (1989) follows to deter-
mine a lower bound. The structure of the problem, however, suggests that the
technique of Lagrangian relaxation might be more successful. We remove the
nasty constraint, and put it into the objective function, weighted by a nonnegative
Lagrangian multiplier. The resulting problem is easy to solve. It will be referred to
as the Lagrangian problem; its solution provides a lower bound for the original
problem.

The nasty constraint can be formulated as

W<d,

where W denotes the total amount of work that is processed up to time d. If we
introduce a Lagrangian multiplier A = 0 and bring this constraint weighted by A
into the objective function, then we get the following Lagrangian problem,
referred to as problem (L,): find the value L (A), which is the minimum of

E(E +T)+ MW — d), Ly

j=1
for a given A = 0. Obviously, L(A) is a lower bound for the original problem.
There are two questions that immediately arise: Given a value of A, can L(X) be
determined in polynomial time? If so, can the value A* that maximizes the lower
bound L (}) be found in polynomial time? The latter problem is referred to as the
Lagrangian dual problem. The following two theorems provide affirmative
answers to both questions.

THEOREM 3. For a given A, the Lagrangian problem is solved by applying Emmons’s
matching algorithm with the weights of the early positions increased by \.

ProOF. Straightforward arguments show that there exists an optimal schedule for
the Lagrangian problem in which some job is completed exactly on time d. Hence,
there is an optimal schedule with W = 2; « ¢ p;, where & denotes the set of jobs
that are scheduled in the early and just-in-time positions. The Lagrangian objec-
tive function can then alternatively be written as

{E(E +T+ S Ay} — M

J, €6

111

Since the last term is a constant for a given A, we need to minimize only the
expression inside the braces. This is achieved by applying Emmons’s matching
algorithm to the case where the weight of the kth early position is equal to
k—1+A O

THEOREM 4. The optimal value N*, that is, the value that maximizes the Lagrangian
lower bound, is equal to the index A for which
ln =Ay/2] [(r—A=1)/2]
Pary>d= X Pati+yys
J=0 i=0
where |x | denotes the largest integer smaller than or equal to x. If no such index
exists, then A* = (,

ProOF. Consider an arbitrary value A. If A is not integral, then all optimal
schedules for (L,) have equal W. If A is integral, then there are multiple optimal
schedules with different W; these are found by breaking ties differently in
Emmons’s algorithm. Define for each integer A(A =0, ...,n) o}'" as the optimal
schedule for the Lagrangian problem (L,) with W minimal. In the same fashion,
the schedule o3** is defined as the optimal schedule for the Lagrangian problem
(L) with W maximal, for A =0, ...,n. We define W™ and W}'* as the amount
of work processed before time d in 63" and o}'™, respectively. Straightforward
calculations show that ¢}"" remains optimal if the Lagrangian multiplier is
increased by ¢, with 0 << e << 1; hence, we have that o' is identical to o35 and
win = e Thig implies that L (A) is a piecewise-linear and concave function
of A. The breakpoints correspond to the integral valuesA = 1,.. ., n, and the gra-
dient of the function between the integral breakpoints A and A+1 is equal to
Wyin — g, forA=0,...,n —1. The Lagrangian dual problem is therefore solved
by putting A* equal to the index A for which W§® > d = WP", Due to the index-
ing of the jobs, the theorem follows. [

Let o* be an optimal schedule for the Lagrangian dual problem. If A* = 0, then
o* = offi" is feasible for the original problem, and hence optimal. Note that this
also implies thatd =p, + p; ++p,ifnisodd, andd =p, +p; + + p,
if n is even. This agrees with the observation by Bagchi et al. (1987) that the
schedules(h,Jg,,...,Jn,Jn_;,...,Jg)and(Jl,Jg,,...,J,,_I ,Jn,...,Jz)are
optimal under the respective conditions.

In the remainder, we assume that A* = 1. Depending on whether n — A* is odd
or even, o* has the following structure. First, suppose n — A* is odd. Then the
jobs Jy,...,Jy»—; occupy the last A* —1 positions in o*, the pair {Jx«,Jp=41}
occupies the first early position and the A*th tardy position, the pair
{Ja+ 42,7 x» 43} occupies the second early position and the (A* + 1)th tardy posi-
tion, and so on. Finally, the pair {J, _,J,,} occupies the positions around the due
date. Second, if n — A* is even, then o* has the same structure, except that J, is
positioned between J, _, and J, _;, and is started somewhere in the interval

[d 2 >d]

112

PROPOSITION 1. If there exists a schedule a* that is optimal for the Lagrangian dual
problem in which the first job is started at time zero, then the Lagrangian lower
bound L(A*) is tight and o* is an optimal schedule for the original problem.

Proor. In this case we have
LA*)=%(E;+T;)+ A (W —d)= 2E; +T;)=f(o*). O

If no such schedule o* exists, then there is a gap between the optimal value for the
original problem and the Lagrangian lower bound. We get a better lower bound,
however, by solving the modified Lagrangian problem, which is to find a schedule
that minimizes

S G —d| + AW —d)+ |W—d|.
j=1

Clearly, the modified Lagrangian problem yields a lower bound for the original
problem for any A* = 1.

THEOREM 5. The modified Lagrangian problem is solved by a schedule from among
the optimal schedules for the Lagrangian dual problem that has minimal | W — d |.

PrROOF. Suppose that 7 is a schedule that has minimal Lagrangian cost from
among the optimal schedules for the modified Lagrangian problem; suppose
further that « is not optimal for the Lagrangian dual problem. Then either the
jobs are not assigned to the optimal set of positions, or that there are at least two
jobs J; and J; with p; > p; that are not optimally assigned. As to the first case,
assigning J; to a position with smaller weight decreases the Langrangian cost by
at least p;, while | W — d | is increased by at most p;. As to the second case, the
interchange of J/; and J; decreases the Lagrangian cost by at least p; — p;, while
| W —d| is increased by at most p; — p;. Therefore, in both cases = is easily
transformed into a schedule 7 that is also optimal for the modified Lagrangian
problem but that has smaller Lagrangian cost than #. This contradicts the
assumption that 7 has minimal Lagrangian cost. Hence, = must be also optimal
for the Lagrangian dual problem. [J

The problem of minimizing | W — d | is transformed into a considerably smaller
instance of subset-sum in the following way. Renumber the jobs such that
Jy —y+p+ becomes Jy for k = 1,...,n—A* +1; n becomes equal to n —A* +1;
the jobs previously denoted by J,...,Jy» —; are now simply referred to as the
‘remaining’ jobs. Hence, the jobs {J; 1,/ %} form a pair in the Lagrangian dual
fork=1,...,,withi=1,...,|n/2]. Define a; as the difference in processing
time between the jobs of the jth pair (j = 1,...,/), and define D = d — W".
Remove the values g; that are zero; suppose that m of them remain. Define & as
the multiset containing the m remaining a;-values; let aj;) denote the jth largest
elementin @.

If » is even, then the problem of minimizing | W —d | is equivalent to deter-
mining a subset 4 C &, whose sum is as close to D as possible. If n is odd, then an

13

optimal schedule for the Lagrangian dual problem is optimal for the original
problem in case W € [d — p,, d]. Finding such a schedule is equivalent to deter-
mining a subset 4 C& whose sum falls in the interval [D — p,, D]. If no such sub-
set exists, then the goal is to find a subset 4 whose sum is as close as possible to
either D — p, or D. This problem, known as the optimization version of SUBSET-
SUM, is 91%-hard in the ordinary sense (Garey and Johnson, 1979).

The instance of subset-sum can then be solved to optimality by dynamic pro-
gramming requiring O (mD) time and space. Note that D < 2g; < p,,; hence,
the subset-sum problem is of a smaller dimension than the underlying common
due date problem.

4. A NEW UPPER BOUND FOR THE RESTRICTED VARIANT
Consider an optimal schedule for the Lagrangian dual problem. If W < 4, then it
is also a feasible schedule for the common due date problem; if W > d, then we
defer the schedule to make it feasible. The analysis in the previous section sug-
gests that we should look for an optimal schedule for the Lagrangian dual prob-
lem with |W —d| minimal. However, only if W =4d, then we have a
guaranteedly optimal schedule for the common due date problem.

We develop an approximation algorithm for the common due date problem
based upon Johnson’s approximation algorithm (Johnson, 1974) for subset-sum,
which runs in O (m) time.

JOHNSON’S ALGORITHM

Stepl.@= & j«1.

Step2.Ifaj;) < D, then@« @ U {aj;)} and D « D — ay;).
Step 3. j«j+1;if j <m, then go to Step 1.

Using an approximation algorithm for subset-sum rather than an optimization
algorithm does not affect the worst-case behavior; see Section 5. As to the empiri-
cal behavior, our computational results suggest that the loss in accuracy, if any, is
small.

Furthermore, we can identify a class of instances for which Johnson’s algorithm
always finds a solution value equal to the target sum D. This class comprises the
instances possessing the so-called divisibility property; this class is important in
our application, as many instances can be expected to belong to it.

DEFINITION. 4 multiset of values {ay,. .. a6y}, withl = a) < a, < < a,, is said
to possess the divisibility property if for every j (j = 1,...,m) and for every value
De(1,2,... 2l a;} there exists a subset A C{a,, . .. ,aj}, whose sum is equal to
D.

THEOREM 6. A multiset of values {a,,...,a,}, with 1 =a;<a; <+ <a,
possesses the divisibility property if and only if a;jy <Z{.ia;+ 1, for
j=L...,n—1 0O

114

THEOREM 7. If an instance of subset-sum satisfies the divisibility property, then
Johnson’s algorithm finds a subset with sum equalto D. O

In our application, each g; is equal to the difference in processing times between
two successive jobs in the shortest processing time order. If the number of jobs
with different processing times is not too small, then the values a; tend to be
small. This intuitive reasoning suggests that many instances possess the divisibil-

ity property.

Johnson’s algorithm always yields a subset with sum no more than D. This handi-
cap is overcome by applying the algorithm also to the target sum
D = =7y a; — D and taking the complement of the resulting subset with respect
to @& We use the subscripts 1 and 2 to distinguish the approximation from below
and from above: 4; and D, denote the resulting subset and the gap for the
approximation from below, and 4, and D, denote the resulting subset and the
gap for the approximation from above.

If both D > 0 and D, > 0, then we apply the next algorithm to derive feasible
schedules for the common due date problem from the subsets 4| and 4 ,.

ALGORITHM TRANSFORM
Step 1. Consider 4 ;. Starting with o3*", interchange the jobs that correspond to
a; € 4, for j=1,...,m, thereby increasing W by a; per interchange.

Determine the schedule corresponding to 4 ; in a similar fashion, starting

from of¥**. Let the resulting schedules be 6, and ;.

Step 2. The schedule oy is started at time D ;. Shift the schedule to the left until the
first job is started at time O or the number of jobs completed before or at
d exceeds the number of jobs completed after d by two. Rearrange the
jobs to make the schedule V-shaped again. The resulting schedule is
denoted by 0.

Step 3. The schedule o, is started at time —D,. Defer the schedule such that the
first job is started at time zero, and rearrange the jobs to make the
schedule V-shaped again; this schedule is denoted as o,. If some J is
scheduled around d, then defer o, until J;, is started exactly at d. Rear-
range the jobs to make the schedule V-shaped; let the resulting schedule
be (—3-2 .

We now present our approximation algorithm for the common due date problem;
in the remainder, we refer to it as the Even-Odd Heuristic.

EveN-ODD HEURISTIC

Step 0. Given an instance of the common due date problem, solve the Lagrangian
dual problem, and apply Johnson’s algorithm to the corresponding
instance of subset-sum.

Step 1.1f D, < D, then apply Algorithm Transform; go to Step 5.

115

Step 2. Let Q ={a;|a; = D,}. If Q{a,}, then apply Algorithm Transform,
and go to Step 5. .

Step 3.If p; > d, then apply Algorithm Transform to determine o,. Furthermore,
solve the Lagrangian dual problem under the condition that J; and all
the ‘remaining’ jobs occupy the last positions; go to Step 5.

Step 4. Solve the Lagrangian dual problem under the condition that J; and the
‘remaining’ jobs are assigned to positions after d, and solve the Lagran-
gian dual problem with J; assigned to a position before 4. Apply
Johnson’s algorithm and Algorithm Transform to all these solutions.

Step 5. Choose a schedule with minimal cost.

5. WORST-CASE BEHAVIOR

For any instance I of the common due date problem, let EOH (I) denote the solu-
tion value determined by the Even-Odd Heuristic, and let OPT(I) denote the
optimal solution value. We define p as

p = inf; {EOH (I)/ OPT(I)}.

In this section, we prove that p << 4/3, that is, that the Even-Odd Heuristic has
performance guarantee 4/ 3.

Suppose first that Johnson’s algorithm does not solve the corresponding
instance of subset-sum to optimality, that is, D or D, is not minimal. This means
that we do not know the minimal value of W —d, and therefore cannot use the
strengthened lower bound in our analysis.

LemMa 1. If Johnson’s algorithm does not solve the resulting instance of subset-sum
to optimality, then p < 8/7.

PROOF. A straightforward analysis shows that, if Johnson’s algorithm leaves a gap
G that is not minimal, then at least 3 a;-values greater than G have to be involved,;
this means that are at least six jobs with processing times at least equal to
3G, 2G, 2G,G,G, and 0, respectively. Furthermore, due to the structure of the
solution of the Lagrangian problem, the A* —1 ‘remaining’ jobs must have pro-
cessing times at least 3G.

First, assume D; << D,. Then we have for any instance / that
EOH(D) < f(o))=LA*)+A*D < OPT(I) + A*D,.

Inspecting of™, we see that LQA*)=D;(5+3A*(A*+1)/2). Hence,
p<<1+ (2A*/(10+3A*(A* +1))) <8/TforanyA* = 1.

Second, assume D; > D,. If D, is not minimal, then we use the above analysis
and find p < 8/7.1f D is minimal, then D is not. Consider an element a; & 4,
and suppose that a; < Dy + D,. This implies that

D <kEZAzak +a; <D+ Dy;
as a consequence, the sizes of the elements in € — 4, — {a;} add up to a value
between D — D; and D, contradicting the minimality of D;. Hence,
a; = Dy + D,, and the above analysis can be applied to establishp < 8/7. [I

116

So, if Johnson’s algorithm does not give minimal values D, and D,, then we
surely have p < 4/3. From now on, we assume that D, and D, are minimal;
hence, we can now use the strengthened lower bound.

LEMMA 2. If Dy <D, thenp=<4/3

PrROOF. Again, we have that EOH(I)< L(A*)+ A*D,. Furthermore, from
Theorem 5 it follows that OPT(F) = L(A*) + D,. Every element a; A4, must
have size a;=D;+D,=2D,. Inspecting o, we see that
LA*)=ZA*A* —1)D,; this gives p<< 1 + (A* — 1)/ (1 +A*(A* —1))) < 4/3 for
anyA=1 [

Now suppose that D > D,. It is easy to show p = 4/3 if there exists an element
a, = Dy with k = 3. If no such element exists, then we consider the costs of all
schedules determined by Algorithm Transform. To that end, we need an upper
bound on A = f(a;) — f (07).

PROPOSITION 3. Suppose that the first job in o, has processing time no more than d.
Then A is no more than the sum of the positional costs in 6, of the last k jobs before d
and the first k +1 jobs after d, where k is the number of jobs that have been
transferred from a position before d to a position after d.

Proor. Without loss of generality, we assume that # is even; if not, then we add a
dummy job with zero processing time. For matter of convenience, renumber the
jobs temporarily such that J,, ... ,J; are the jobs that are transferred from posi-
tions before d to positions after d (J, is completed at time 4), and
Jaks o Sk +1.J ¢ are the first k +1 jobs after d (Jy is started at time 4). Note
that the jobs J; and J;, ; (i = 1,..., k) form a pair in the Lagrangian dual; hence,
we must have that min{p; ,py +;} = max{p; 4\ pr+i+1 5 fori =1,... k—L

Suppose that J 4 occupies position A* + p in o,, with g = 0. Twice the positional
cost of the jobs J, . . . ,J 5 in o, is then equal to

At Dpy + o+ ptkpe A Fppe + s F QT Hptkpy) =
A* +ppo + (A* +ppo+A* +pt+Dp sy +2p1) + -
H(A* +ptk —Dpy—1 N +ptk)poy +2kp) =
A* +ppo + A* +pt1)py +per1) + min{py pp e} A +pt3)py+p
+min{py ,pr 42} + - FAF Fp+2k —Di(pr +tpa) + min{pg ,pa}
The last expression is exactly equal to the positional cost due to the jobs

J(},...,china“g. O

LemMMA 3. Suppose that ay and a, are the only elements larger than D . Then
p=<4/3

117

Proor. First, suppose that p| +p3 < d. Partition the jobs in two subsets: the first
oneis {J3,...,J,}, the second one consists of J; , J,, and the ‘remaining’ jobs.
As p+p3 <d, it follows immediately from Proposition 3 that for ¢, the sum of
the positional costs of the jobs in {J3,...,J,} is at least equal to A. The sum of
the positional costs of the jobs im the other subset is at least
(1+A*2)D, = 2A*D,. Hence, OPT(I) = 2A*D + A, implying that p < 4/3.

Second, suppose that p; +p3 >d. As a; and a, are the only two elements
greater than D, it follows immediately that Dy, =d—p,—ps—ps—-- if
a;=a,, and that Dy =d—p,—p;—ps— otherwise; Dy =p, +p3+pg+-—d.
An easy interchange argument, validated by the inequality D, > D, proves that
J15J 35 Ins Jp =1, - - - is an optimal schedule for the case that J; and J; are started
before time d. Hence, we are done unless J, or J 3 is started at or after time d in
any optimal schedule. In this case, however, we impose the additional constraint
to the common due date problem that J; or J is started at or after time d. Con-
sider the modified Lagrangian problem with such an additional constraint. Along
the lines of the proof of Theorem 5, we can show that this problem is solved by an
optimal schedule for the Lagrangian dual problem with J, or J 5 scheduled after d
for which | W —d | is minimal; this is exactly the schedule o;. We have therefore
that OPT(I)=L(A*)+D, = (7*3+2)D1 As EOH(I)<XL(A*)+ A*D,, we
obtainp < 1+((A* —1)/A*?+2) < 4/3. O

The analysis of the case that g, is the only element greater than D, proceeds
along the same lines.

LeMMA 4. Suppose D > D,, ay is the only element greater than Dy, and p, > d.
Then EOH (I) = OPT(I).

PROOF. An easy interchange argument, validated by the inequality D, > D,
proves that in any optimal schedule J, is either started at time 0 or scheduled
immediately before the ‘remaining’ jobs. The inequality D, > D, also implies
that Emmons’s matching algorithm determines a feasible and hence optimal
schedule for the case that J, and the ‘remaining’ jobs are started at or afterd. [l

If p, <d, then we solve both the Lagrangian dual problem with the additional
constraint that J,; and all ‘remaining’ jobs are scheduled after 4 and the Lagran-
gian dual problem with the additional constraint that J is scheduled before d.

LeMMA 5. Suppose that D > D, that ay is the only element greater than Dy, and
thatpy < d Thenwehave p < 4/3.

Proor. First, suppose that there is an optimal schedule in which J, and the
‘remaining’ jobs are started at or after d. Suppose that solving the Lagrangian
dual problem under the condition that J, and all ‘remaining’ jobs are assigned to
positions after d gives A*, D, and D,. If A* = 0, then we have found an optimal
schedule. If A* = 1, then the schedule that corresponds to D, must begin with J,,
J3, and J 4; if not, then W not sum up to d +D,. Hence, we have a; = p,. This

118

gives EQH(I)< L(A*) + A*Dy, OPT(I) = L(A™), and
LA*) =3+ (A +1D)(A*+2)/2)D, from which p << 4/ 3 follows.

Second, suppose there is an optimal schedule in which J, or some ‘remaining’
job is not started after d. The optimal solution for the Lagrangian dual problem
with the additional constraint that J; or some ‘remaining’ job is not started after
d is such that J, is started before 4 and all the ‘remaining’ jobs after d; this is
easily proven by an interchange argument. Suppose that solving this Lagrangian
problem gives A*, D, and D,. Consider the schedule o that corresponds to D,.
Since A* = A* +1, the first job after J; must be some J; with k = 4; hence, we
have D; <p,. The case Dy <D, is easy to handle; assume therefore that
D, > D;. Along the lines of Lemma 3, it can then be proven that p << 4/3. [J

THEOREM 8. The Even-Odd Heuristic has performance guarantee 4/3, and this
bound can be approximated arbitrarily close. '

Proor. The first part follows immediately from the Lemmas 1 to 5. The following
example, based upon the case that only @, > D, shows that we can get arbi-
trarily close to this bound. Let D be an arbitrary positive integer. There are
n =2D +6jobs {Jy,...,J,} with processing times

p1=p2=p3=D?+2D,

Pa=ps=ps=D,

Peri=1fori=1,...,2D,
and with common due date

d =2D*+5D.

The Even-Odd Heuristic gives the schedules 7 ,J4.J5.,J7,...,J,.J¢.J3,J, with
Jl started at time Dz, and J] ,J:; ,.}5 ,Jj,. . .,Jn,.}ré,.]‘;,]z with Jl started at
time zero. Both schedules have cost 4D?-+18D. The optimal schedule
J15 I3 075« s du T 6.0 5.0 4T 2, has cost 3D?+19D, however. Hence, we get
arbitrarily close to 4/ 3 by choosing D sufficiently large. []

6. BRANCH-AND-BOUND ‘

First, we solve the Lagrangian dual problem. If A* = 0, then ¢* = o§"" is an
optimal solution for the common due date problem, and we are done. Otherwise,
we determine upper bounds as described in Section 4; we also apply the heuristic
presented by Sundararaghavan and Ahmed. If the lower and the best upper
bound do not concur, then we solve the subset-sum problem to optimality by
dynamic programming. If the bounds still do not concur, then we apply branch-
and-bound.

For the design of the search tree we make use of the V-shapedness of optimal
schedules. Assume the jobs have been reindexed in order of nonincreasing pro-
cessing times. A node at level j (f = 1,...,n) of the search tree corresponds to a
partial schedule in which the completion times of the jobs Jy,...,J; are fixed.

119

Each node at level j has at most (n —j) descendants. Inthe kth(k = 1,...,n —)

descendant, J, is started before d and the jobs J; 1y, ...,J; 44 - are to be com-
pleted after d. Given the partial schedule for Jy,...,J;, a partial schedule for
Y ST F caneasﬂybecomputed

The algorithm that we propose is of the ‘depth-first’ type. We employ an active
node search: at each level we choose one node to branch from. We consistently
choose the node, whose job has the smallest remaining index. A simple but power-
ful rule to restrict the growth of the search tree is the following. A node at level j
(j = 1,...,n) corresponding to some J; can be discarded if another node at the
same level corresponding to some J; with p, = p; has already been considered.
This rule obviously avoids duplication of schedules.

In the nodes of the tree, we only compute the lower bound L ()*); we neither
solve the modified Lagrangian dual problem nor compute additional upper
bounds.

7. COMPUTATIONAL RESULTS

The processing times were drawn from the uniform distribution [1, 100]. Compu-
tational experiments were performed with d = [¢tZp;| for = 0.1,0.2,0.3,0.4,
respectively, and with the number of jobs ranging from 10 to 1000. For each com-
bination of » and ¢ we generated 100 instances. The algorithm was coded in the
computer language C; the experiments were conducted on a Compag-386 per-
sonal computer.

The results are shown in Table 1; its design reflects our three-phase approach.
The third column ‘# O(nlogn)’ shows the number of times (out of 100) that the
Even-Odd Heuristic finds a schedule with cost equal to the Lagrangian lower
bound L(A*); this is the number of times that the common due date problem was
provably solved to optimality in O(nlogn) time. The fourth column ‘# DP’
shows how many of the remaining instances were provably solved to optimality
by dynamic programming applied to subset-sum. The fifth column ‘# Even-Odd
optimal’ shows the number of times that the Even-Odd Heuristic found an
optimal schedule. The sixth column ‘# SA optimal’ gives the same information
for the approximation algorithm presented by Sundararaghavan and Ahmed. The
last column ‘# LB tight’ shows the number of times that the lower bound
(strengthened or not) was equal to the optimal solution value.

From these results we may draw the conclusion that the common due date
problem for randomly generated problem instances is extremely easy to solve
from a practical point of view. If n =40, then the O(nlogn) algorithm solves all
randomly generated instances to optimality; for n = 30, dynamic programming
applied to subset-sum suffices to solve the remaining instances; for n <20,
branch-and-bound is occasionally needed, but requires only a very small number
of nodes, and always less than 1 second of running time.

120

n t #O0(nlogn) #DP # Even-Odd #SA #LB
optimal optimal tight

10 01 66 20 72 77 86
10 0.2 69 20 72 58 89
10 0.3 68 23 68 59 93
10 0.4 82 1 85 62 85
20 0.1 81 12 84 51 94
20 0.2 94 5 94 43 99
20 0.3 99 0 100 42 99
20 04 99 1 99 35 100
30 0.1 100 0 100 50 100
30 0.2 98 2 98 51 100
30 03 100 0 100 57 100
30 0.4 100 0 100 68 100
40 0.1 100 0 100 63 100
40 0.2 100 0 100 64 100
40 0.3 100 0 100 63 100
40 04 100 0 100 54 100
50 0.1 100 0 100 72 100
50 0.2 100 0 100 63 100
50 0.3 100 0 100 69 100
50 0.4 100 0 100 75 100
100 0.1 100 0 100 81 100
100 0.2 100 0 100 86 100
100 0.3 100 0 100 78 100
100 0.4 100 0 100 78 100

TasLE 1. Computational results.

8. EXTENSIONS

The lower bound approach can be extended to the restricted variant of each prob-
lem that is solvable by Emmons’s matching algorithm. The most important prob-
lem in this context is the 1| d; = d | 2(aE; + BT}) problem.

Without loss of generality, we assume that « and 8 are integral and relatively
prime. A similar analysis shows that the optimal value A* is the value
A* € {1,...,nB)} for which Wi = d > W, Furthermore, Theorem 5 still
holds.

It is straightforward to develop a heuristic for the common due date problem
with a8 by applying Johnson’s algorithm and Algorithm Transform; its
worst-case performance, however, is still an open question.

ACKNOWLEDGEMENT
The authors would like to thank Jan Karel Lenstra for his helpful comments.

121

REFERENCES

U. BagcHl, Y.L. CHANG, AND R.S. SuLrivan (1987). Minimizing absolute and
squared deviations of completion times with different earliness and tardiness
penalties and a common due date. Naval Research Logistics 34, 739-751.

K. Baker AND G. SCUDDER (1990). Sequencing with earliness and tardiness
penalties: a review. Operations Research 38, 22-57.

H. EMMONS (1987). Scheduling to a common due date on parallel uniform proces-
sors. Naval Research Logistics 34, 803-810.

N.G. Hair, W. KuUBiak, AND S.P. SEtHI (1991). Earliness-tardiness scheduling
problems, II: Deviation of completion times about a restrictive common due
date.Operations Research 39, 847-856.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Scheduling around a small com-
mon due date. European Journal of Operational Research 55, 237-242.

D.S. JoHnsoN (1974). Approximation algorithms for Combinatorial Problems.
Journal of Computer and System Sciences 9, 256-278.

J.J. Kaner (1981). Minimizing the average deviation of job completion times
about a common due date. Naval Research Logistics Quarterly 28, 643-651.

C-Y. Lee anND S.D. LiMan (1991). Error bound for the heuristic on the common
due date scheduling problem. To appear in ORSA Journal on Computing.

P.S. SUNDARARAGHAVAN AND M.U. AuMED (1984). Minimizing the sum of abso-
lute lateness in single-machine and multimachine scheduling. Naval Research
Logistics Quarterly 31, 325-333.

W. Szwarc (1989). Single machine scheduling to minimize absolute deviation of
completion times from a common due date. Naval Research Logistics 36, 663-
673.

Minimizing total inventory cost a single machine
in just-in-ttme manufacturing

J.A. Hoogeveen
S.L. van de Velde

This paper has been submitted for publication.

127

Minimizing Total Inventory Cost on a Single Machine

in Just-in-Time Manufacturing

J.A. Hoogeveen

Department of Mathematics and Computing Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

S.L. van de Velde

School of Managernent Studies, Universily of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

The just-in-time concept decrees not 1o accept ordered goods before
their due dates in order to avoid inventory cost. This bounces the inven-
tory cost back to the manufacturer: products that are completed before
their due dates have 1o be stored. Reducing this type of storage cost by
preclusion of early completion conflicts with the traditional policy of keep-
ing work-in-process inventories down. This paper addresses a single-
machine scheduling problem with the objective of minimizing total inven-
tory cost, comprising cost associated with work-in-process inventories
and storage cost as a result of early completion. The cost components
are measured by the sum of the job completion times and the sum of the
job earlinesses. This problem differs from more traditional scheduling
problems, since the insertion of machine idle time may reduce total cost.
The search for an optimal schedule, however, can be limited to the set of
job sequences, since for any sequence there is a clear-cut way to insert
machine idle time in order to minimize total inventory cost. We apply
branch-and-bound to identify an optimal schedule. We present five
approaches for lower bound calculation, based upon relaxation of the
objective function, of the state space, and upon Lagrangian relaxation,

1980 Mathematics Subject Classification (1985): 90B35.

Key Words and Phrases: just-in-time manufacturing, inventory cost,
work-in-process inventory, earliness, tardiness, machine idle time,
branch-and-bound algorithm, L.agrangian relaxation.

1. INTRODUCTION

The just-in-time concept has affected the attitude towards inventories signifi-
cantly. In order to keep inventories down, there is a reluctance to accept ordered
goods prior to their due dates. This implies that manufacturers have to store early
completed goods before they can be shipped to their destinations. This has added
a relatively new aspect to machine scheduling theory: the preclusion of earliness.
In principle, earliness can be avoided by allowing machine idle time, thereby

128

deferring jobs. Machine idleness, however, runs counter to the natural instinct to
minimize work-in-process inventories, to maximize machine utilization, and to
observe due dates.

Within this context, we address the following situation. A set$ = {J,,...,J,}
of n independent jobs has to be scheduled on a single machine, which is continu-
ously available from time zero onwards. The machine can handle at most one job
at a time. Job J; (j = 1,...,n) requires a positive integral uninterrupted process-
ing time p; and should ideally be completed exactly on its due date d;. A schedule
specifies for each job J; a completion time C; such that the jobs do not overlap in
their execution. The order in which the machine processes the jobs is called the job
sequence. For a given schedule, the earliness of J; is defined as
E; = max{0,d,—C;} and its tardiness as 7; = max{0, C;—d,}. In addition, we
define maximum earliness as E . = maX <;<n E; and maximum tardiness as
Trax = MaX|<j<p 1. Accordingly, J; is called early, just-in-time, or tardy if
of < d}, ’ f{f, orC; > dj, respectively.

In this paper, we follow the terminology of Graham, Lawler, Lenstra, and Rin-
nooy Kan (1979) to classify scheduling problems. Deterministic scheduling prob-
lems are classified according to a three-field notation a | 8|y, where a specifies the
machine environment, 8 the job characteristics, and y the objective function. For
instance, & = 1 refers to a single machine, 8 = pmin signifies that the jobs may be
preempted, that is, the processing of a job may be interrupted and resumed later,
and y = ZC; means that the objective is to minimize the sum of the job comple-
tion times. Since earliness is nonincreasing in the job completion times, it may
generally be advantageous to permit machine idle time. The inclusion of the acro-
nym nmit in the second field signifies that no machine idle time is allowed.

Three types of single-machine scheduling problems involving job earliness have
been considered in the literature. The best-known is the minimization of E . If
machine idle time is not allowed, then the problem is solved by scheduling the
jobs in nondecreasing order of d; —p;; this is known as the minimum slack time
order. If machine idle time is permitted, then the problem is trivial: for any given
sequence, we defer the jobs until all are just-in-time or tardy. This approach also
applies to 1| | ZE;, but, surprisingly, 1|nmit |2E; is NF-hard in the ordinary
sense (Du and Leung, 1990). The third problem is to maximize Zw; E;, where w; is
the weight of job J;, denoted as 1| | —2Zw;,E;; this problem is solvable in pseudo-
polynomial time by an algorithm due to Lawler and Moore (1969).

The combination of earliness with another performance measure, reflecting
other considerations, takes us into the arena of bicriteria scheduling. The state of
the art, as far as a measure of earliness is concerned, is as follows. For the
1| pmin, nmit | a2C; + BE 15 problem, Hoogeveen and Van de Velde (1990)
present an algorlthm that runs in O(n*) time. They show that the same algorithm
also solves 1| |aZC;+BE ;. in case a = B. Hoogeveen (1990) presents algo-
rithms that solve 1| { max T BT max and 1| nmit | F(E nax, Timax) in O(n logn)
and O(n?) time; Fis here an arbitrary nondecreasing function of E ,,, and T
For the 1|nmit | 2(a;E; + BT;) problem, Ow and Morton (1989) propose a 1oca1
search method to generate approximate solutions. A voluminous part of research
is concerned with common due date scheduling. Here, we have 4, =d

129

(j = 1,...,n); the objective is to minimize some function of earliness and tardi-
ness. A survey of problems, algorithms, and computational complexity is pro-
vided by Baker and Scudder (1990).

In this paper, we consider the problem of minimizing total inventory cost,
which is supposed to comprise two components: cost due to work-in-process
inventory and storage cost as a result of early completions. These components are
assumed to depend linearly on the sum of job completion times and the sum of
job earliness. If we let a and B denote the cost per unit time for work-in-process
inventory and storage of finished product, respectively, then the total inventory
cost for a given schedule o is

f(o)-'—-‘aé Cj-f—ﬁé E;.
j=1 i=1

Without loss of generality, we assume a and B to be integral, positive, and rela-
tively prime. Since we have by definitionthat £, =T, — C; + d;forj = 1,...,n,
the objective function can alternatively be written as

n B
@B GHAZ T+ d)
j= j=
If a = B, then this a regular objective function, and hence there is an optimal
schedule without machine idle time. The case a = 8 reduces to 1| | 2 T}, which is
NP-hard in the ordinary sense (Du and Leung, 1990). Garey, Tarjan, and Wilfong
(1988) prove that the case a < § is NFP-hard, too. We note that the case 8> na
reduces to 1 |rj |Z C;, which is also 9¥-hard in the strong sense (Lenstra, Rin-
nooy Kan, and Brucker, 1977).

We address the case 8 = a, in which the insertion of machine idle time may be
advantageous. Our purpose is to find a feasible schedule o that minimizes f (o).
This problem was introduced by Fry and Keong Leong (19874), who formulate it
as an integer linear program. They used a standard code to find an optimal
schedule. Not surprisingly, the proposed method solves problems up to 12 jobs
only.

The search for an optimal schedule, however, can be reduced to a search over
the n! different job sequences, as there is a clear-cut method to insert machine idle
time to minimize total cost for a given sequence. This method, which requires
O(n?) time, is described in Section 2.

The freedom to leave the machine idle singles out our problem from most con-
current research on scheduling problems with earliness penalties. To our
knowledge, this is the first paper that presents a branch-and-bound algorithm for
a single-machine scheduling problem with a nonregular objective function, where
insertion of machine idle time is allowed. Machine idle time affects the design of a
branch-and-bound algorithm significantly. In Section 3, we discuss some com-
ponents of the algorithm such as the upper bound, the branching rule, the search
strategy, and the dominance rules. Lower bounds are presented in Section 4. The
range of the due dates in proportion to the processing times mainly dictates when
the first job is started and how much machine idle time is inserted between the

130

execution of the jobs. To cope with the variety of due date patterns, we propose
five approaches for lower bound computation. Each of these methods seems to be
suitable for a certain class of instances. Some computational results are reported
in Section 5; conclusions are presented in Section 6.

2. THE INSERTION OF IDLE TIME FOR A GIVEN SEQUENCE

The search for an optimal schedule can be reduced to a search over the n! dif-
ferent job sequences, as there is a clear-cut procedure to insert machine idle time
so as to minimize total cost for a given sequence.

This procedure, however, is not new. Similar methods have been presented (cf.

Baker and Scudder, 1990), including the ones proposed by Fry and Keong Leong
(19878) for the 1| | Z(aC;+ BE;+vT;) problem and by Garey, Tarjan, and Wil-
fong (1988) for the 1| |Z(E; + T,) problem. This is not surprising: as we have
already noted, 7; = C; + E; — d; for all j; for specific choices for a and B, our
problem is equivalent with theirs.
__Suppose that the scheduling order is ¢=(J,,...,J;). Accordingly,
C; = Zf =, px. is the earliest possible completion time of J; in this sequence. We
introduce a vector x = (xy,...,x,) of variables, with Xj (j = 1,...,n) denoting
the amount of idle time immediately before the execution of J;. The actual com-
pletion time of J; is then C; = C; + 2} - ;x;. The problem of minimizing inven-
tory cost for the given]ob sequence is then equivalent to determining values
x;(j = 1,...,n) that minimize

aE(C—FZxQ%-BZmax(Od C Zxk)

J=1 =j i=
subject to

xj;?O, forj=1,...,n

By the introduction of auxiliary variables E; denoting the earliness of J;
(j =1,...,n), we can easily transform this problem into a linear programming
problem. We know therefore that the optimum is attained in a vertex of the
unspecified LP polytope. In addition, we know that the optimal x; are integral,
since the due dates, the processing times, a, and B are integral. A necessary condi-
tion for x to be optimal is that all existing primitive directional derivatives at x are
non-negative. The primitive directional deratives are equal to the change of the
scheduling cost if x; is increased by one unit, and the change of the scheduling
cost if x; is decreased by one unit, for j = 1, ..., n. The increase of x; by one unit
only affects J; and the jobs succeeding J; up to the first period of machine idle
time after J;. We call these jobs the immediate successors of J;. Let Q; denote the
set containing J; and its immediate successors, let #; be the number of early jobs
in Q;, and let g; be the primitive directional derivative for increasing x;. We have
then that g; = & | Q;| — Bn;. Recall that each J; is ideally completed on its due
dated;.

Using the above observations, we develop an inductive procedure for finding
an optimal schedule for o. This procedure finds an optimal schedule for the

131

subsequence (Jy,...,J;), given an optimal schedule for the subsequence
i=15-..,Jy), for I=2,...,n The first'step is to find out whether putting
C, = d is feasible; if so, then we have an optimal schedule for (J,,...,J). Sup-
pose C;=d, is not feasible, because J; overlaps with some other job. We then ten-
tatively put C; = C;_; —p, -1, and compute the optimal deferral of the jobs in Q,,
disregarding the jobs not in Q;. The optimal deferral, denoted by 4, is dictated by
the first point where g, becomes non-negative. This deferral is feasible if § is no
larger than the length of the period of idle time immediately after the last job in
Qy; let this length be 8y, If § < 8,,, then we get an optimal schedule for
(1, . .. ,J1) by deferring the jobs in Q; by 8. If § > §,,,,, then we defer the jobs in
0, by 8,.x- At this point, we repeat the process for J;: we update @), and evaluate
if additional deferral of the jobs in Q; is advantageous. We now give a step-wise
description of the idle time insertion algorithm.

IDLE TIME INSERTION ALGORITHM

Step0.Cy «dy; [« 2.

Step 1.1f/ =n +1, go to Step 9.

Step 2. Put C[«— min{d,, C1_1 —pPr— } If C1 = d/, then g0 to Step 8.

Step 3. Determine Q; and evaluate g;. If g, = 0, then go to Step 8.

Step 4. Compute E; for each jobJ; € Q.

Step 5. Compute 8y, i.€., the length of the period of idle time immediately after
thelast jobin Q).

Step 6. Let a « |(|O;|)a/B], and k « | Q;| —a. Determine the kth smallest
value of the earlinesses of the jobs in Qy; this value is denoted as E . If the jobs
in Q, are deferred by 6 = E|,, then at most a jobs in Q, remain early; due to the
choice of a, g; then becomes non-negative.

Step 7. Defer the jobs in Q; by A = min{8,0,,x }. If & > 6,5, then go to Step 3.
Step 8.1« +1; go to Step 1.

Step 9. An optimal schedule for the sequence (J,, . . . ,J ;) has been determined.

THEOREM 1. The idle time insertion algorithm generates an optimal schedule for a
given sequence.

Proor. The proof proceeds by induction. The algorithm clearly produces the
optimal schedule in case of a single job. Suppose that we want to find an optimal
schedule for the sequence (J,...,J;), having an optimal schedule for the
sequence (J;_1, . ..,J) available. There are two cases to consider. First, suppose
dy < C,_1—p;—1; in this case, we let C; = dj, and retain the completion times of
the other jobs; this specifies an optimal schedule for the sequence (J,...,J).
Suppose now d; > C,—py; for this case, deferring J; _; and thereby its immediate
successors, i.€., the jobs contained in the set Q,_;, may be advantageous. We can
compute the cost of deferring O, _; by one unit; the benefit of deferring J; by one
unit is equal to 8—a. If the cost is higher than or equal to the benefit, then we put
C; = C;-) —p; -1, and we have an optimal schedule for (J, . . . ,J); otherwise, we
defer the jobs in Q;_; by one unit, and evaluate whether additional deferral is

132

advantageous. The idle time insertion algorithm shortcuts this procedure by com-
puting the break-even point, that is, the point where additional deferral is not
advantageous. [J

Consider the example for which the data are given in Table 1. Let « =1 and
B = 4. We construct the optimal schedule for the sequence (J3,J/;,/1). First, we
put Cy =d; = 15. Next, we let C; =d,; =10, as d, <C;—p,. Note that
dy > C, — p,. Therefore, we tentatively put C3 = C, —p, =7, and consider
deferring J; and J,. Apparently, we have Q;={J3.J;}, n3=1,
g3 =2a—B <0, and Epy = 3. However, §,,,x = C;—p; —C, = 2, therefore, we
defer J, and J; by 2 units. At this point, the three jobs are processed consecu-
tively. Now we have g3 = 3a— B, and additional deferral is still advantageous. As
E 3 = 1, we insert one more unit of machine idle time. The optimal schedule for
each subproblem is depicted in Figure 1.

Y/
Jy 3 15
J, |3 10
J3 6 10

TaBLE 1. Data for the example.

I3 I
| i

{] {] i]
I ¥ ¥ V i v i 1

0 2 4 6 8 10 12 14 16 18
F1GURE 1. Schedules for the example.

The algorithm runs in O (n?) time. A complete run through the main part of the
algorithm, i.e., steps 2 through 8, takes O (n) time: this is needed to identify the set
Q;, to compute the primitive directional derivative g, the values &, and 8, and
to defer the jobs, if necessary. The value 6 is determined in O(n) time through a
median-finding technique; see Aho, Hopcroft, and Ullman (1982). After each run
through the main part of the algorithm, a gap between two successive jobs is
closed. As at most # —2 such gaps exist, the algorithm runs in O (n?) time. For the
case 2a = B, i.e., for the problem 1] | 2(E;+T;), Garey, Tarjan, and Wilfong
(1988) show that the idle time insertion procedure can be implemented to run in
O(nlogn) time.

The problem of inserting machine idle time can also be solved by a symmetric
procedure starting with the first job in o. Because of our specific branching rule,
however, we choose to start at the end.

In the remainder, we use the terms sequence and schedule interchangeably.

133

Unless stated otherwise, o also refers to the optimal schedule for the sequence ¢
and to the set of jobs in the sequence 0. From now on, weletp (o) = 2; ¢, p;-

3. THE BRANCH-AND-BOUND ALGORITHM

We adopt a backward sequencing branching rule: a node at level k of the search
tree corresponds to a sequence 7 with k jobs fixed in the last k positions. We
assume from now on that the first job in a partial schedule = is not started before
time p ($—); this additional restriction, imposed to leave space for the remaining
jobs, is easily incorporated in the idle time insertion algorithm. Let f (7) denote
the minimal inventory cost for 7. Let f(7) denote the minimal inventory cost for 7
if the first job may be started before time p($—); the notation f(=) is only
needed in this section. For any partial schedule 7, we have f (7) = f().

We employ a depth-first strategy to explore the tree: at each level, we generate
the descendant nodes for only one node at a time. At level k, there are n —k des-
cendant nodes: one for each unscheduled job. The completion times for the jobs
in 7 are only temporary. Branching from a node that corresponds to 7, we add
some job J; leading to the sequence J;m. Subsequently, we determine the associ-
ated optimal schedule for J;7, and possibly defer some jobs in 7. We branch from
the nodes in order of non-increasing due dates of the associated jobs. Before
entering the search tree, we determine an upper bound on the optimal solution
value. We use the optimal schedule corresponding to the minimum slack time
sequence as an initial solution, and try to reduce its cost by pairwise adjacent
interchanges.

A node is discarded if its associated partial schedule # cannot lead to a com-
plete schedule with cost less than UB; UB denotes the currently best solution
value. Let LB (§$—) be some lower bound on the minimal cost of scheduling the
jobs in the set §—=. Obviously, we discard a node if f (7)+ LB ($—=) = UB. The
following rule is usually overlooked. Let g (0;,0,) be a lower bound on the cost for
scheduling the jobs in o given the final partial schedule 0.

THEOREM 2. The partial schedule m can be discarded if there exists a J; € §— for
which f(Jm) + g($—n—J;,) = UB.

Proor. Consider a complete sequence o that has « as final subsequence. Thus, ¢
can be written as ¢ = 7,J;m,m. Accordingly, we have
f(0) = f(mJmym) = fi;7) + g(mymy,m) = UB. O

It is essential that g(§—=—J;,m) depends only on 7 and not on J;m, and that we
use f(J;m) instead of f (J;7). We derive two corollaries from Theorem 2.

CorOLLARY 1. If for a given partial schedule w, we have that
SUJm) + g(§—7—J;—J ,m) = UB for some J; € $—m and J; € $—m, then J;
precedes J ; in any complete schedule om with f (om) < UB. U

134

COROLLARY 2. The partial schedule w can be discarded if two jobs J; € $—u and
Ji € $—r exist with g(ﬁ—w—Jj ~Jg,m) + min{f(JJm), f(JiJym)} = UB. O

If a partial schedule #* 547 exists comprising the same jobs as 7 and having
[(e7*) < f (om) for any sequence o for the remaining n —k jobs, then we can also
discard #. If f(on*)<<f(o7) for some o, then 7 is dominated by =*. If
f(on*) = f (ow) for every o, then we discard either 7* or 7. The dominance condi-
tion above can be narrowed by the requirement that f (#*) < f () and that the
circumstances to add the remaining n —k jobs to 7* are at least as good as the cir-
cumstances to add the remaining jobs to 7. The question whether such a sequence
m* exists is of course NF-complete. We strive therefore to identify sufficient con-
ditions to discard 7. The temporary nature of the job completion times for 7 com-
plicates the achievement of this goal. We have to be careful with dominance con-
ditions that are based on interchange arguments: the conditions must remain
valid if the jobs in 7 are deferred.

Suppose that the jobs in 7 have been reindexed in order of increasing comple-
tion times. In each of the following theorems, stating the dominance rules, the
sequence 7* is obtained from # by swapping two jobs, say, J; and J;. We do not
compute the optimal completion times for the sequence 7*. Instead, we determine
the job completion times for the sequence 7* as follows. Let C; and C;* be the
completion time of J; in the schedule 7 and #*, respectively. Then we let

C*=C, fori=1,....j=Li=k+1,..., ||,
C*=C—pjtpe.fori=j+1,... k-1,
Ce* =C—pi+pe

C* = (.
Let F(n*) be the cost associated with the completion times C*, for
i=1,...,|n|. Hence, F(n*)= f(«*). To validate the following dominance

rules, we must verify that f (7)) =F(7*), even if the jobs are deferred. Due to the
relation between 7 and 7*, this comes down to verifying that for each set of non-
negative values 8, i = 1,...,n)

k k k K
o G+ B> max{0,d,—~C;—A;} = ad Ci*+ B3 max{0,d,— Cf1)> 4}
i=j i=j i=j i=j
We start with a straightforward result.

TueoreM 3. There is an optimal schedule with J; preceding Ji if p; = p, and
d<d. O
J

THEOREM 4. The partial sequence m can be discarded if there are two jobs J; and J
with Cy, = C; +2‘,’-‘:j +1 P for which

P; > pi, and
k k k k
OIZ Cf -+ B 2 maX{O,d, —C,'}az Ci* +B E maX{O,di—Ci*}. (2)

i=j P=j+ i=j i=j+1

135

PROOF. As there is no idle time between the jobs in the block that begins with J;
and ends with J,, the idle time insertion algorithm will defer all jobs in this block
by the same amount of time A. Define c(4) as the change of cost due to the inter-
change, after deferring the jobs by A = 0; i.e.,

k k k k

cQ)y=a3 C; + B> max{0,d,—C;—A}—a C;* — B> max{0,d,— C;* —A}.
i= i=j i=j i=jf

We prove that ¢(A) = 0 for all A = 0. From condition (2), it follows immediately
that c(0)=0. Furthermore, C;<C;* implies max{0,d;—~C;—A}=
max{0,d,—C;*—4} for all A=0; C;>C* for i=j+1,....,k implies
max{0,d; — C;—A} —max{0,d;, — C;* —A}= max{0,d,—C;}— max{0,d;—C;*}
for all A=0. Combining the inequalities, we get the desired result. []

The possible increase of E; is excluded here. The following theorem shows that in
case no idle time exists between two adjacent jobs, then dominance already exists
if condition (1) is satisfied for A = 0.

THEOREM 5. The partial sequence w can be discarded if there are two jobs J; and J;,
with C, = C; + py for which

pj >pk7

and
a(p; — pr) + Bmax{0,d,—C;} + Bmax{0,d,—C} =
Bmax{0,d;—C,} + fmax{0,d, — C; +p;}. 3)

Proor. Define ¢ (A) as the change of cost due to the interchange, after deferring
the jobs by A= 0; i.e.,

(@)= oalp; = pi) + Bmax{0.d;—C;— A} — fmax{0,d;— C;, —A} +
Bmax{0,d; — C;— A} — Bmax{0,d, — C+p; —A}.

We need to show that condition (3), stating that ¢(0) > 0, implies ¢(4) = 0 for all
A = 0. Note that o << 8 implies that at least one due date is smaller than C; oth-
erwise, condition (3) is not valid.

The expression ¢ (A) has three components. The first component is a(p; —py); it
is a constant. The second component is pBmax{0,d;—C;—A}—
B max{0,d,— C;, — A}; it is a piecewise linear function of A. The function value is
Bpiifd; = C+A,and 0if d; < C;+A. If G, +A > d; = C; +A, then the gradient
is ~1. The third component is Bmax{0,d,—C,—A} —
Bmax{0,d, — C; +p;—A}; itis also a piecewise linear function of A. The function
value is —fBp; if d; = C;+A, and 0 for dy < C,—p;+A. The gradient is 1 if
Cy+A>d = C,—p;+A. Combining the three components yields a piecewise
linear function whose behavior depends on the due dates. We now make the fol-
lowing observations. First, c(4) >0 if A= d;—C; +p;. Second, if ¢(t) >0 for
some t = d;, — C,, then ¢(A) > 0 for all A = 1. As at least one due date is smaller

136

than Cp, the second observation implies that, if d; < d;, then c(4) >0 for all
A=0.

The only case left to consider is d; < dj and 0 <A < d; — Cy. Then, we have
di~Crtp<py, we get c(0)<<(a—pB)(p,—pi) <0, which contradicts the
assumption. This completes the proof. [

In Corollary 3, explicit conditions for the existence of dominance are derived
from Theorem 5. This corollary is referred to when lower bounds are discussed in
Section 4.

COROLLARY 3. The partial sequence m can be discarded if there are two jobs J; and
Jy with C, = C;+py such that

Pj = Px,
and one of the following conditions is satisfied:
Cr—p;=ds,
Cr—pj <dy, C = dy,ep;—pi) = Bl — Ci +p;),
Cr—p; < di, Cp <dy,e{p;—pi) = Bp;s

| Cempy <di, G > d > Bde~dj—pitp).0

THEOREM 6. The partial sequence w with Jy scheduled last is dominated if there is a
J such that

PJ >‘_pk, and C] "“pj‘*‘jak = dk‘
PROOF. Let 7 = oy J;myJ;, and o* = o JywoJ ;. We compute the effect of the inter-
change on the scheduling cost. Since J, is the last job in the optimal schedule 7,
we have Cp =>d,. In addition, we know C;* =max{d,,C,—p;+p;} and

Ci* = C;—p; +pi = d;. First, suppose C;* = d;. The effect of the interchange is
then equal to

oG+ Ce—(Cy—p;+pi) —d)+B(d;— C) =

as Cy —py = C;. Second, suppose that C;* = C; —p, +p;. The effect of the inter-
change is then equal to

o C; + G —(Co —pr+p)) —(C;—p; +pi)]+ Bmax{0,d; — C;} = 0.

The effect remains non-negative if the jobs are deferred. [

THEOREM 7. There is an optimal schedule in which J), is not scheduled in the last
position, if there is some J; withp; > p; and d;—p; 2 di —p.

137

ProoF. We let 7 = 7 J;myJ; and 7* = mJ;myJ; and compute the effect of the
interchange. We have C; = d; and C;—p, = C;; in addition, we define here
C;* = max{d;,Cy —p; +p;}. The effect of the interchange has to be non-negative;
we therefore have to prove that

aCyp + Bmax{o,af; —Ciy=Zalp—p;+C*)+ Bmax{0,d, —px +pdy C;}.
First, we examine the case C;* = Cy —py +p;. Expression (4) is then equivalent to
ﬁmax{(l,a} -C} = Bmax{0,d, —p; +p; —C}},

which is true for any C; since d;—p; = d;—p;. Second, consider the case
C* =d,. ThlS imp]'ies d} >, since d; = C—pe+p; > Ci—prtp; > C;.
Hence, expression (4) is equivalent to

aCy, + B(d;— C)) = a(py —p; +4d;) + Bmax{0,d, —pi +p;— C;}.
Suppose max{0,d, —py +p;—C;} = di —pr+p; — C;. We must then verify that
aCy + Bd; = ald;—p;+pi) + Bl —pi+py).

As Cy == d;,, we only need to prove that

0= (a—B)d;—py)— (@ —p)k

this expression is true since B> a and d;—p; = d; —p;. Conversely, suppose
max{0,d;—p;+p;—C;} =0. Since aCy+p(d,—C)= oC,+d,—C)=
a(py +d;) > o py —p; +d;), expression (4) is also true for this case. L[l

COROLLARY 4. There is an optimal schedule in which J; is scheduled last if p; = p;.
andd;—p; = d, —py foreachJy € §. [

4. LOWER BOUNDS

In this section, we present five lower bound procedures. It seems to be impossible
to develop a lower bound procedure that copes satisfactorily with all conceivable
due date patterns. For example, imagine an instance with due dates small with
respect to the sum of the processing times; little idle time needs then to be
inserted. In contrast, consider an instance with d, > 27 p; for each Ji; the
machine will then be idle for some time before processing the first job. Numerous
variations and combinations of both patterns are possible.

Each of the lower bound methods is effective for a specific class of instances.
Nonetheless, we use them supplementary rather than complementary. We parti-
tion the job set § into subsets, apply each lower bound method to each subset, and
aggregate the best lower bounds. In this way, we hope to obtain a lower bound
that is stronger than the separate lower bounds obtained for the entire set §. The
success of this strategy depends on the partitioning strategy. The jobs in a subset
should be conflicting, that is, they should overlap when completed at their due
date. If they are not, then we get the weak lower bound a2} 4;. In this sense, we
prefer subsets such that the executions of the jobs in the same subset interfere
with each other, but not with the execution of the jobs in the other subsets. We
propose two partitioning strategies that pursue this effect.

138

The first strategy is motivated by the structure of any optimal schedule. The
jobs that are consecutively processed between two periods of idle time interfere
with each other, but not with the other jobs. Such a partitioning is hard to obtain.
To mimic such a partitioning, we identify clusters. A cluster is a set of jobs such
that for each job J; in the cluster there is another job Jy in the cluster such that the
intervals [d;—p;, d;] and [d; —py, d;] overlap; hence, for each job in the cluster
there exists a conflict with at least one other job in the cluster. However, clusters
may interfere with each other in any optimal schedule.

The second strategy is the following. Given a partial schedule 7, we try to iden-
tify the jobs not in 7 that will be early in any optimal complete schedule of the
form om. We call these jobs surely early. The idea is to derive an upper bound T on
the completion times of the unscheduled jobs; accordingly, J; &€ §— is surely
early if 4; > T. For instance, let g be the primitive directional derivative for defer-
ring the first job in 7 by one unit. Suppose that |§—= | (B—a) < g. The current set
of completion times for the jobs in 7 is then optimal for any schedule o7; an upper
bound T'is then the start time of the first job in 7. Other upper bounds are derived
from the dominance rules. Suppose J; and J, are adjacent in # with p; > p;, and J;
preceding J . (It is not necessary that C; = C; +p;.) The first condition of Corol-
lary 3 indicates that # is dominated if Cy = d +p;; hence, an upper bound is
given by di+p;—1—2; =4 ¢ <, pi- From the other criteria in Corollary 3 and
from Theorem 7, similar upper bounds are derived. They can also be derived from
Theorem 4, but this requires an intricate procedure. Finally, we set T equal to the
minimum of all upper bounds. If no upper bound is specified, then welet T = oo.

4.1. First method: relax the objective function
Let & denote the set of surely early jobs; let @ be the set of remaining jobs.
Observe that

min, eg f(6) =min, cq, aC; + min,eq, [acj + ﬁEj]S

JER J €8
where Qg and {5 denote the set of feasible schedules for the jobs in & and &. The
problem of minimizing 2 s eslaC; + BE;]is solvable in polynomial time; we have
E;= dj~ C}- for each J fi= &, and hence, the scheduling cost reduces to
2j egl(a—B)C; + Bd;]. Applying an analogon of Smith’s rule (Smith, 1956), we
minimize this cost component by scheduling the jobs in & in the interval
[T—p(®),T] in order of non-increasing processing times; the correctness of this
rule is easily verified by an interchange argument. The other subproblem is solved
by Smith’s rule: simply schedule the jobs in @ in non-decreasing order of their
processing times in the interval [0,p (R)]. In the example, & = &, and the lower
boundis Zla.

A slight improvement of the lower bound is possible. Let E,* be the
minimum maximum earliness for the jobs in @ if they are processed in the interval
[0,p(R)]. We compute E ., * from the minimum-slack-time sequence, that is, the
sequence in which the jobs appear in order of non-decreasing values d;—p;.
Avoiding E ., * requires at least E, * units of machine idle time. The lower
bound can therefore be improved by aE ,,*. If we have stored the shortest-

139

processing-time sequence and the minimum-slack-time sequence, then we com-
pute this lower bound in O (#) time per node. In the example, we have E . * = 4,
hence, the lower bound is 25a. This lower bound approach can only be applied in
conjunction with Theorem 2if& = &.

Since all jobs in @ are scheduled in the interval [0,p(®)], and since only one
early job in & is taken into account, this lower bound is only effective if the due
dates are small relative to the sum of the processing times.

4.2. Second method. relax the machine capacity

Recall that we write the objective function alternatively as
SO =@B—a2}- E;+aZ]- T; + a2}, d; for each 0 € {. Since the job ear-
linesses and tardinesses are non-negative by definition, we have that
f(o)=aZi_, d;foreacho €.

We gain more insight if we derive this bound in the following way. Suppose that
the machine can process an infinite number of jobs at the same time; this is a
relaxation of the limited capacity of the machine. As a < 8, the optimal schedule
has C; = d; for each J;; this gives rise to the lower bound a2}, d;. If no jobs
overlap in their execution, then this schedule is feasible and hence optimal for the
original problem. For the example, this relaxation gives the lower bound 35a. The
corresponding schedule is not feasible: J, and J; overlap in their execution (see
Figure 2).

F1GURE 2. Gantt chart for machine with infinite capacity.

This conflict can be settled by executing J ; before J,, or, conversely, J, before
J 5. If we intend to schedule J; after J;, then we have basically two options: we
retain either the completion time of J 5 or the completion time of J,. For the first
option, the additional cost is 3a; for the second option, the additional cost is
3(8—a). Executing J, after J; costs therefore at least 3y extra, where
vy = min{e, B—«}. Similarly, we find that executing J, after J, costs 6y extra.
Hence, the minimum additional cost required to settle the overlap is
min{3y, 6y} = 3y. Accordingly, an improved lower bound is 38a.

We now describe a general procedure to improve the lower bound o27 -, d; by
taking the overlap between jobs into consideration. Overlap of J; and J; (J;557))
occurs if the intervals [dj—p;,d;] and [dy—pi.d] overlap. Let
¢ = ymax{0, d;—(d; —py)} denote the additional cost to execute J; immediately
before Ji; let o(i) = j denote that J; occupies the ith position in the sequence o.
For any optimal schedule o, we have that f () = a2}, d; + 272 ! Cafj)atj +1); the
last term is the length of the Hamiltonian path o(1) - - - e(n). The following pro-
cedure shows that the Hamiltonian path problem is solvable in O (rlog n) time.

140

Partition the set of jobs into a set of clusters Q,,...,0,, as described above.
Let HP, be the shortest Hamiltonian path for Q;, and let ¢ (HP)) denote its length.
We have c(HP)) = v(p(Q)) — max; ;e g4 i), foreach /(I =1,...,m). We
have also 272 ! Cagjya(+1) = 2(=1 ¢ (HPy) for any sequence , as can be easily ver-
ified. The individual Hamiltonian paths can be combined into one Hamiltonian
path of length no more than the sum of the lengths of the separate paths.

4.3. Third method: relax the due dates

4.3.1. The common due date problem

Suppose the due dates have been replaced by a due date d common to all jobs.
Consider the following common due date problem: for a given d, determine a
schedule that minimizes

(B—a)é E +aé T}-—i—and—ﬁé max{0,d —d,}. (CD)
=1 =1 =1
For any d, the opt;mal solutii)n value is a low;r bound for the original problem,
since
fo)= aél C + B}é} max{0,d;— C;}
j= =
{ baé Cj—é—ﬁélmax{(),d—q} —-Bi max{0,d — d;}
i= i=

n n n
=B-)X Ej+aX T;+and — B3 max{0,d—d;}.
j=1 j=1 J=1
There are two issues involved: (i) how to solve problem (CD)?, and (ii) how to
find the value 4 maximizing the lower bound?

Problem (CD) consists of two parts. The first part is the problem of minimizing
(B—a)Z}=; E; + 27~ T;. If the machine is only available from time 0 onwards
and if d is given, then this problem is 9(%-hard (Hall, Kubiak, and Sethi, 1991;
Hoogeveen and Van de Velde, 1991). However, a strong lower bound L(d) is
derived by applying Lagrangian relaxation (see Hoogeveen, Oosterhout, and Van
de Velde, 1990). The second part is the problem of maximizing the function
G:d—and — B27.,max{0,d —d;}; this problem is solvable in polynomial
time. Rather than solving problem (CD) to optimality and finding the best d, we
maximize the lower bound L(d)+ G (d) over d.

First, we derive the best Lagrangian lower bound L(d) for a given d. The
derivation proceeds without details; we refer to Hoogeveen, Oosterhout, and van
de Velde (1990) for an elaborate treatment. Let & denote the set of jobs that are
not tardy. Since the machine is only available from time 0 onwards, we have the
condition that p (6) < 4. We dualize this condition by use of the Lagrangian mul-
tiplier A > 0. For a given A = 0, the Lagrangian problem is then to find L(d,}),
which is the minimum of

(B—a)=)=1 E; + a=] -, Ty + Ap(6) — Ad.

141

The Lagrangian problem is solvable in polynomial time by Emmons’s matching
algorithm (Emmons, 1987), which proceeds by the concept of positional weights.
Straightforward arguments show that there exists an optimal schedule with some
job completed exactly on its due date. The weights for the early positions are then
AMA+(B—a), A+2(B—a),...,A+(n —1){f—a); the smallest weight is for the
first position in the schedule. The weights for the tardy positions are
a,2a,...,na; the smallest weight is for the last position in the schedule.
Emmons’s matching algorithm assigns the job with the jth largest processing time
to the position with the jth smallest weight, for j = 1,...,n. Ties are settled to
minimize the amount of work before d. Let o) be the optimal schedule for the
Lagrangian problem, and let W (0,) be the amount of work before din oy
The best Lagrangian lower bound L (d) is found as

L(d)=max{ L(@A) | A=0}.

Due to the integrality of « and 8, the optimization over A = 0 may be reduced to
the optimization over A €ENy. The optimal choice for A can be shown to be such
that W{oy—-,)>d = W(o,); this choice gives us the Lagrangian lower bound
L(d).

We are now able to characterize the function L : d - L(d). The function L is
continuous and piecewise linear; the value L(d) depends on d only through the
choice for A. Hence, there are at most min{n?, na} breakpoints: they correspond
to the values d = W{(a,), for A=10,1,...,na The derivative of the trade-off
curve between two consecutive breakpoinds, the first corresponding to W(s,), is
equal to —A.

The function G: d— and — BZ] - max{0,d —d,} is also continuous and piece-
wise linear; the breakpoints correspond to the valuesd = dj, for j = 1,...,n. The
lower bound L (d)+ G(d) is therefore also continuous and piecewise linear in d;
the value 4 maximizing this lower bound is found at a breakpoint.

For any given d, L(d) is determined in O (nlogn) time. The function L has
O(min{n*,na}) breakpoints; the corresponding values are computed in O (n?)
time. (Every new breakpoint is derived from the previous one by interchanging
some jobs, which requires only constant time, and only O(n?) interchanges are
needed to find all breakpoints.) The function G has O(n) breakpoints. Hence,
maximizing L (d)+ G (d) over dis achieved in O (n?) time.

In our 3-job example, we have d = 10. For the positions after d, the weights are
1,2, and 3; for the positions before d, the weights are 0, 3, and 6. An optimal
schedule is depicted in Figure 3. Its objective value is 39; this happens to be the
optimal solution value for the original problem.

L s | S |

0 d 13 16
FIGURE 3. Optimal schedule for the common due date problem.

142

In a node of the search tree, there are two ways to implement this lower bound
procedure. Let 7 == 7,7, be the partial schedule associated with the node. Disre-
garding =, we get the lower bound f(7) + c¢(§—), where c¢(§—) denotes the
optimal solution value for the common due date problem for the jobs in §—a.
However, if 7; and the optimal schedule for the common due date problem over-
lap in their execution, then it makes sense to take 7 into regard. We do this in the
following way. First of all, we require that d is common to each J; &,. Subse-
quently, we solve the common due date problem under the condition that the jobs
in m; retain their positions. Given the set of positions, it is easy to construct an
optimal schedule: assign the jobs in 7, to the last |7, | positions, and assign the
other jobs to the remaining positions according to Emmons’s algorithm. Lemma 1
states that we may use the same set of positions as for the case m) = &.

LEMMA 1. The optimal schedule for the common due date problem with the last |, |
Jjobs fixed occupies the n positions with least positional weights, wheren = n — |m, |.

Proor. Suppose to the contrary that the optimal schedule o for the jobs J; &,
does not occupy the 7 positions with least positional weights. Let n, jobs in o be
early or just-in-time and let n, =n—n, jobs in ¢ be tardy. Suppose the set of
optimal weights corresponds to 1, positions before d, and to n, = n—n, posi-
tions after d. Suppose n; <n,. We then transfer the job occupying the n,th tardy
position in o (the first tardy job) to the (n, + 1)th early position. The latter posi-
tion is in the optimal set; the former is not. Hence, this transfer reduces the objec-
tive value, thereby contradicting the optimality of 0. If n; > n, then a similar
argument applies. [J

The common due date lower bound can only be used in conjunction with
Theorem 2 if the lower bound is independent from the partial sequence Jm. Itis
effective if the due dates are close to each other.

4.3.2. The common slack time problem

Consider the special case of the 1| |aZC;+ BZE; problem where all jobs have
equal slack time s; i.e.,d; — p; = s foreachJ; (j = 1, ..., n). This problem has the
same features as the common due date problem. The best Lagrangian lower
bound is also computed in O(nmin{e,n}) time; there are the same options to
implement the lower bound. The common slack time lower bound is effective if all
slack times are close to each other.

4.4. Fourth method: relax the processing times
Again, we consider a special case of the 1| |aZC; + BZE; problem. Assume that
all processing times are equal. Theorem 3 indicates that the earliest-due-date
sequence (i.e., the sequence with the jobs in order of non-decreasing due dates) is
optimal. This special case is solved in O (n?) time, which is needed to compute the
optimal schedule for a given sequence.

Let us return to our original problem. Define ppi, = min;<; <,p;. The

143

optimal solution value of the relaxed problem 1|p; = p i, | @2C; +B2E; pro-
vides a lower bound for the original problem: each set of job completion times
that is feasible for the original problem is also feasible for the relaxed problem
and has equal cost.

Given a partial schedule 7, let o be the earliest-due-date sequence for the jobs in
§—m, and let g (o) be the optimal solution value for the relaxed problem. Disre-
garding 7, we get the lower bound f () -+ g(¢). We can marginally improve on
this lower bound. Suppose we have reindexed the jobs in order of non-decreasing
‘due dates. Corollary 4 indicates that J, is also scheduled last if we put its process-
ing time equal to min{ p,,p min +d, —d, -1 }. An improved lower bound is there-
fore given by f (m)+ g (o) +a[min{ p,, pmin +d = dp—1 } —Pmin)-

If the execution of jobs in o overlap with the execution of jobs in #, then it pays
to take 7 into account. The lower bound is then equal to the cost for the sequence
o with the jobs in # still having their original processing times.

Both bounds are computed in O(n?) time and dominate the lower bound
a2 d;. Only the first version can be used in conjunction with Theorem 2. The
common processing time lower bounds are only effective if the processing times
are close to each other.

In our 3-job example, we have p,;, =3, d; =15, and d, =d; = 10. An
optimal schedule for the common processing time problem is depicted in Figure
4. Its objective value is 39¢; this is equal to the optimal solution value for the ori-
ginal problem.

L Js | 5 | 5]

0 10 13 16

F1GURE 4. Optimal schedule for the common processing time problem.

4.5. Fifth method: Lagrangian relaxation
The problem of minimizing total inventory cost, referred to as problem (P), can be

formulated as follows. Determine values C; and E; (j = 1, ..., n) that minimize
H n
a X CGH+BIE; (P
j=1 =i

subject to
E; =0, forj=1,...,n, 5)
E;=d—C, forj=1,...,n, (6)
C;=C,+p;or Ckaj—Fpk,forj,k:1,...,n,j:,£k, 9
C—p; =0, forj=1,...,n (&)

The conditions (5) and (6) reflect the definition of job earliness, while the condi-
tions (7) ensure that the machine executes at most one job at a time. The condi-
tions (8) express that the machine is available only from time 0 onwards.

144

We introduce a non-negative vector A = (Ay, . . ., A,) of Lagrangian multipliers
in order to dualize the conditions (5). For a given vector A == 0, the Lagrangian
problem s to determine the value L (A), which is the minimum of

a3 G+ 3 B-NE
i=1 i=1

subject to the conditions (6}, (7), and (8). We know that for any given A = 0 the
value L (A) provides a lower bound to problem (P). If B—A; <0 for some J;, we
get E; = oo, which disqualifies the lower bound. We therefore assume that

N <B, forj=1,...,n ®
This, in turn, implies that, for any solution to the Lagrangian problem, conditions
(6) hold with equality: E;, = d,— C; foreach j (= 1,...,n). Hence, the Lagran-
gian problem, referred to as problem (L), transforms into the problem of minim-
izing

DB +)\;)Cj + 2 B —)\;)dj Ly
j=1 j=1
subject to
CizCitpjor CG=C+pforj,k=1,...,n, jFk, N
‘ Cj—pjk(}, forj=1,...,n &

fa—p +)\]— < 0 for someJ;, we get C; = oo, which makes the lower bound rather
weak. However, as demonstrated at the beginning of Section 4, we can determine
an upper bound T on the job completion times, which implies that

CjéT, forj=1,...,n (10)

Although the conditions (10) are redundant for the primal problem (P), they are
essential to admit values A; << B—a. For solving problem (L) under these addi-
tional conditions, we first determine the sets of jobs ¢ = {J;|A; > B—aj},
¢~ ={J;|A; <B—a}, and & = {J;|A; = B—a). The following theorem stipu-
lates that problem (1) is solved by a simple extension of Smith’s rule (Smith,
1956) for solving the 1| |Zw;C; problem; the proof proceeds by an elementary
interchange argument.

THEOREM 9. Problem (1.,) with the additional conditions (10) is solved by scheduling
the jobs in 4" in non-increasing order of ratios (a— B+X))/p; in the interval
[0,p(4)] and scheduling the jobs in $ in non-increasing order of ratios
(a—pB+N\))/p; inthe interval [T —p (4}~), T The remaining jobs can be scheduled in
any order in the interval [p ($), T—p ¢} O

We are interested in determining the vector A* = (A;*,...,A,*) of Lagrangian
multipliers that induces the best Lagrangian lower bound. The vector A* stems
from solving the Lagrangian dual problem, referred to as problem (D): maximize

145

L (D)
subject to
Oé)\js;ﬁ, forj=1,...,n

Problem (D) is solvable to optimality in polynomial time by use of the ellipsoid
method; see Van de Velde (1991). Since the ellipsoid method is very slow in prac-
tice, we take our resort to an approximation algorithm for problem (D).

First, we identify the primitive directional derivatives. In the solution to the
Lagrangian problem (L), the position of J; depends on the ratio (¢ —B+A;)/p;;
we call this ratio the relative weight of J;. The larger this relative weight, the
smaller the completion time of J;. If other jobs have precisely the same relative
weight as J;, then the exact position of J; is determined by settling ties. Let now
C;" (A) denote the earliest possible completion time of J ; in an optimal schedule
for problem (Ly); let C;” (A) denote the latest possible completion time of J; in an
optimal schedule for problem (Ly). If we increase A; by € > 0, then we can choose
¢ small enough to make sure that at least one optimal schedule for problem (L,)
remains optimal; for a proof, see Van de Velde (1991). In fact, all such optimal
schedules must have J; completed on time C;” (A). If we increase A; by such a suf-
ficiently small ¢>0, then the Lagrangian objective value is affected by
e(C;" (A\) — d)). The primitive directional derivative for increasing A, as denoted
by I (M), is therefore simply

LAN=CiMN—d, forj=1,...,n

Hence, if /" (A) > 0, then increasing A; is an ascent direction: we get an improved
lower bound by moving some scalar step size along this direction. In a similar
fashion, we derive that the primitive directional derivative for decreasing A,
denoted by /;” (M), is

LFAN=d—-Ci(), forj=1,...,n

If /7 (A)> 0, then decreasing A; is an ascent direction. Note that directional
derivatives may not exist at the boundaries of the feasible region of A; for
instance, /; (A)is undefined forA = (0,...,0), foranyi =1,...,m.

Second, we determine an appropriate step size A > 0 to move by along a chosen
ascent direction. We compute the step size that takes us to the first point where
the corresponding primitive directional derivative is no longer positive. If no such
point exists, then we choose the step size as large as possible while maintaining
feasibility.

Suppose / f (A)>0: J; is tardy in any optimal schedule for problem (Ly).
Increasing A;, thereby putting J; earlier in the schedule, is an ascent direction. We
distinguish the cases p;—d; >0, p;—d;=0, and p;,—d; <0. Consider the case
pj—d; > 0. Hence, J; is unavoidably tardy, and / F(A)>0 for all A=0 with
A; < B. Therefore, we take the step size A = B—A;. Accordingly, we must also
have that)\j* = B; otherwise, increasing)\}-* would be an ascent direction. If
p; = dj, then there exists an optimal solution to problem (D) with A;* = B. Find
9= {J; | pj=d;}. We bave proven the following result.

146

THEOREM 10. There exists an optimal solution for the Lagrangian dual problem (D)
with\;* = B foreachJ, € 9. [

Suppose now p; << d;. The step size A must satisfy A;+ A << f. We identify the
first job in the schedule, say, J, for which C; — p, + p; < d;. Since p; < d;, such
aJ) always exists. If J; is scheduled in J;’s position, then J; is not tardy. Hence, if
there were no upper bound on A, then increasing A; would be an ascent direction
up to the point where the relative weight of J; becomes equal to the relative weight
of J;.. Hence, the maximum step size along this ascent direction is the largest value
A such that

A\ +A<B

Let now A=(A,,... ,7\j +4,...,A,). Suppose ?\j + A <Bj~. Since the relative
weights for all jobs but J; have remained the same, optimal solutions for the prob-
lems (L3) and (L) exist with the same jobs scheduled before J,. Now J; and J;
have equal relative weights: in any optimal solution to problem (Ly), J; can be
scheduled before J;, or after J.. If J; is scheduled before J, then J; is not tardy; if
J; is scheduled after J¢, then J; is not early. Hence, we have that C*(?\) =d <
C (P\) the step size A has taken us to the first point where the primitive dlrec-
tlonal derivative for increasing A; is no longer positive. 1f ?\ == B, then the step size
has been chosen as large as pos31ble

Suppose now /77 (A) < 0: J; is eatly in any optimal schedule for problem (Ly).
Decreasing A;, thereby deferring J;, is an ascent direction. We distinguish the
casesd; >T,d, = T, and d;, < T. Consider the case d; > T, hence, J [is unavoid-
ably early, and /; (A) >0 for all A with)\j > 0. Therefore, we choose the step size
as large as possible: A = A;. Accordingly, we also must have that A;* = 0; other-
wise, decreasing A * would be an ascent direction. If d; = 7, then there exists an
optimal schedule to problem (D) with A;* = 0. Identify & = {J; | d; = T}. We
have proven the following result.

THEOREM 11. There exists an optimal solution for the Lagrangian dual problem (D)
withA;* = OforeachJ;, € & O

Consider now the case d; < T. The procedure to compute the appropriate step
size A proceeds in a similar fashion as above. We identify some J;, as the first job
in the schedule with C; = d;. If J; is scheduled in J}’s position, then J; is not
early. Hence, if there were no lower bound on A, then decreasing A j would be an
ascent direction up to the point where the relative weight of J; becomes equal to
the relative weight of J. Hence, the maximum step size along this ascent direction
is the largest value A for which

—B+A; —A)/p; = (a—B+N)/pr, and

147

LetA = A, .-, A — A, ... A,). Suppose A; > 0. Since the relative weights for all
jobs but J; have remained the same, optimal solutions for the problems (L3) and
(L)) exist with the same jobs scheduled after J;. Since J; and J; have now equal
weights, J; can be scheduled after J, or before J, in any optimal schedule for
problem (LA) If J; is scheduled after Jy, then J; is not early; if J; is scheduled
before J;, then J is not tardy. Hence, we fmd that C/ (V) < d <C V). I
)\ = (}, then the step was taken as large as possible.

Temnnatmn of the ascent direction procedure occurs at some A where all exist-
ing primitive directional derivatives are non-positive. If all primitive directional
derivatives exist at such a A, we have

CTAN<d<CrM), forj=1,...,n

These termination conditions also apply to A*, since they are necessary for
optimality. They are, however, not sufficient for optimality; hence, termination
may occur having A£A*, ie., before finding the optimal vector of Lagrangian
multipliers. Before implementing the ascent direction algorithm, we make use of
this fact to decompose the Lagrangian dual problem (D) into two subproblems.
This decomposition is achieved by partitioning ¢ into four subsets, including the
sets 3 and & we already identified.

Consider some job J; € §—6& with d; > p(§—6). If A; > B—a, then J; will be
early in any optimal solution to problem (L,). This means that /7" (A) > 0, and
hence we must have that 0 <A;* < $—a. The set ¥ of jobs that share this pro-
perty is determined by the follovmng procedure,

PARTITIONING ALGORITHM 1

Step 0. 9« @, and reindex the jobs in §—& according to non-increasing due
dates. Let k«-1.

Step L.Ifk >n — |&] orifdy <p($—&—9), thenstop. Else Fe—F U {J; }.

Step 2. Setk«k +1; goto Step 1.

Suppose some job J; € ¥ exists with d;,> T—p(&). If we let A, = B—a, then
i (?\)<dj; hence, decreasing A; is an ascent direction. Decreasing Aj gives
(a=pB+A;)/p; <0, as a result of which the execution of J; interferes with the exe-
cution of the jobs in & We now partition the set F mto subsets % and %
(F=9,U%) such that 4, <T—p(6U %) for each J; €%, and such that
d;>T—p(6UH) for cach J ; € %. To achieve this, we use the following parti-
tioning procedure; it is similar to the first one.

PARTITIONING ALGORITHM 2

Step 0. Put %, « &, let P « T —p (&), and reindex the jobs in ¥ according to non-
increasing due dates, Let k< 1.

Step 1. If k > ||, then stop. If d; < P, then let % « {Jy,...,J g}, and stop.
Otherwise, %, «%, U {J;}, and set P « P —p,.

Step 2. Set k«k +1; go to Step 1.

148

Let® =§—T—6—G

THEOREM 12. For eachJ; € %;, we have that \;* = B—a.

PrOOF. Since we havep(TUR) < d; < T —p(& U %), the result follows. [

At this stage, we can decompose the Lagrangian dual problem (D) into two sub-
problems. Since (a—g+A;*)/p; = 0 for each J; € G, the jobs in ; do not inter-
fere with the execution of the other jobs. However, ¥ and % interfere with each
other, and & and %, interfere with each other. On the one hand, we have the dual
problem restricted to the sets ¥ and ®; on the other hand, we have the dual prob-
lem restricted to the sets %, and &. In each optimal schedule for problem (D), the
jobs in ¥ and @ are scheduled in the interval [0,p (TU %)}, and the jobs in Fand &
are scheduled in the interval [T —p (6 U %,),T']. We give step-wise descriptions of
the ascent direction algorithms for these two subproblems. Both are based upon
the pn'mitive directional derivatives and the step sizes we discussed earlier. The
jobs in %; are scheduled somewhere in the interval [p(SUR), T —p(& U?}’z)] they
are left out of consideration. We introduce some new notation. Let (L$V?) and
(L)\LJ *} denote the Lagran g;lan problem restricted to the set RUJ and to the set
EU%; let L*YI\) and L? *(A) denote their optimal solution values.

ASCENT DIRECTION ALGORITHM FOR THE SET TU &

Step 0. For each J; €9, set A, < A;* = B; for each J; € A, set A; « . Solve
(LYY9), settling ties arbltranly, compute the job completlon times.

Step 1. For each J; € &, do the following:

@I C) <d, identify Ji as the first job in the schedule with C;, = d;. Com-
pute the largest value A such that

(a—B+A;—4)/p; = (@—B+N)/pi, and (1D

A—A=B-a (12)
Decrease A; by A, reposition J; according to its new relative weight, and update
the job completion times.
by If C f (A)>d;, identify J; that is the first job in the schedule with
Cr —pi+p; < d;. Compute the largest value for A such that

(a—B+A;+8)/p; = (a—B+A)/ py, and

A +HA<B
‘Increase A j l?y A,. reposition J f according to its new relative weight, and update the
job completion times.

Step 2. If no multiplier adjustment has taken place, then compute L*“3(A) and
stop. Otherwise, go to Step 1.

THEOREM 13. The Cgrocedure described above generates a series of monotonically
increasing values L*“°(\).

149

PRrOOF. First, consider some J; € ® with C;”(A) < d;: decreasing A, is an ascent
direction. For brevity, we let p; = a—B+A,; foreach j (j = 1,..., |RUT]). We
reindex the jobs in order of non-increasing values p, /p;, settling all ties arbitrarily
except for J;: we glve J; the largest index possible. Accordingl gy we obtain the
sequence (J 15+ -»J |ausg)), Which is optimal for problem (L$Y?), with job com-
pletion times Cl, ,C ESLE We note that C; = C; (A). Let A be the step size
computed as prescnbed in the ascent dlrecuon algorithm, and let
= Q- A8 LA gug))

We distinguish the case that condition (11) holds with equality from the case
that condition (12) holds with equality. Consider the first case; accordingly let J;
be the job specified in the ascent direction procedure. In more detail, the sequence
under considerationis (J, . .. Jj_],f Jiwts ookt Ik +15 - - T jqus)); an
optimal sequence for problem (Ly U63) is then Vi odjmtdjats e o Jid s
Ji+15--->J |gug))- The Job completion times for the latter sequence can con-
vemently be expressed in terms of Cy,...,Cqus. We now prove that
LAYIN) > L%U@’()\) We have

LRI = EMC +(p;—ANCS (7\)+ 2 IPz)+
i= =j+
AVUT| ~ |RUF|

2 p(C; p,)+ > wmC+ 2 (B—\)d;+Ad,

i=j+1 i=k+1

= L™\ —p; E Wty 2 pi—AMCT)+ 2 pi—d)
i=j+1 —;+1 '—_;‘-H
k=1

—L(}\)_P; 2 f*‘:'*"?’*; 2 Pi— A(C »N+ 2 Pi— d)+
i=j+1 i=j+1 i=j+1

(1 — D)pr—pjb-

Note that (w;—A)/p; = w/py; hence, we have (u;—A)p, —p;m = 0. This
implies that
— k—1 k—1
LO=LO+p 3 [p/p—mip)] -GN+ 3, 1p,- —d)
i=j i=j+
Since d; > C; () + Sk _j+1p,, B /p 3>p,,/p, foreach i i=/j+1,...,k—1),
and A > 0, we have that L*Y9(\) > 1999).

Now assume that the condition (12) holds with equality and the condition (11)
does not: A = a— B+A,. This implies that J; will now be placed after some job J;,
with j<h<k For this case, the second sequence is
(J], v v{j—]Jj—*—l’ eea :Jh;Jj:Jk+la . ,Jk, “es :‘I]@U‘?)'I). We perform a similar
analysis as above to obtain

— h k h
L) =L"N-p; I m+y I p—MGO+ 3 p—d)=
i=j+1 YRS P=j+l

i h
=L +p, 3 Lpi(juj /p; = i /P:)] —ACT M)+ X pi—dp.
i=j+1 =l

150

At this point, similar arguments as before apply to show that

%U J(A) -~ L‘E%Uﬂ'()\)

Second, consider the case that C ; (A) > d; for some J; € 4 increasing A; is an
ascent direction. Let A be the desired step size, computed as described in the
ascent direction algorithm. The proof to show that
LAy, N +4, A qug) > LY, A A jqug)) follows the
same lines as above. I]

ASCENT DIRECTION ALGORITHM FOR THE SET %, U &

St%%() Set Aj < B—a for each J; € %, and A; < A;* = 0 for each J; € &. Solve
(LY, setthng ties arbitrarily; compute the Job completlon times.

Step 1. For eachJ; € %, do the following:

@If C; (M) <4, identify J} as the first job in the schedule with C; = d;. Com-
pute the largest value A such that

A<,
Decrease A; by A, reposition J; according to its new relative weight, and update
the job completion times.
() If C f (M) >d;, identify J, that is the first job in the schedule with
Cy < d;+p; —p;. Compute the largest value for A such that

(@—B+A;+48)/p; = (a— B+AL)/ pi, and

}\j +A< B g 8
Increase A; by A, reposition J; according to its new relative weight, and update the
job completion times.

Step 2. If no multiplier adjustment has taken place, then compute L*Q) and
stop. Otherwise, go to Step 1.

THEOREM 14. The procedure described above generates a series of monotonically
increasing values L*YI(\).

ProOF. The proof proceeds along the same lines as the proof of Theorem 13. [

For eachJ; € §—%, let C; and A; denote the completion time and the Lagrangian
multiplier upon termination of the appropriate ascent direction algorithm. We
note that A; = B; for each J; € ,A; = B—a for each J; € ¥, and A; = 0 for each
J; € &. Hence, the overall Lagrangian lower bound is given by

LO) = zac+gad+g[)c+5d]

J.€F J,EH J,eb

+ 3 [(a—;3+i)cj—(ﬂ-ij)dj}

J,ERUSE,

151

5. COMPUTATIONAL RESULTS .
The algorithm was coded in the computer language C; the experiments were con-
ducted on a Compaq-386/20 Personal Computer. The algorithm was tested on
instances with 8, 10, 12, 15, and 25 jobs. The processing times were generated
from the uniform distribution [10,100]. The due dates were generated from the
uniform distribution [P(1—T —R/2), P(1—T +R/2)], where P = 27, p; and
where R and T are parameters. For both parameters, we considered the values 0.2,
0.4, 0.6, 0.8, and 1.0. This procedure to generate due dates parallels the procedure
described by Potts and Van Wassenhove (1985) for the weighted tardiness prob-
lem. For each combination of 7, P, and n, we generated 5 instances. Each instance
was considered with «=1 and with 8 running from 2 to 5.

The general impression was that instances become difficult with smaller values
of T, with smaller values of R, and with smaller values of 8. A small value of T
induces relative large due dates, implying that the machine will be idle for some
time before processing the first job. A small value of R induces due dates that are
close to each other; it is then harder to partition the jobs. A large value of 8
implies that earliness is severely penalized; most jobs will therefore be tardy.
Accordingly, the instances with 7=0.2, R =0.2, and 8 = 5 are the hardest; the
instances with T=1.0, R =1.0, and 8 = 2 are the easiest.

Table 2 exhibits a summary of our computational results; we only report the
results for the instances with T and R equal. It shows that instances with up to 10
jobs are easy. For n =12, the instances with T'= R =0.2 require already consider-
able effort. For n =20, only the choice T =R =1.0 induces instances that are
solvable within reasonable time limits. It is likely, however, that the performance
of the algorithm is considerably enhanced by fine-tuning the algorithm to specific
instances. Currently, all lower bounds are computed in each node of the tree;
Lagrangian relaxation, for instance, is useless for instances with T =R =0.2.

6. CONCLUSIONS

Although machine idle time is a practical instrument to reduce inventory cost, a
considerable lack of theoretical analysis of related machine scheduling problems
exists. Within this context, we have addressed the 1| |a=C;+BZE; problem for
the case that a < 8. It is a very difficult problem from a practical point of view.

ACKNOWLEDGEMENT
The authors like to thank Jan Karel Lenstra for his helpful comments.

REFERENCES

AV. AHo, J.E. HOPCROFT, AND J.D. ULLMAN (1982). Data Structures and Algo-
rithms, Addison-Wesley, Reading, Massachusetts.

K. BAKER AND G. SCUDDER (1990). Sequencing with earliness and tardiness
penalties: a review. Operations Research 38, 22-36.

J. DU anND J. Y-T. LEUNG (1990). Minimizing total tardiness on one machine is
NP-hard. To appear in Mathematics of Operations Research.
H. EmMoNs (1987). Scheduling to a common due date on parallel uniform

152

B=2 B=3 B=4 B=5
n | T,R | nodes sec | nodes sec | nodes sec | nodes sec
8 02 417 2 406 2 301 2 58 1
8 0.4 131 1 198 1 185 1 31 1
8 0.6 34 1 48 1 29 1 5 1
8 0.8 23 1 37 1 14 1 8 1
8 1.0 20 1 36 i 33 1 15 1
10 | 02 2438 8 2525 9 2088 7 484 2
10 | 04 266 2 689 3 570 3 202 2
10 | 0.6 123 1 110 1 88 i 52 1
10 | 038 126 i 122 1 107 1 64 1
10 | 10 109 1 140 1 78 i 40 1
12.] 02 | 30182 103 | 26676 106 | 18358 78 | 10487 48
12 | 04 | 15176 66 | 20756 100 | 15613 75 | 10391 50
12 | 06 212 2 262 2 53 1 10 1
12 | 08 380 2 576 4 300 2 170 i
12 | 1.0 432 2 527 3 226 2 96 1
15 | 0.2 - - - - - -) R
15 | 04 3 - 3] -)] - (30 -
15 | 0.6 1414 10 2407 17 927 7 339 2
15 | P38 1665 13 1865 15 1647 14 540 5
15 1.0 493 6 402 17 2063 17 1082 9
20 | 02 - - - - - - - -
20 | 04 - - - - - - - -
20 | 0.6 7991 80 | 13169 136 5529 62 2048 24
20 | 0.8 8183 85 7244 84 4016 55 1318 21
20 1 1.0 5127 49 5243 41 2191 32 651 12

TasLe 2. Computational results. For each combination of »
(n=8,10,12,15,20), of T and R (T=R =0.2,0.4,0.6,0.8,1.0), and of
B (8=2,3,4,5), we present the average number of nodes and the
average number of seconds; the average was computed over 5 in-
stances. All averages were rounded up to the nearest integer. The
sign ‘-’ indicates that not all instances of this particular combination
could be solved without examining more than 100,000 nodes.

processors. Naval Research Logistics 34, 803-810.

T.D. Fry AND G. KEONG LEONG (19874). Single machine scheduling: a com-
parison of two solution procedures. Omega 15,277-282.

T.D. FrY AND G. KEONG LEONG (19878). A bi-criterion approach to minimizing
inventory costs on a single machine when early shipments are forbidden. Com-
puters and Operations Research 14, 363-368.

153

M.R. Garey, R.E. TARIAN, AND G.T. WILFONG (1988). One-processor schedul-
ing with symmetric earliness and tardiness penalties. Mathematics of Opera-
tions Research 13, 330-348.

R.L. GraHAM, E.L. LAwrer, LK. LENSTRA, AND A H.G. RINNOOY KAN (1979).
Optimization and approximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathematics 5, 287-326.

N.G. HaLL, W. Kusiak, aND S.P. Serai (1991). Earliness-tardiness scheduling
problems, II: Deviation of completion times about a common due date. To
appear in Operations Research.

J.A. HOOGEVEEN (1990). Minimizing maximum earliness and maximum lateness on
a single machine, Report BS-R9001, CWI, Amsterdam.

J.A. HooGeveeN, H. OOSTERHOUT, AND S.L. VAN DE VELDE (1990). New lower
and upper bounds for scheduling around a small common due date, Report BS-
R9030, CWI, Amsterdam.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Polynomial-time algorithms for
single-machine multicriteria scheduling, Report BS-R9008, CWI1, Amsierdam.
J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1991). Scheduling around a small com-

mon due date. To appear in European Journal of Operational Research.

L.G. KHACHIYAN (1979). A polynomial algorithm in linear programming. Dok-
lady Akademii Nauk SSSR 244, 1093-1096 (English translation: Soviet
Mathematics Doklady 20, 191-194).

E.L. LAwLER AND J. M. MOORE (1969). A functional equation and its application
to resource allocation and sequencing problems. Management Science 16, 77-
84.

LK. Lenstra, A H.G. RinnooY KAN, AND P. BRUCKER (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

P.S. Ow anp T.E. MoRrTON (1989). The single-machine early/tardy problem.
Management Science 35, 177-191.

C.H. PapapmMiTRIOU AND K. STEIGLITZ (1982). Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey.

C.N. Ports AND L.N. VAN WASSENHOVE (1985). A branch-and-bound algorithm
for the total weighted tardiness problem. Operations Research 33, 363-377.

W.E. SmiTH (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly 1, 59-66.

S.L. vaN DE VELDE (1991). Machine scheduling and Lagrangian relaxation , Doc-
toral Thesis, CWI, Amsterdam.

157

Samenvatting

Dit proefschrift is gebaseerd op onderzoek dat is verricht op het gebied van
machinevolgordeproblemen. Het onderzoek op dit gebied heeft zich lange tijd
beperkt tot problemen waarbij slechts één beslissingscriterium een rol speelt.
Aangezien bij de beoordeling van een productieschema niet alleen de produc-
tickosten maar ook de wensen van de klanten een rol spelen, groeit het besef dat
praktijkproblemen niet adequaat worden beschreven door een é&n-criterium
machinevolgordeprobleem; vandaar dat het onderzoeksgebied van de bicriteria-
machinevolgordeproblemen zich in een groeiende populariteit mag verheugen.

De door mij bestudeerde bicriteria-machinevolgordeproblemen kunnen als
volgt worden beschreven. Fen verzameling van taken moet worden verwerkt
door een machine. Deze machine is beschikbaar vanaf tijdstip 0 en kan ten
hoogste &n taak tegelijkertijd vitvoeren. De verwerkingsduur voor iedere taak is
gegeven. Een schedule definieert voor iedere taak een voltooiingstijd zodanig dat
aan de beschikbaarheidsrestricties van de machine is voldaan. Een schedule
wordt beoordeeld aan de hand van twee verschillende criteria; de doelstel-
lingsfunctie van het probleem is een combinatie van beide criteria.

De doelstellingsfunctie van een machinevolgordeprobleem met als criteria fen
g wordt gevormd door een functie F(f,g); het doel is een schedule te vinden dat
tot een minimale waarde van de doelstellingsfunctie leidt. Afhankelijk van de
vorm van F kunnen drie verschillende problemen worden onderscheiden. Het
eerste behelst hiérarchisch minimaliseren. Hierbij wordt aangenomen dat cri-
terium f belangrijker is dan g; het probleem is nu om een schedule te vinden dat
g minimaliseert onder voorwaarde dat het optimaal is met betrekking tot /. Het
tweede probleem betreft het algemene geval. Om het probleem op te lossen moet
nu de verzameling van niet-gedomineerde schedules worden bepaald; een
schedule heet niet-gedomineerd als er geen schedule bestaat dat het beter doet op
ten minste één criterium en niet slechter op het andere. Het derde probleem
betreft het geval waarbij F lineair wordt verondersteld.

Het proefschrift bestaat vit drie delen. Het eerste deel bestaat uit een inleiding op
het gebied van één-machine scheduling met verschillende criteria en, voor een
aantal praktische beslissingscriteria, een overzicht van de complexiteit van de
machinevolgordeproblemen met een doelstellingsfunctie die is samengesteld uit
twee van deze criteria. De resultaten betreffen polynomiale
optimaliseringsalgoritmen of NP-lastigheidsbewijzen; NP-lastigheid van een pro-
bleem ontkent met een grote mate van waarschijnlijkheid het bestaan van een
polynomiaal algoritme.

158

Het tweede deel bestaat uit zeven artikelen op het gebied van bicriteria-
machinevolgordeproblemen.

In het eerste artikel worden de problemen geanalyseerd waarbij de doelstel-
lingsfunctie een combinatie is van de criteria maximaal verschil tussen de
gewenste starttijd en de feitelijke starttijd en maximaal verschil tussen de gewenste
voltooiingstijd en de feitelijke voltooiingstijd.

In het tweede artikel komen de problemen aan de orde met als doelstel-
lingsfunctie een combinatie van het criterium som van de voltooiingstijd met één
van de volgende criteria: maximaal verschil tussen de gewenste voltooiingstijd en de
Seitelijke voltooiingstijd, maximale kosten ten gevolge van de voltooiing van een
taak, en maximaal verschil tussen de gewenste starttijd en de feitelijke starttijd.

In het derde artikel worden de problemen behandeld met als doelstel-
lingsfunctie een combinatie van verschillende maximale kosten criteria.

In het vierde artikel wordt een ondergrensstrategie gepresenteerd die kan wor-
den gebruikt om ondergrenzen, benodigd voor een branch-and-bound algoritme,
af te leiden voor machinevolgordeproblemen met een flineaire samengestelde
doelstellingsfunctie. Aangetoond wordt dat deze strategie de in de literatuur
bekende ondergrensstrategieén domineert.

In het vijffde en zesde artikel worden problemen geanalyseerd waarbij alle
taken dezelfde gewenste aflevertijd hebben. In het eerste van de twee wordt het
probleem geanalyseerd met als doelstellingsfunctie de gewogen som van de
afwzjkirgen van de gewenste voltooiingstijden van de feitelijke voltooiingstijden. Van
dit profleem wordt bewezen dat het NP-lastig is, zelfs als alle gewichten gelijk
zijn, als de gewenste voltooiingstijd klein is ten opzichte van de totale ver-
werkingsduur van de taken; een pseudo-polynomiaal algoritme wordt gepresen-
teerd om het probleem op te lossen. In het andere artikel wordt het probleem van
het minimaliseren van de som van de afwijkingen van de feitelijke vol-
tooiingstijden van de gewenste voltooiingstijd, die klein is verondersteld ten
opzichte van de totale verwerkingsduur, aangepakt met behulp van een branch-
and-bound algoritme. De benodigde onder- en bovengrenzen worden afgeleid
met behulp van Lagrangiaanse relaxatie; voor willekeurig gegeneerde problemen
blijken deze grenzen bijna altijd samen te vallen als het aantal taken meer dan
vijftig bedraagt. i

In het laatste artikel wordt onderzoek gedaan naar een machinevolgordepro-
bleem dat voortkomt uit de zogenaamde net-op-tijd (NOP) benadering, waarbij
iedere taak geacht wordt precies op het gewenste tijdstip voltooid te worden. De
doelstellingsfunctie die gebruikt wordt om deze benadering te weerspiegelen is
gedefinieerd als een lineaire combinatie van de som van de voltooiingstijden en
de som van de positieve afwijkingen van de gewenste starttijden en de feitelijke
starttijden. Hierbij wordt het gewicht van het tweede criterium groter veron-
dersteld dan het gewicht van het eerste criterium; dit heeft tot gevolg dat in een
optimaal schedule de machine stil kan staan terwijl er nog werk te doen is. Voor
dit probleem is nog geen bruikbaar oplossingsalgoritme ontworpen: hoewel we
niet minder dan vijf verschillende ondergrensstrategieén afleiden, zijn we niet in
staat om problemen met meer dan twintig jobs in een redelijke tijd op te lossen.

Het derde deel bestaat uit een samenvatting.

STELLINGEN

behorende bij het proefschrift van

JOHANNES ADZER HOOGEVEEN

SINGLE-MACHINE BICRITERIA SCHEDULING

Beschouw het volgende probleem. Gegeven zijn een graaf G = (V,E), twee pun-
ten u,v €V, en een lengte voor iedere kant in E; bepaal een pad dat ieder punt
ten minste één maal bevat, u en v als eindpunten heeft, en een minimale lengte
heeft. Voor dit probleem kan met behulp van een Christofides-achtige algoritme
een oplossing worden gevonden die niet langer is dan 5/3 maal het optimum.

J.A. HOOGEVEEN (1991). Analysis of Christofides’ heuristic: some paths are more
difficult than cycles. Operations Research Letters 10, 291-295.

D.S. Jonunson, C.H. PapapiMITRIOU (1985). Performance guarantees for heu-
ristics. E.L. Lawier, LK. LEnstrRA, A H.G. Rinnooy KaN, D.B. SHMOYS
(eds.). The Traveling Salesman Problem: a Guided Tour of Combinatorial
Optimization, Wiley, Chichester, 145-180.

I

Het criterium van Hisselbarth is een noodzakelijke en voldoende voorwaarde
voor het grafisch zijn van een getallenreeks.

G. SirkSMA AND LA, HooGEvVEEN (1991), Seven criteria for integer sequences
being graphic. Journal of Graph Theory 15, 223-231.

HI

Beschouw het volgende probleem. Een verzameling van » opdrachten met gege-
ven geheeltallige bewerkingstijden p, en aflevertijden o, moet worden bewerkt
door &én machine die beschikbaar is vanaf tijdstip 0 en ten hoogste één opdracht
tegelijkertijd kan uitvoeren: bepaal een bewerkingsvolgorde zodanig dat
=, C, —d,| wordt geminimaliseerd. Dit probleem is oplosbaar in O (n?) tijd als
iedere aflevertijd groter 15 dan de som van de bewerkingsduren en als ieder
tweetal tijdsintervallen|d, -p,.d,]en[d, —p, .d] elkaar overlapt.

LA, HooGEVEEN AND S.L. VAN DE VELDE (1992). Scheduling around an almost
conmmon due date. Unpublished manuscript.

v

Het probleem van het minimaliseren van de maximale voltooiingstijd in een flow
shop bestaande uit twee fasen met twee identieke machines in de eerste fase en
één machine in de tweede is P-lastig in de sterke zin, zelfs als onderbreking van
de taken is toegestaan.

J.A. HOOGEVEEN, J.K. LENSTRA, AND B. VELTMAN (1992). Minimizing makespan
in a multiprocessor flowshop is strongly X9-hard. Unpublished manuscript.

Vv

Het probleem van het minimaliseren van de som van de voltooiingstijden in een
twee-machine flow shop is MP-lastig in de sterke zin, zelfs als de bewer-
kingstijden van alle taken op de eerste machine gelijk zijn. Het probleem is
oplosbaar in O(n*) tijd indien voor alle taken de bewerkingstijd op de eerste
machine niet groter is dan de bewerkingstijd op de tweede machine.

T. KawacgucHi (1987). Bounds on permutation schedules for the two-processor
mean finishing time flowshop problem. Unpublished manuscript.

Vi

Beschouw het volgende probleem. Een verzameling van n opdrachten moet wor-
den verwerkt door drie machines die beschikbaar zijn vanaf tijdstip 0 en ten
hoogste één opdracht tegelijkertijd kunnen bewerken, waarbij gegeven is door
welke machines een opdracht moet worden uitgevoerd: bepaal een rooster zoda-
nig dat de maximale voltooiingstijJd wordt geminimaliseerd. Dit probleem is
MP-lastig in de sterke zin indien sommige taken twee machines tegelijkertijd
nodig hebben.

J.A. HOOGEVEEN, S.L. VAN DE VELDE, AND B. VELTMAN (1992). Complexity of
scheduling multiprocessor tasks with prespecified processor allocations.
Unpublished manuscript.

Vi

Onrechtmatig verkregen bewijs is ook bewijs,

Viil

De wijze waarop geld wordt ingezameld bij de kinderpostzegelactie is
onrechtmatig, aangezien zij is gebaseerd op het maffia-principe geld voor bescher-
ming: alleen door postzegels te kopen kan men zich beschermen tegen de overlast
van op verkoop beluste kinderen.

IX

Bij het bridgen dient op de systeemkaart te worden vermeld of er een voorkeur
bestaat voor actiel of passief starten.

X

Het voetbal als kijkspel kan aantrekkelijker worden gemaakt door de volgende
veranderingen in te voeren.

(a) Het simuleren van een overtreding dient te worden bestraft met rood, ook
indien de overtreding na afloop op grond van videobeelden wordt geconsta-
teerd. Het op onrechtmatige wijze verhinderen van een doelrijpe kans buiten
het strafschopgebied moet worden bestraft met een zogenaamd penaltyshot,
zoals in de Amerikaanse voetbalcompetitie.

(b) De uitspelende ploeg moet meer betrokken raken bij het amusementsniveau
van de wedstrijd. Dit kan worden bereikt door de tegenstander een deel te
geven van de recette behaald uit de losse verkoop.

(c) Het moet minder rendabel worden gemaakt met tien man voor het doel te
hangen. Dit kan worden bereikt door een bonuspunt toe te kennen voor vier
thuis- of drie uitgescoorde doelpunten.

(d) Om in de Europa-cup bij de thuisclub de verlammende angst voor een
dubbeltellend tegendoelpunt weg te nemen moet het grootste aantal thuisges-
coorde doelpunten de doorslag geven bij een gelijke eindstand na twee
wedstrijden.

