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Machine scheduling and multicriteria optimization: 

an introduetion 

1. MOTIVATION 

Scheduling theory was introduced in the 1950's. Since that time, the scheduling 
models that have been addressed by researchers have become more and more 
complex in ordertobetter resembie the underlying practical situations. Although 
many characterizations of practical problems have been included, the simplifica
tion of evaluating a solution with respect to only one criterion has remained com
mon practice. The vast majority of the papers on scheduling deals with problerns 
in which the quality of a solution is measured in termsof a single criterion. 

In practice, however, quality is a multidimensional notion. A firm, for instance, 
judges a production scheme on the basis of a number of criteria, for example, 
work-in-process inventories and observance of due dates. If only one criterion is 
taken into account, then the outcome is likely to be unbalanced, no matter what 
criterion is considered. If everything is set on keeping work-in-process inventories 
low, then some products are likely to be completed far beyond their due date, 
while, if the main goal is to keep the customers satisfied by observing due dates, 
then the work-in-process inventories are likely to be large. In order to reach an 
acceptable compromise, one has to measure the quality of a solution on all impor
tant criteria. 

An important drawback of consiclering such problems lies in the difficulty of 
defining an appropriate notion of optimality and, given such a notion, finding an 
optima! solution. Obviously, the situation beoomes more complicated when more 
criteria are involved, unless the criteria are not in conflict with each other; 
roughly speaking, two criteria are not in conflict if a solution that performs well 
on one criterion is likely to perform well on the other criterion. If the criteria are 
conflicting, then the different solutions have to be weighed against each other. To 
that end, various options exist. The first one is to specify an upper bound on the 
value of the most important criterion; a solution is then selected that performs 
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well on the other criteria while satisfying the bound. The second option is to 
aggregate the criteria into a single objective function; a solution is chosen that is 
optimal for this objective function. The third option is based upon an interactive 
version of decision making: an analyst determines a candidate solution and 
presents it toa decison maker, who either decides to accept it or tells the analyst 
on which criterion the score should be improved. Unfortunately, the determina
tion of n candidate solutions usually takes more time than solving n times one of 
the basic single-criterion problems; sometimes, it is noteven possible to guarantee 
that one reasonable candidate solution is found in a reasonable amount of time. It 
is of great importance to know beforehand what the consequences are of tak.ing 
extra criteria into account. If it is difficult to find a good set of candidate solu
tions, then one might prefer to look for a solution of a somewhat lesser quality 
that is more easily obtained. 

An important issue concerns the question what constitutes a representative set 
of candidate solutions. An obvious choice is the set of all nondominaled solutions. 
A solution is said to be nondominated if it outperforms any other solution on at 
least one criterion. If the number of nondominated solutions is large, then an 
analyst may impose extra restrictions upon thesetof candidate solutions; for 
example, he can impose an upper bound on the value of a criterion. We analyze 
this kind of strategies in the next section, in which the problem setting is intro
duced. 

2. PROBLEM SETriNG 

The setting of our problems is as follows. A set of n independent jobs bas to be 
scheduled on a single machine, which can handle no more than one job at a time. 
The machine is assumed to be continuously available from time 0 onwards. Job 
J1 (j = 1, ... , n) requires processing during a given uninterrupted time PJ; to each 
job are assigned a given weight w1, denoting its relative importance, and a given 
due date dj, at which Jj should be delivered. It is assumed that all values pj, wj, 
and dj are positive and integral. 

A schedule G defines for each job Jj a completion time c1 ( o) such that the 
capacity and availability constraints of the machine are not violated. We assume 
that the quality of a schedule is measured in terms of two criteria; the scheduling 
cost is measured by a function F(/,g), where f and gare two performance criteria 
defined on o. We consider the following performance criteria: 
- the sum of completion times "2Cj = "2J = 1 Cj ( G ), 
- the sum of weighted completion times "2wjCj = "2J = 1 wjCj ( o ), 
- the maximum lateness Lmax = max1 <j <n ( Cj ( o) - dj), 
- the maximum earliness E max maxI <j <n (dj - cj ( (J )), 

- the maximum cost fmax = max!<j<njj(Cj(G)), where all penalty functions jj 
(j = 1, ... , n) are assumed to be nondecreasing in the job completion times. 

We illustrate these notions by a 4-job example. The data are found in Table 1. 
An arbitrary schedu1e o is represented in the Gantt chart in Figure 1. The values of 
o for the performance measures "2C1 l;llld Lmax are easily computed; 
"2Cj( G) = 3+7+ 12+ 18 = 40, and Lmax ( G) = max{3-20,7-16, 12-11, 
18-5} = 13. N ote that, if there is no machine idle time between the jobs, then a 
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schedule is completely characterized by the order in which the jobs are executed. 
Such a schedule is called a permulation schedule. 

J] J2 J3 J4 
Pi 3 4 5 6 
dj 20 16 11 5 

TABLE 1. Processing times and due dates. 

0 3 7 12 18 

FIGURE 1. Gantt chart. 

In this thesis, two methods are used to combine conflicting criteria: hierarchica/ 
minimization and simultaneous minimization. In case of hierarchical minimiza
tion, the performance criteria are ranked in order of importance; the less impor
tant criterion is minimized subject to the constraint that the schedule is optimal 
with respect to the more important criterion. In case of simultaneous minimiza
tion, the criteria are aggregated into a single composite objective function, which 
is then minimized. Note that simultaneous minimization tums into hierarchical 
minimization for an appropriate choice of the composite objective function. 

We assume that any composite objective function is nondecreasing in both 
arguments. This assumption reflects the belief that a dominated solution should 
not be chosen as the optimal solution. We show that under this assumption there 
is a Pareto optima/ point in which the minimum is attained. 

DEFINITION 1. A feasible schedule o is Pareto optima/ with respect to the perfor
mance criteriafand gifthereis no feasible schedule '1T such thatf(7r).;;;;; f (o) and 
g(7r).;;;;; g(o), where at least one of the inequalities is strict. 

THEOREM 1. Ifthe composite objective function F of(j,g) is nondecreasing in both 
argument&:then there exists a Pareto optima/ point for (j,g) in which the function F 
attains its minimum. 

PROOF. Let (/J.g 1) be a point in which F attains its minimum. If (/J.g 1) is not 
Pareto optimal, then there exists a Pareto optimal point (/2,g2), with h ~ f 1 and 
g 2 .;;;;; g 1• Hence, F(/2,g2) ~ F(/1 ,g 1), implying that F also attains its minimum 
in (/2,g2). D 

We use our example to illustrate this definition. We generate the set of all 
schedules that are possibly Pareto optimal. As it is easily seen that insertion of 
idle time cannot improve the quality of the schedule on "2.C1 or Lmax• we know 
that we can restriet ourselves to the 4! = 24 permutation schedules. The values of 
these schedules with respect to (Lmax ,"2.Cj) have been plotted in Figure 2; each 
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point corresponds to a schedule, and the Pareto optimal points are in bold. The 
essence of Pareto optimality is shownat the point (7,43): it is Pareto optimalas 
there is no point in its lower-left quadrant; this is the area to the sou th-west of the 
dotted lines. Note that we can profit from the knowledge that Fis nondecreasing 
in both arguments if we are able to determine the set of Pareto optimal points in 
less time than needed for complete enumeration. 

50 • 
49 • * * 
48 * 
47 • * * * 
46 * * 

~ei 45 * * 
44 • * 
43 .. ~ ........... ......................... ~ * * 
42 * 
41 • * 
40 • 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

FIGURE 2. Outcomes of the example. 

Once the set of Pareto optimal points has been obtained, we can solve the prob
lem for any composite objective function F that is nondecreasing in each of its 
arguments. If we do not have any information on F except that Fis nondecreasing 
in each of its arguments, then we are forced to determine the set of Pareto optimal 
points to solve the problem. If we have some additional information on F, then 
there may be quicker ways to solve the problem. A common property of F is 
linearity, that is, F(j,g) =ad+ a2g, where a~>a2 are assumed to be nonnega
tive. We show that, in case of a linear composite objective function, we can restriet 
ourselves to determining thesetof extreme points with respect to (j,g). Before 
defining the concept extreme, weneed two preliminary definitions. 
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DEFINITION 2. A feasible schedule o is e.fficient with respect to (j1 ,fz) if there 
exist real nonnegative values (a1 ,a2) such that 
ad! (o) + a2/2 (o) ~ ad1 (w) + a2!z (w) for all feasible schedulesw. 

DEFINITION 3. The e.fficient frontier is the shortest curve that connects all efficient 
points. 

50 

49 

48 

47 

46 

43 

42 

41 

40 

0 1 

• * * 

* 

* * * 

* * 

* * 

* 

• * * 

2 3 4 5 6 7 8 9 10 11 12 13 

Lmax 

FIGURE 3. The efficient frontier for the example. 

DEFINITION 4. A feasible schedule a is extreme with respect to · (j,g) if it 
corresponds to a vertex of the efficient frontier. 

THEOREM 2. IJ the composite objective function F of (j,g) is linear, then there exists 
an extreme point for (j,g) in which F attains its minimum. 

PROOF. Let if~>g 1 ) be a point in which F attains its minimum. If if~>g 1 ) is not 
extreme, then there exists a line segment of the efficient frontier containing a 
point (j2,g2) with/2 ~/I and g2 ~ g1; hence, F(j2,g2) ~ F(jhgl)· Due to the 
lineacity of F, at least one of the endpoints of the 1ine segment must have cost no 
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more than F(/2,g2), implying that F attains it minimum in one of these extreme 
points. D 

These notions are applied to our example in Figure 3. Note that the number of 
interesting points has decreased from 7 to 4. Obviously, we can gain in speed from 
the knowledge that Fislinearif we are able to de termine thesetof extreme points 
faster than the set of Pareto optimal points. 

If F is known exactly, then another solution strategy is to solve the problem 
directly, that is, without determining the set of extreme points. Unfortunately, 
this approach has been seldomly applied successfully. 

Throughout this paper, we denote scheduling probieros by the three-field nota
tion scheme a I PI y introduced by Graham, Lawler, Lenstra, and Rinnooy Kan 
( 1979), where a describes the machine environment, P the job characteristics, and 
y the objective function. 

The most commonly used job characteristics are 'preemption', denoted by the 
acronympmtn, 'no machine idle time', denoted by nmit, 'precedence constr'!!nts', 
denoted by pree, 'release dates', denoted by rj, and 'deadlines', denoted by dj. In 
case preeroption is allowed, the execution of a job can be interrupted and resumed 
later; in case of no machine idle time, all jobs have to be executed between time 0 
and time 'Zpj; in case of preeedenee constraints, for each job Jj (j 1, ... , n ), a 
set of jobs has been given that have to preeede Jj and a set of jobs has been given 
that have to succeed Jj in any feasible schedule; in case of release dates, for each 
job Jj (j = I, ... , n ), a lower bound rj on the start time Sj bas ~een specified; in 
case of deadlines, for each job Jj (j = 1, ... , n ), an upper bound dj on the comple
tion time cj bas been given. 

For example, the single-machine scheduling problem in which the sum of the 
job completion times and the maximum lateness have to be minimized is denoted 
by I 11 F('ZCj ,Lmax) if F is a general composite objective function, by 
1 I I F1 ('ZCj ,Lmax) if F is linear, and by either lil Fh ('ZCj ,Lmax) or by 
lil Fh (Lmax ,'ZCj) if the minimization is hierarchical, where the first mentioned 
performance measure is assumed to be the more important one. 

In case of a general composite objective function F, we wi1l only consider solu
tion approaches that determine all Pareto optimal points to solve the problem. In 
case of a linear composite objective function F1, we wi1l determine the set of 
extreme points to solve the problem, unless we are able to present a successful 
direct approach. 

3. ÜUTLINE OF THIS THESIS 

The thesis consists of three parts: two introductory chapters, seven papers, and a 
'samenvatting' (a summary in Dutch). 

The second introductory chapter gives a survey of the complexity of the single
machine bicriteria probieros that arise when two of the performance criteria men
tioned in Section 2 of the present chapter are combined. 

The frrst paper, 'Minimizing maximum promptness and maximum lateness on 
a single machine' (Hoogeveen, 1990), addresses the probieros 
ll nmit I F(Emax ,Lmax) and lil Fl(Emax ,Lmax)· Por both probieros a 
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polynomial-time algorithm is presented. 
The second paper, 'Polynomial-time algorithms for single-machine multien

teria scheduling' (Hoogeveen and Van de Velde, 1990), addresses the problems 
ll I F(f maJP~Cj), ll I F(Lmax .~Cj), lipmln I F1(E max .~Ci), and 
111 a1~Ci + a2Emax with a1 ;;;;;. a2 • Polynomial-time algorithms are presented for 
each of these problems. 

The third paper, 'Single-machine scheduling to minimize a function of K max
imum cost criteria' (Hoogeveen, 1991), presents polynomial-time algorithms for 
the problems 111 F(f max ,g max), where .h.nax and g max are two ar~itrary maximum 
cost criteria, and for 11 nmit I F(Emax,Emax), where Emax and Emax are two dif
ferent maximum earliness criteria. 

The fourth paper, 'A new lower bound approach for single-machine multien
teria scheduling' (Hoogeveen and Van de Velde, 1991A), presents a new lower 
bound approach, which we call 'objective splitting'. This lower bound approach 
can be applied to single-machine multicriteria scheduling problems with a linear 
composite objective function. It is shown to dominate previously proposed lower 
bound approaches for this problem in termsof both speed and quality. 

The fifth and the sixth paper deal with common due date problems. The first of 
these, 'Scheduling around a small common due date' (Hoogeveen and Van de 
Velde, 1991B), addresses the lil ~wi I ei-dI problem. This problem is shown 
to be ~'iP-hard for general d, even if wi = 1 for j = 1, ... , n; a 
pseudopolynomial-time optimization algorithm is presented. The next paper, 
'New lower and upper bounds for scheduling around a small common due date' 
(Hoogeveen, Oosterhout, and Van de Velde, 1990), deals with the 1 I I ~ I ei - d I 
problem. Lower and upper bounds are presented that coincide for virtually all 
instances, provided that the number of jobs is not too small. 

In the last paper, 'Single machine scheduling to minimize total inventory cost' 
(Hoogeveen and Van de Velde, 1991C), the 111 a~Ci + f3~Ei problem with 
0 ";;;; a < f3 is solved by branch-and-bound. This problem tums out to be very hard 
to solve in practice. Although we present no less than six lower bound procedures, 
the largest instances solvable in reasonable time by our algorithm consist of no 
more than 20 jobs. 
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Complexity of single-machine bicriteria scheduling: 

asuNey 

As already mentioned in the previous chapter, it is of the utmost importallee to 
know beforehand whether an optimal solution is guaranteed to be found within a 
reasonable amount of time; otherwise, one may decide tolookfora quickly deter
mined solution that is not necessarily optimal. 

Of course, we first have to specify what amount of time should be considered 
reasonable to be spent on searching for an optimal solution. Obviously, the deci
sion should involve the size of a problem, that is, the number of jobs and so on. 
An optimization problem is said to be easy if there exists an algorithm that solves 
the problem in time polynomially bounded in the input size. Next to the optimiza
tion variant of a problem, there exists the decision variant of a problem. The deci
sionvariant of a scheduling problem is defined as the following question: given an 
instanee of the problem and athreshold value y, does there exist as schedulewith 

, value no more than y? Äll easy dèèîsión problems constitute the èfass <!!'. This dass 
is a subset of the class 'IJl<!!', which, in the present context, contains all decision 
problems for which it is possible to check in polynomial time if the answer is 'yes' 
for a given schedule. A decision problem is said to be 'IJt<!!'-complete if it belongs to 
'IJl<!!' and if every problem in 'IJl<!!' is polynomially reducible to it. A problemA is said 
to be polynomially reducible to a problem B if and only if an arbitrary instanee of 
A can be solved by solving a corresponding instanee of B that is constructed in 
time polynomially bounded in the size of A. The optimization variant of an 'IJt<!!'
complete problem is called 'IJt<!l'-hard; these problems are at least as hard as all 
problems in 'IJt'?P. For details concerning 'IJt<!!'-hardness, we refer to the excellent 
textbook by Garey and Johnson (1979). 

In Section 1, we repeat some basic concepts for the single-machine single
criterion scheduling problems underlying our bicriteria problems. In Section 2, 
we present a survey of bicriteria scheduling problems, thereby providing some 
straightforward polynomial-time optimization algorithms and 'IJt<!l'-hardness 



10 

proofs. These complexity results are displayed in three tables in Section 3. The 
first one concerns hierarchical minimization, while the second and third concern 
simultaneous optimization with a general and a linear composite objective func
tion, respectively. Some concluding remarks are madeinSection 4. 

1. BASIC CONCEPTS 

Before analyzing the bicriteria problems, we first show how to solve the single
criterion problems in which one of the performance criteria mentioned in Section 
1.2 is involved. Four of these problems are solved by scheduling the jobs accord
ing to a priority order that is specified in terms of the parameters of the problem; 
only the minimization of f max needs a more intricate procedure. 

Insteadof the definition of E max given in the previous chapter, we will use from 
now on arefinement of it, proposed by Garey, Tarjan, and Willong (1988). They 
define E1 = d1 - p1 S1, for j I, ... ,n, where s1 denotes the start time of J1, 
and E max max1 <.J <.n E1. If a job is executed during an uninterrupted period of 
time, then both definitions coincide. However, if we allow preemption, that is, a 
job may be interrupted and resumed later, then the new definition resembles the 
idea that earliness should be measured in terms of a deviation of the actual start 
time from a target start time. 

Note that all performance criteria under consideration, except E mmo are regu
lar; that is, the objective function cannot be decreased by inserting idle time into a 
given feasible schedule. In case of a regular performance criterion, we can restriet 
our attention to active schedules. An active schedule is a schedule in which no job 
can start earlier without increasing the completion time of at least one other job. 
Hence, if all jobs are allowed to start at time 0, then all jobs in an active schedule 
are processed in the interval [O,l:p1]. In order to avoid unbounded solutions in 
case of a nonregular performance measure like E max• we impose the constraint 
that no machine idle time is allowed, implying that all jobs have to be processed in 
the interval [O,l:p1]. This constraint is denoted by putting nmit ('no machine idle 
time') in the second field of the three-field notation scheme. 

T'HEOREM 1 (Smith, 1956). The problem 1 I ll:C1 is solved by scheduling the jobs 
according to the shortest processing time (SPT) rule, that is, in order ofnondecreas
ingp1. 

PROOF. The proof is based. upon showing that every schedule o can be transferred 
into an SPT schedule by applying adjacent interchanges that do not increase l:C1. 
Consider an arbitrary schedule o in which the jobs are not in SPT order. Hence, 
there exist two adjacent jobsJ1 andJ1 in o that are not in SPTorder, withp1 > p1. 
It is easily checked that swapping J1 and J1 decreases l:C1 ( o) by p1 - p1. This 
interchange argument can be applied until all jobs are in SPT order, implying 
that an SPT schedule is optimal. 0 

Similar proofs hold for the Theorems 2 through 4. 
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'THEOREM 2 (Smith, 1956). The problem III ~wjCj is solved by seheduling the jobs 
in order of nondeereasing ratios Pj I Wp 0 

'THEOREM 3 (Jackson, 1955). The problem lil Lrnax is solved by scheduling the jobs 
aceording to the earliest due date (EDD) rule, that is, in order ofnondeereasing dj. 
D 

THEOREM 4. The problem 11 nmit I Emax is solved by seheduling the jobs aecording to 
the minimum slack time (MST) order, that is, in order of nondecreasing dj - Pp 0 

Lawler (1973) presents an 0 (n 2) algorithm for I !pree IJ ma:o where the acronym 
pree indicates that preeedenee constraints have been specified; that is, for each 
jobJj (j I, ... ,n), a set of jobs has been given that have to precedeJj and a set 
of jobs bas been given that have to succeed Jj in any feasible schedule. The algo
rithm is based upon the following observation. Let L denote the index subset of 
jobs that may be processed last, let T denote the sum of the processing times of all 
the jobs, and let h be a job in L such that A (T) = minjeL/j (T). Then there 
exists an optima! schedule in which J k is last. 

LAWLER'S ALGORITHM 

(O)T~~J IPJ; {Jb···,Jn}· 
(1) Determine the set L containing the jobs that have no successors in~· 
(2) Choose from L the job Jj that bas minimal jj ( T) value, settling ties arbitrarily; 

J1 is processed from timeT -pj to timeT. 
(3) T~ T-pj; ~~~-{Jj}· 
( 4) If ~=F 0, then go to Step I; otherwise, stop. 

THEOREM 5. Lawler's algorithm solves lipree IJ max· 

PROOF. We adopt the proof presented by Baker, Lawler, Lenstra, and Rinnooy 
Kan (1983). LetN = {1,2, ... , n} be theindex set of all jobs, andletL çNbe the 
index set of jobs without successors. For any subsetS ÇN, letp(S) = ~jeSPj 
and let .frnax(S) denote the costof an optima! schedule indexed by S. Clearly, 
.frnax (N) satisfies the following inequalities: 

.frnax(N) ~ minjeL/j(p(N)), 

.frnax (N) ~ .fmax(N- U}) for allj EN. 

Now letJ1 withIEL be such that 

ft(p(N)) = minjeL/j(p(N)). 

Webave 

.fmax(N) ~ max{fi(p(N)),/max(N {/})}. 

But the right-hand side of this inequality Is precisely the oost of an optima! 
schedule subject to the condition that J1 is processed last. lt follows that there 
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exists an optimal schedule in which J1 is in the last position. As J1 is the job that is 
selected by Lawler's algorithm, repeated application of the above procedure 
yields the proof of correctness. D 

Lawler's algorithm determines an optimal schedule in O(n 2
) time, as for each 

position the job in L with minimal cost has to be found. 

2. A SURVEY OF SINGLE-MACHINE BICRITERIA SCHEDULING 

In this section, we review results on single-machine bicriteria scheduling. We use 
the opportunity to provide a number of elementary results, in the form of either 
0LI5'-hardness proofs or polynomial optimization algorithms. It seems that these 
results, in spite of their simplicity, havenotbeen publisbed before. The more com
plicated results will be derived in the Papers I through III. 

2.1. MINIMIZING A COMBINATION OF ~wjCj AND ~wjs 
We start by analyzing a combination of ~wjCj and ~wjCj. The results of this sec
tion can be easily extended to the special case that wj or wj is equal to 1, for 
j I, ... ,n. Note that, if the pjlwj and the pjlwj ratios are similarly ordered, 
then there exists a schedule that is optima! for both criteria; hence, this schedule 
solves the problem of minimizing any nondecreasing function of ~wjCj and 
~wjCj. Therefore, we assume from now on that thepjlwj and thepjlwj ratios are 
not similarly ordered. 

First, we analyze the lil Fh(~wjCj .~wjCj) problem. Typical fora solution of 
the hierarchical minimization problem in which ~wjCj is involved as the primary 
criterion is that Smith's ratio rule leaves us no freedom to schedule the jobs, unless 
there are jobs with equal pj I wj ratio. In that case, however, we have complete 
freedom to schedule these jobs so as to minimize the secondary criterion. This 
implies that the problem of hierarchically minimizing the primary criterion ~wj cj 
and a secondary criterion fis as hard as minimizingjsubject to the 'no machine 
idle time' constraint. 

THEOREM 6. The problem lil Fh(~wjCj .~wjCj) is solved by scheduling the jobs in 
order of nondecreasing pj I wj ratios, settling ties according to nondecreasing pj I wj 
ratios. D 

PRooF. Our proof is based upon showing that the number of Pareto optima! 
points is not polynomially bounded. Suppose that wj = I and wj 2pj- 1, for 
j = I, ... , n. As ~pjCj = ~~j ..-.kPjPk A is constant for every schedule without 
idle time, a schedule u in which the jobs are executed in the interval [O,~pj] 
corresponds to a point (~Cj (<r),2A ~Cj{<r)), and all such points are Pareto 
optimal. We will establish 0L15'-hardness of the problem by constructing an 
instanee that yields 2" consecutive Pareto optima! points; Schrijver (1989) proves 
that the problem of minimizing an arbitrary nondecreasing function over 2" 
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consecutive integer points is 1;:JU8>-hard in the strong sense (see Hoogeveen (1990); 
Paper I in this thesis). There are 2n + 1 jobs with processing times 

p 1 = I ; p 2i = p u 1 = 21
, for i = 1, ... , n 

Let B be equal to the sum of the completion times when the jobs are in SPT order. 
Note that interchanging the jobs Ju _ 1 and J 2i increases ~Cj by 2i -I, for 
i = 1, ... , n. Hence, the points (B + K, 2A B - K) are all Pareto optimal, for 
K = 0, ... , 2n 1, and Schrijver's rednetion can be executed. D 

Note that this rednetion only proves 9t<?Jl-hardness in the ordinary sense as the 
processing times are exponential; this is all we can hope for when using this 
approach, as the number of Pareto optima! points for (~wjCj,~wjCj) is pseudo
polynomially bounded by n(maxjwj)~jPj· It is yet an open question whether 
there exists a pseudopolynomial optimization algorithm for this problem. 

Another discouraging result has been provided by Lenstra (1979), who proves 
that 11 ~wjCj ";;;A 1 ~wjcj is already '3L,<?Jl-hard in the ordinary sense by a reduc
tion from P ARTITION. 

TREOREM 8 (Lenstra, 1979). The 1 1 ~wjCj ";;;y 1 ~wjCj problem is 9L<?P-hard in the 
ordinary sense. 

PROOF. We have to prove that the decision variant of the problem is 9t<?J>
complete. The decision variant of the problem is defined as the following ques
tion: given an arbitrary instanee of the problem and a threshold value y, does 
there exist a feasible schedule with costnomore than y? 

The decision variant of the problem belongs to 9t<?Jl, as it is possible to check in 
polynomial time for a given solution whether it provides an affirmative answer. 
We now show that the P ARTITION problem is polynomially reducible to it; P ARTI
TION is '3l.,<?Jl-complete in the ordinary sense. 

PARTITION 
Given a multiset éî = {a 1, •.. , an} of n integers, is it possible to partition éî into 
two disjoint subsets that have equal sum? 

Given an arbitrary instanee {a 1, .•• , an} of P ARTITION, define the constauts B 
and C by B ~~j.;;.k ajak and C = ~J = 1 aj, respectively, and construct the fol
lowinginstanceof 1 1 ~wjCj ";;;y I ~wjC/ 

"' pj wj aj; wj 0, for j I, ... , n, 

p 0 = 1; w0 = 0; w0 = 1, 

y B+CI2;y C/2+1. 

The idea behind the rednetion is the following: the constraint ~wjCj :e;;;y implies 
that J 0 cannot start before time C I 2, the constraint ~wjCj ";;; y implies that J 0 
cannot be completed af ter time C I 2 + 1, and the combination of the two 
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constraints implies that the schedule cannot contain machine idle time. It is easy 
to see that a schedule that satisfies these three properties exists if and only if PAR
TITION is answered affirmatively. 

We start by proving the third property. Consider an arbitrary schedule a; 
~w1e1 (a) + ~w1e1 (a) = ~w1e1 (a). A lower bound for this last term is deter
mined by scheduling the jobs according to Smith's ratio rule; this yields a solution 
equal to y + y. Hence, if a contains idle time, then 
~w1e1 (a)+ ~w1e1 (o) > y + y, implying that at least one of the constraints is not 
satisfied. The first and the secoud property are proven analogonsly; therefore, we 
only prove the first one. Let a be an arbitrary schedule without idle, and suppose 
that J 0 is completed at time e 0• Let A denote the index set of jobs that are com-
pleted after J 0 ; ~JEAPJ=e-S0 . Then 
~w1c1 (a) = B + ~J eA a1 B + e - S 0. Hence, ~w1e1 (a)";;;; y implies 
B + e - S o < B + eI 2 or S o ;;;;;. e 12. D 

Note that the above reduction also proves that the 11 ~w1e1 <y,pmtn I ~w1e1 
problem is ~qjl-hard, in which formulation the acronym pmtn denotes that 
preeroption is allowed. 

The situation beoomes uncomparably brighter if we restriet ourselves to linear 
composite objective functions. Then the objective function is simply reformulated 
as ~w1e1 , with w1 =a w1 + à w1 (j = I, ... , n), and the problem is solved through 
Smith's ratio rule. 

If we do know that the composite objective function is linear but the values a 
and à are not specified, then the problem is to specify the set of points 
(~w1e1.~w1e1) that correspond to an optimal solution forsome choice of (a,à); 
this set is exactly equal to the set of efficient points. By defmition, we know that a 
point is efficient if there are nonnegative values a and à such that 
a~w1e1 + à~w1e1 = ~w1e1 is minimal. If the ratio al à increases, then we move 
from one efficient point to another by interchanging two jobs J; and J1 that have 
differently ordered weight over processing time ratios, that is, w; I p; < w1 I p1 and 
w1 I p1 < w; I p;. This suggests determining thesetof efficient points by computing 
for every pair of jobs with differently ordered weight over processing time ratios 
the values a and à such that both w1 I p1 ratios are equal. As a normalization con
straint, we put à equal to 1. We generate the efficient points in order of nonde
creasing a value. Then we compute ~w1e1 and ~w1e1 in constant time, given the 
previous efficient point. Hence, the set of efficient points is generated in 
O(n 2Iogn) time, the time needed to order the O(n 2) a-values. This approach was 
foliowed by Bagchi (1989) in the slightly different context of minimizing a nonde
creasing linear function of ~e1 and ~ I ei - e; I· 

2.2. MINIMIZING A COMBINATION OF ~ei AND f max 

As the results for minimizing a combination of ~ei and Lmax are almost identical 
to the results for minimizing ~e1 and f max• we devote a single section to these 
problems. 

The first paper on a problem of this type is by Smith (1956), whoshows that 
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ll Lmax ",.;; 0 I ~c1 is solved by the following backward scheduling rule: assign the 
job that has largest processing time from among thesetof jobs that are allowed to be 
scheduled on that position. Heek and Roberts (1972) solve 111 Fh(Lmax ,~Cj) by 
this rule. Emmons (1975) applies Smith's rule to solve 111 Fh(f max ,~Cj). Van 
Wassenhove and Gelders (1980) and Nelson, Sarin, and Daniels (1986) show that 
by iterative application of Smith's rule all Pareto optimal points for (~C1 ,Lmax) 
can be determined. John (1989) extends their algorithm todetermine the efficient 
frontier. Hoogeveen and Van de Velde (1990) (Paper II in this thesis) use a similar 
algorithm to solve 11 I F(f max ,~Cj). The running time of their algorithm for exe
cuting one iteration is O(nmin{n,log~p1 }); furthermore, they show that every 
iteration yields a Pareto optima! point. 

Therefore, the polynomiality of their algorithm depends upon the number of 
Pareto optima! points. With respect to (Lmax ,~Cj), this number has been subject 
of a lot of misunderstanding. Lawler, Lenstra, and Rinnooy Kan (1979) claimed 
that this number is equal ton (n - 1) 12 + 1. Van Wassenhove and Gelders, on the 
other hand, supposed the number of Pareto optimal points for (Lmax ,~C1) to be 
only pseudopolynomially bounded; hence, they presented their algorithm as 
being pseudopolynomial. This inspired Sen and Gupta (1983) to present a 
branch-and-bound algorithm for 111 Lmax + ~c1 . Hoogeveen and Van de Velde 
eventually verified validity and tightness of the claimed bound on the number of 
Pareto optimal points for (Lmax ,~Cj); they also proved that the same bound 
holds when Lmax is replaced by fmax· Therefore, lil Fifmax ,~C1) is solved in 
O(n 3min{n,Iog~p1 }) time; liiF(Lmax•~C1) is solved in O(n 3

) time, due to 
appropriate preprocessing. F or details, see Paper II in this thesis. 

As already indicated in the previous subsection, the problems 
lil Fh(~C1 .fmax) and lil Fh(~C1 ,Lmax) are solved in O(n 2) and O(nlogn) time, 
respectively, by the following backward scheduling rule: assign the job that has 
largest processing time, where ties are setlied to minimize maximum cost and max
imum lateness, respectively. 

2.3. MINIMIZING A COMBINATION OF ~Cj AND Emax 
According to our knowledge, only one paper in which an objective function that is 
formed as a combination of these two criteria has appeared in the literature. For 
the case that preeroption is allo wed, Hoogeveen and Van de Velde ( 1990; Paper II 
in this thesis) show that, although the number of Pareto optimal points for 
(~C1 ,Emax) is not polynomially bounded, the number of efficient points is at 
most equal to n(n -1)12+ 1 and that each of these pointscan be found in O(n 2

) 

time. Hence, Ilpmtn I F1(~C1 ,Emax) is solved in O(n 4
) time. They also prove that 

Ilpmtn I F1(~C1 ,E max) has a nonpreemptive optima! solution when ~C1 
outweighs Emax• implying that Illa1~C1 + a2Emax is solvable in O(n 4

) time if 
IXJ ~ 1X2. 

Allowing preeroption is never advantageous in case of the hierarchical minimi
zation problem with ~C1 as the primary and Emax as the secondary criterion; 
lil Fh(~C1 ,Emax) is solvable in O(nlogn) time through Smith's rule, where ties 
are settled according to nondecreasing slack time values. The prombition of 
preeroption does have impact on the other hierarchical minimization problem in 
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whlch these two criteria are involved; the problem 11 nmit I Fh(Emax ,~C1) is '?JL15'
hard in the strong sense. We have included the 'no machine idle time' constraint 
to avoid unbounded solutions. 

THEOREM 9. The 11 nmit I Fh(E max .~C1) problem is '?JL15'-hard in the strong sense. 

PROOF. We establish '!JL15'-hardness in the strong sense for 11 nmit I Fh(Emax ,~Cj) 
by showing that its decision variant is '!JL15'-complete, or, in other words, that it 
belongs to '!JLI5' and that an '?JLI5'-complete problem is polynomially reducible to it. 
The rednetion is from the decision variant of 11 r1 ,nmit I ~c1, which has been 
proven to be '!JLI5'-complete in the strong sense by Lenstra, Rinnooy Kan, and 
Brucker (1977). In this formulation, r1 denotes that for each job a release date has 
been specified; that is, job J1 cannot be started before time r1 (j = 1, ... ,n). As 
the machine is not available before time zero, we assume without loss of generality 
that the release dates are nonnegative. The decision variant of 11 r1 ,nnût I ~c1 is 
defined as follows: given n jobs J 1, ••• ,Jn with processing time p1 andrelease 
date r1 ~ 0 (j = 1, ... ,n), and a threshold value y, does there exist a feasible 
schedule with value no more than y? 

Given an arbitrary instanee of the decision variant of 11 r1 ,nmit I ~c1 , we con
struct the following instanee of II nmit I Fh(Emax .~C1). There are n jobs 
J 1, •.• ,J" that correspond to the jobs in the instanee of 11 r1 ,nmit I ~C1 . The pro
cessing times of two correspondingjobs are equal; the due date of the job betong
ing to the instanee for 11 nmit I Fh(Emax ,2;C1) is equal to the sum of the process
ing time and the release date of the corresponding job betonging to the instanee 
for 11 r1 ,nmit [2:C1. 

Unless II r1 ,nmit I ~c1 is infeasible, a schedule without idle time is obtained if 
we schedule the jobs in order of nondecreasing release dates. As r1 ~ 0 
(j = 1, ... ,n), this implies that the outcome of 11 nmit I Emax for the instanee 
constructed above is equal to 0, so that 11 nmit I Fh(Emax ,~C1) is identical to 
11 Emax ~ O,nmit I ~C1 . Now consider the constraint Emax ~ 0: it implies E1 ~ 0 
(j 1, ... ,n), and thereby a1 -s1 -p1 ~o or s1 ~d1 -p1 for j=l, ... ,n. 
Therefore, thls constraint indoces a set of release dates r1 d1 - p1 (j = 1, ... , n ), 
so that the problems 11 Emax ~ O,nmit I ~C1 and 1/ r1 ,nmit I ~c1 are identical. If 
we choose equal thresholds for both decision problems, then we have that an affir
mative answer for the one problem always corresponds to an affirmative answer 
for the other problem. The only thing left to prove is that the decision variant of 
11 nmit I Fh(Emax .~C1) belongs to '!JL<.'P, which is obvious. D 

The above result shows that 11 nmit I F(~C1 ,Emax) and the general 
11 nmit I F1(~C1 ,Emax) problem are '!JLI5'-hard in the strong sense. Hence, the 
problem beoomes harder when E max becomes more important. I t is easy to show' 
that lil a 1 ~c1 + a2E max and 11 nmit I a 1 ~C1 + a2E max beoome '?JLI5'-hard when 
some critica! a2 1 a 1 ratio is exc:eeded; this ratio amounts to (n -1) for the first 
problem and to (n -l)(max1p1 -min1p1) for the second problem. The question 
whether these critica! valnes can be bounded more sharply is still open. 
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2.4. MINIMIZING A COMBINATION OF 2:wjCj AND A MAXIMUM COST CRITERION 

We now consider tbe problems tbat arise wben combining 2:w1c1 witb eitber 
Lmax,f max• or Emax· The only well-studied problem tbat falls in this context is the 
11 Lmax..;; L l2:w1c1 problem, for some upper bound L on Lmax. Sinitb (1956) 
developed a beuristic for this problem proceeding in tbe same way as his algo
ritbm to solve 11 Lmax..;; 0 I2:C1. Heek and Roberts (1972) claimed that Sinith's 
beuristic always produces an optima! schedule. This claim was disproved by 
Bums (1976) by means of acounterexample; Lenstra, Rinnooy Kan, and Brucker 
(1977) proved tbat tbe problem was 0t'3'-bard in tbe strong sense. Bums applied 
neighborbood search to imprave Sinith's beuristic for 11 Lmax..;; 0 12:w1c1. In its 
turn, tbis beuristic was improved by Miyazaki (1981). The general 
11 Lmax ..;; L l2:wjCJ problem bas been studied by Cband and Schneeberger 
(1986), wbo distinguisb some special cases of tbe problem tbat are solved to 
optimality through Sinitb's beuristic. 

We prove that, except for the hierarchical Ininimization problems witb 2:w1Cj 
as the primary criterion that were already indicated as being easy, all variants of 
tbe problems with criteria 2:w1c1 and Lmax, 2:w1c1 and f max• and 2:w1c1 and Emax 
are strongly 0t'3'-bard. 

THEOREM 10. The problems II I Fh(2:w1c1 ,Lmax), lil Fh(2:wJCJ ,f max), and 
ll I Fh(2:w1Cj ,E max) are solved by sequencing the jobs according to nondecreasing 
p1 I w1 ratio, where ties are settled such that the secondary criterion is minimized 0 

THEOREM 11. The lil Fh(Lmax ,2:w1C1)problem is 0L<?P-hard in the strong sense. 

PROOF. We establisb 0t<?Jl-bardness intbestrong sense for III Fh(Lmax ,2:w1C1) by 
showing that its decision variant belongs to 0L<?P and tbat an 0t<?Jl-complete prob
lem is _polynoinially reducible to it. The reduction is from the decision variant of 
the 11 d1 12:w1c1 problem, whicb bas been proven to be 0t<?Jl-complete in .!_he strong 
sense (Lenstra, Rinnooy Kan, and Brucker, 1977). In this formulation, d1 denotes 
tbat for each job !!_deadline bas been specified; that is, Jj is no!_ allowed to be com
pleted after time d1 (j 1, ... , n). The decision variant of 11 d1 12:w1c1 is defined 
as fo.!lows: given n jobs J 1, ••• ,Jn witb processing time p1, weight w1, and dead
line d1 (j = 1, ... , n ), and a threshold value y, does there exist a feasible schedule 
with value no more than y? _ 

As the weights are nonnegative, tbere is an optima! solution for 11 dj l2:w1c1 
without idle time. Therefore, we may assume without loss of generality that all 
deadlines are at ~ost equal to 2:pj. Given an arbitrary instanee of tbe decision 
variant of 11 d1 12:w1Cj, we construct the following instanee of 
lil Fh(Lmax ,2:wjÇj). There aren jobs J 1, ••• ,Jn that correspond to tbe jobs in 
tbe instanee of 11 d1 l2:w1c1: the processing times and tbe weights are tbe same, 
and the due dates are equal to tbe deadlines. 

Sinee all deadlines are assumed to beat most_equal to 2:p1, the outcome of 
11 I Lmax is equal to 0, unless the instanee of 11 d1 l2:w1c1 is infeasible. Henee, 
lil Fh(Lmax ,2:w1C1) is identical to ll Lmax ..;; O,nmit l2:w1c1. Sinee tbe constraint 
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Lmax..:;; 0 induces a d~adline dj dj for each job, the probieros 
11 Lmax ..:;; 0 I ~wjCj and 11 dj I ~wjCj are identical. Therefore, if we choose equal 
thresholds for both decision problems, then we have that an affirmative answer 
for the one problem always corresponds to an affirmative answer for the other 
problem. The only thing left to prove is that the decision variant of 
lil Fh(Lmax .~wjCj belongs to 0L<!J', whichis obvious. 0 

THEOREM 12. The IIIFnifmax .~wjCj)problem is0L<!J'-hard in thestrong sense. 

PROOF. This follows immediately from Theorem 11. 0 

THEOREM 13. The 11 nmit I Fh(Emax .~wjCj) problem is 0L<!J'-hard in the strong 
sense. 

PROOF. Thisfollowsimmediatelyfrom Theorem9. 0 

2.5. MINlMIZING A COMBINATION OF TWO MAXIMUM COST CRITERIA 

We now consider the problems that arise when combining two criteria of the type 
Lmax• f max• and Emax. The only combination that has attracted many researchers 
concerns Lmax and Emax· Two problems within this context have been studied 
extensively. 

The first one is lllmax{Emax•Lmax}· This problem has been addressed by 
Garey, Tarjan, and Wilfong (1988) as the problem of sequencing tasks to minimize 
maximum discrepancy; they show that it is solvable in 0 (nlo~pj) time. 

The second one is 11 nmit I Emax + Lmax· This problem is known as the prob
lem of minimizing the range of lateness, since E max = - Lmin. lt was introduced by 
Gupta and Sen (1984), whoprovide a branch-and-bound algorithm for it, with a 
lower bound based upon the maximum impravement method. Tegze and Vlach 
(1988) also provided a branch-and-bound algorithm for this problem with an 
improved lower bound based upon the metbod of objective splitting; see 
Hoogeveen and Van de Velde ( 1991; Paper IV in this thesis) for a comparison of 
these two lower bounding methods. A pseudopolynomial algorithm for this prob
lem is due to Liao and Huang (1991). Hoogeveen (1'990) proved ,that 
ljnmit IF(Emax,Lmax) is solved in O(n 2

) time, thereby making the aforemen
tioned approaches obsolete. Furthermore, in this paper an O(n 2logn) algorithm 
is given for determining the trade-off curve of E max and Lmax, when idle time is 
allowed; the trade-off curve provides for each value E of E max the outcome of 
ll Emax,.;;; E ILmax·AHence, IIIF,(Emax ,Lmax) is salvablein O(n 2logn) time. 

The liiFifmax•fmax) problem has been addressed by Tuzikov (1991), who 
proposed a metbod for determining the so-called t:-approximation of the set of 
Pareto optimal points, and by H~ogeveen (1991; Paper III in this thesis). 
Hoogeveen proves that 11 I F(f max ,f max) can be solved in O(n4

) time, even if 
there are arbitrary preeedenee constraints between the tasks. The special case 
lil F(Lmax ,f max) is solved in O(n 3logn) time; this algorithm can also be applied 
to solve 11 nmit I F(Emax ,Emax)· He further shows that this analysis can be 
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extended totheK criteria case, thereby presenting an O(nK(K+I)-6) algorithm 
for lil Flfmax, ... ,~). 

The only combination remaining is f max and E max. We show that all variants of 
the problem combining these criteria are strongly 0G<5>-hard by proving that 
ll nmit I Fh(Emax ,f max) and ll I Fh(f max ,E max) are strongly 0l'5>-hard. 

'THEOREM 14. Theproblems llnmitiFh(Emax,fmax) and liiFh(fmax,Emax) are 
0L'5>-hard in the strong sense. 

PROOF. We simultaneously prove both problems to be 0G'5>-hard in the strong 
sense. The rednetion is from the strongly 0G'5>-complete problem 3-P ARTITION. 

3-PARTITION 

Given an integer B and a multiset & {a 1, .•. , a 3n} of 3n positive integers with 
BI 4 < a1 < B/2 (j 1, ... , 3n) and ~}'::: 1 a1 = nB, is there a partitionof &into n 
mutually disjoint subsets &1, •.• ,~ such that the elementsin &1 add up toB, for 
i= 1, ... ,n? 

Given an arbitrary instanee {al> ... ,a3n} of 3-PARTITION, define the following 
problem instance. There are 4n tasks: n entoreer jobs V1, ••• , V,,, and 3n partition 
jobsJ 1, •.. ,J 3n- The enforcer tasks have unit processing times, due dates equal to 
d1 = i(B + 1) (j 1, ... ,n), and penalty functions jj(T) = 0 for 
0 ~ T ~i (B + 1) and oo otherwise, for i = 1, ... , n. The partition tasks have 
processing times p1 a1 (j = 1, ... , 3n), due dates that are equal to processing 
times, and penalty functions jj(T) 0 if 0 ~ T...:;; n (B + 1)- 1, and oo otherwise, 
for i= 1, ... , 3n. Straightforward computations show that E*, the outcome of 
11 nmit I E max• and /*, the outcome of 1 I I f max, are both equal to zero. Hence, if 
we choose the thresholds for the decision variauts of 11 nmit I Fh(E max ,f max) and 
1 I I Fh(f max , E max) both equal to zero, then both decision variants boil down to 
the same question: does a schedule without idle time exist in which Vj is executed 
from time i(B + 1)-1 to time i(B + 1), for i= 1, ... ,n? As such a schedule 
corresponds to a partitioning of the set & that provides an affirmative answer to 
3-PARTITION, the decision variauts of both scheduling problems are answered 
affirmatively if and only if 3-PARTITION is answered affirmatively. As both deci
sion problems are in 0G0', the problems 11 nmit I Fh(E max ,Lmax) and 
II I Fh(f max ,E max) are both 0G0'-hard in the strong sense. D 

COROLLARY 15. The problems lil F(Emax ,f max), ll nmit I F(Emax ,f max), 
II I Fr(E max ,f max.), ll nmit I Ft(E max. ,f max.) are 0L0'-hard in the strong sense. D 

3. COMPLEXITYTABLES 

Our complexity results are summarized in Tables 1, 2, and 3. Table 1 gives the 
results for hierarchical minimization, Table 2 for a general nondecreasing oompo
site objective function, and Table 3 for a linear nondecreasing composite objec
tive function. An exclamation point '!' indicates 0G0'-hardness in the ordinary 
sense; a double exclamation point'!!' indicates 0G0'-hardness in the strong sense. 
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n n 
secondary _" ~Cf ~ w1c1 Lmax Emax gmax 

j=l j=l 

primary t 

n 

~ei O(nlogn) O(nlogn) O(nlogn} O(nlogn) O(n 2
) 

j=l 

n 

~wiel O(nlogn) O(nlogn) O(nlogn) O(nlogn) O(n 2
) 

j=l 

Lmax O(nlogn) !! O(nlogn) O(n 2logn) O(n 2) 

Emax !! !! O(nlogn) O(nlogn) !! 

fmax O(n2) !! O(n2
) !! O(n 2

) 

T ABLE 1. Complexity results for hierarchical minimization. 

n n A A 

~cl ~ w1 c1 Lmax Emax gmax 
j=l j=l 

n 

~ cJ O(nlogn) O(n 3
) !! O(n 4

) 

j=l 

n 

~ w1 C1 !! !! !! 
j=l 

Lmax O(n 3
) !! O(n 3logn) !! O(n 3Iogn) 

Emax !! !! !! O(n 3logn) !! 

fmax O(n 4
) !! O(n 3logn) !! O(n 4

) 

T ABLE 2. Complexity results for a general composite objective function. 
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n n A A 

~cj ~ w1 cj Lmax Emax gmax 
j=l j=l 

n 

~c; O(nlogn) O(nlogn) O(n 3
) !! O(n 4

) 

j=l 

n 

~ w1 c1 O(nlogn) O(nlogn) !! !! !! 
j=l 

Lmax O(n 3
) !! O(n 3logn) O(n 2 Iogn) O(n 3Iogn) 

Emax !! !! O(n 2logn) O(n 31ogn) !! 

/max O(n 4
) !! O(n 31ogn) !! O(n 4

) 

TABLE 3. Complexity results fora linear composite objective function. 

4. CoNCLUDING REMARKS 
In this survey, we have presented a review of the complexity results on single
machine bicriteria scheduling. This survey is complete with respect to the criteria 
under consideration. An interesting performance criterion that we not have dealt 
with concerns the number of late jobs ~ uj, where ui is an indicator function with 
value equal to 1 if Jj is late and 0 otherwise. The 11 I ~ ~ problem is solvable in 
O(nlogn) time by an algorithm due to Moore and Hodgson (Moore, 1969). All 
of the single-machine bicriteria scheduling problems that are obtained by com
bining ~ Uj with another performance criteria are still open. 
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A set of n jobs has to be scheduled on a single machine that can handle 
only one job at a time. Each job J; requires processing during a given 
positive uninterrupted time P;, and has both a given target start times; and 
a given due date d;, with 0 ".;; d; s; ".;;Pi· For each job J; (i= 1, ... , n), 
its promptness P; is defined as the ditterenee between the target start time 
and the actual start time, and its lateness L; as the ditterenee between the 
completion time and the due date. We consider the problem of finding a 
schedule that minimizes a tunetion of maximum promptness 
Pmax = max1<i<n P; and maximum lateness Lmax = max1.,.;.,.n L;, which 
is nondecreasing in both arguments. We present O(n2 1og n) algorithms 
tor the variant in which idle time is not allowed and for the special case in 
which the objective tunetion is linear. We prove that the problem is '9LI?P
hard if neither of these restrictions is imposed. As a side-result, we prove 
that the special case of minimizing maximum lateness subject to release 
dates that I ie in the interval [ d; - Pi - A, d; - A] (i = 1, ... , n), torsome 
constant A, is salvabie in O(nlog n) time if no machine idle time is allowed 
and in O(n 2 1og n)time if machine idletime is allowed. 

1980 Mathernaties Subject Classification (1985 Revision): 90835. 
Key Words & Phrases: single-machine scheduling, bicriteria scheduling, 
Pareto optimal points, maximum promptness, maximum earliness. 

1. lNTRODUCTION 

29 

Suppose that n independent jobs have to be scheduled on a single machine that 
can handle only one job at a time. The machine is assumed to be continuously 
available from time 0 onwards. Job J1 (i = 1, ... , n) requires processing during a 
given positive uninterrupted time p1, should ideally be started at a given target 
start times;, and should ideally be completedat a given due date d;. A schedule 
defines for each job J1 a starting time S1 and a completion time C1 = S1 + p1 such 
that the jobs do not overlap. Given a schedule a, the promptness and the lateness 
of job J1 are defined by P1 s1 S1 and L1 = C; d1, respectively. Accordingly, 
the maximum promptness and the maximum lateness are defined by 
P max = max!~i~n P; and Lmax = maxl~i~n L1, respectively. If the target start 
times s1 are equal tod; - p; for i = I, ... , n, then the maximum promptness cri
terion coincides with the well-known maximum earliness criterion 
Emax = max1~;~n (d1 - C1 ). We consider the problem of finding a schedule a 
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that min:imizes the scheduling cost f (a) = F( P max (a ),Lmax (a)), where Fis a 
given function that is nondecreasing in both arguments, subject to the conskaint 
sj E[dj - Pj ,dj], for j 1, ... , n~ We will also consider a variant of the problem 
in which idle time is not allowed. Using the three-field notation scheme a I fJ I y 
introduced by Graham, Lawler, Lenstra, and Rinnooy Kan (1979), where a 
describes the machine environment, fJ the job characteristics, and y the objective 
fun~tion, the first problem is denoted by 111 F( P max ,Lmax) and the second by 
11 nmit I F( P max ,Lmax ), where nmit expresses the no machine idle time restric
tion. 

Although the first bicriteria scheduling problem was already solved by Smith 
[1956], only a few bicriteria scheduling problems have been investigated since 
then. Most of these problems are concemed with mini:mizing a hierarchical type 
of objective function: the secondary criterion has to be minimized subject to the 
constraint that the schedu1e is optima! with respect to the primary criterion. 
Examples are miniruizing the sum of completion times subject to minimal max
imum lateness [Smith, 1956], and mini:mizing maximum lateness subject to a 
minimal number of late jobs [Shanthikumar, 1983]. Only a few of the papers on 
bicriteria scheduling consider simultaneous optimization, in which the criteria are 
transformed into a single composite objective function. An ex:ample is minimizing 
the number of late jobs and maximum lateness simu1taneous1y [Nelson et al., 
1986]. Most contributions to the area of bicriteria scheduling concern branch and 
bound algorithms. There are some notabie exceptions, however. Garey, Tarjan, 
and Willong [1988] present an O(n (log~p; )) algorithm to solve 
lllmax{Emax,Lmax }. Hoogeveen and Van de Velde [1990] present an 
O(n 3min{n ,log~pï}) time algotithm for IIIF(/mru<:>~C; ); fmllll is an arbitrary 
maximum oost function, defined by f max ( o) = max {fi ( C; ( o )) I i I, ... , n}, 
where all functions fi are assumed to be nondecreasing in the jol!> completion 
times. Furthermore; they present an O(n4

) time algorithm for lil aEmax + ~C;, 
witha E;; 1. 

The organization of this paper is as follows. In Section 2, we repeat some basic 
theory, and we present a strategy to obtain thesetof Pareto optima! points. In 
Section 3, we derive a dominanee rule, which can be applied to both variants of 
the problem. We further show that the subclass of 11 rj ,nmit I Lmax with 
rjE[dj -pj A,dj -A](j = l, ... ,n),foranarbitraryconstantA,issolvablein 
O(n logn) time. In Section 4, we apply the strategy formulated inSection 2 to 
determine the set of Pareto optima! points for the case in which no machine idle 
time is allowed. In Section 5, we drop this constraint and analyze the ~eneral 
problem, which we proveto be '!:1L~-hard inSection 6, but solvablein O(n logn) 
time if the function F( P max ,Lmax) is linear. 

2. BASIC CONCEPTS 

The lil F( P max ,Lmax) problem originates from 11 nmit I P max and ll I Lmax, 
where the 'no idle time' constraint is added to 11 I P max in order to avoid 
unbounded solutions. Both problems are solvable in 0 (n log n) time. 
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MINIMUMTARGET ST ART TIME (MTST) RULE. Ij no idle time is al/owed, then P max 
is minimized by sequencing the jobs in order of nondecreasing values of S;. 

EARLlEST DUE DATE (EDD) RuLE [Jackson, 1955]. Lmax is minimized by sequenc
ing the jobs in order of nondecreasing due dates d;. 

The MTST rule forms a generalization of the EDD rule (see Theorem 3). If both 
orderings coincide, then the corresponding job sequence solves both 
ll I F( P max ,Lmax) and 11 nmit I F( P max ,Lmax ). However, in general both order
ings wilt differ and it is unlikely that a single sequence mininrizes both P max and 
Lmax· Hence, in order to solve IJ I F( P max, Lmax) with or without idle time, we 
see no other way than to determine the set of feasible schedules that correspond to 
a Pareto optimal point with respect to the scheduling criteria P max and Lmax. 

DEFINITION 1. A feasible schedule u is Pareto optima! with respect to the objective 
functions f" ... ,fK if there is no feasible schedule 'IT with fd 'IT) ~ Jk (a) for 
k = I, ... , K, where at least one of the inequalities is strict. 

THEOREM I. Consider the campostte objective function F(j1 (a), ... ,JK( a)), where 
Fis nondecreasing in each argument. Then there is a Pareto optima! schedule with 
respect to f 1, ••• ,JK that minimizes the junction F D 

It follows immediately from Theorem 1 that, if the number of Pareto optimal 
points is polynomially bounded in n and if all these points can be determined in 
polynomial time, then the function F can be minimized in polynomial time. 

We start by analyzing IJ nmit I F( P max ,Lmax ). In order todetermine thesetof 
Pareto optimal points with respect to (P max ,Lmax) subject to the constraint nmit, 
we apply the following strategy. First, given a value P of P max that corresponds to 
a possibly Pareto optimal point (P,L) for (P max ,Lmax ), we solve 
IJ P max ~ P,nmit I Lmax to obtain L. Second, we delermine the next P max-value 
that corresponds toa possibly Pareto optima] point. 

There are three difficulties bidden in applying the above strategy. The first 
problem concerns the choice of the start value P of P max. This problem can easily 
be overcome by choosing P equal to the P max-value of the MTST schedule; obvi
ously, there can be no Pareto optimal point with smaller P max -value. 

The second problem is how to solve IJ P max ~ P,nmit I Lmax· The constraint 
P max ~ Pinduces for eachJj a release date rj, that is, a lower bound forthestart 
time Sj; Pmax ~p implies sj Sj ~ P, for j = 1, ... ,n, and hence Sj;;;;;. sj- P, 
for j 1, ... , n. Hence, the problems IJ P max ~ P,nmit I Lmax and 
11 rj sj P,nmit I Lmax are identical. Although the II rj ,nmit I Lmax problem 
with general release dates is 'DL0'-hard in the strong sense [Lenstra, Rinnooy Kan, 
and Brucker, 1977], we showinSection 3 that 11 rj sj- P,nmit I Lmax is salv
ablein O(n logn) timeifsj E[dj- Pj ,dj]. 

The third problem is how to delermine the next P max-value that corresponds to 
a possibly Pareto optimal point in such a way that the total number of generated 
points is not too great. Obviously, if we increase the P max-value by one every time, 
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then we will certainly determine all Pareto optimal points, but this approach will 
not yield a polynomial time algorithm. 

Finally, we have to determine the complexity of the algorithm, and hence, we 
have to find a bound on the number of points that need to be generated in order 
todetermine all Pareto optimal points. 

We will extend the above strategy to deal with the lil F( P max ,Lmax) problem 
in Section 5. 

3.APOLYNOMIALLYSOLVABLESUBCLASSOF llrj,nmit ILmax 
Lens tra, Rinnooy Kan, and Brucker [ 1977] prove that the general 
11 rj ,nmit I Lmax problem is 'X(jl-hard in the strong sense. The problem is solvable 
in polynomial time, however, if all release dates are equal, if all due dates are 
equal, if all processing times are equal, or if preeroption is allowed, that is, if the 
processing of a job can be stopped and resumed later. Fora review, we refer to the 
survey by Lawler, Lenstra, Rinnooy Kan, and Shmoys [1989]. Furthermore, if the 
release dates and the due dates are similarly ordered, then the corresponding 
11 rj I Lmax is salvablein O(n logn) time, as follows immediately from the analysis 
inSection 2 by the choice sj = rj (j = 1, ... , n ), F(P max ,Lmax) = oo if P max > 0, 
and F(P max ,Lmax) = Lmax if P max ",.;;; 0. 

In this section, we consider a subclass of the 11 rj nmit I Lmax problem in which 
the release dates do not depend on the jobs, but on the position; we use [k] as a 
subscript to denote the kth position. Let K = (K 1, ••• , Kn), with K; ",.;;; K; + 1 
(i= I, ... , n -1) denote a vector in Rn. The problem under consideration is 
denoted as 11 r[kl = sj Kk ,nmit I Lmax; Jj can be started at the kth position in o 
if Sj - Kk ..;;;; c[k -1] ( (1 ). Note that the II p max ",.;;; P,nmit I Lmax problem belongs 
to this subclass. We prove that this problem can be solved by the extended Jack
son ru/e: always keep the machine assigned to the available job with the smallest due 
date. We have modified the rule such that ties are settled according to nondecreas
ing value of s;. 

ALGORITHM A. 
(O)T~O;k~l; U~{Jl>···,Jn}; V~0. 
{Initialization: T denotes the start time of the job in the kth position.} 
(I) For eachjobJj EU: if sj- Kk..;;;; Tthen V~ VU {Jj} and U~ U\ {Jj }. 
{U denotes the set of unscheduled jobs that are not allowed to start at time T, V 
denotes thesetof unscheduled jobs that are allowed to start at time T.} 
(2) If V is empty, then stop. Otherwise, determine the job with the smallest due 

date in the set V. If there are ties, then choose the job with the smallest target 
completion time. If there are still ties, then choose the job with the smallest 
index. Suppose that J; is chosen. Assign J; to the kth position. 

(3)T~T+p;;k~k+l;V~V {1;}. 
( 4) If there are unassigned jobs left, then go to 1. 

Weneed a preliminary lemma and a dominanee rule before proving that Algo
rithmAsolves Ilr!kl sj- Kk ,nmit ILmax• 
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LEMMA 1. Consider an arbitrary schedule a. Let J; and Jj be two jobs, where J; is 
scheduled before Jj in a. IJ J1 cannot be starled as soon as J; is finished. or, if 
L; (a)> L1 ( o), then both s1 > S; and d1 > d;. 

PRooF. Let J; be assigned to the kth position in a. lf J1 is not avai]able at time 
C; (a), then s1 - Kk + 1 > C; ( o ). As C; ( o) - p; ;;;;. s; - Kh and as Kk ",;;; Kk + t, 
we obtain s1 > s; + p;, and henee dj ;;;:;;. s1 > s; + p; ;;;:;;. d; - p; + p; = d;. As to the 
second case, L; (a) > L1 (a) implies C; (a) - d1 > c1 (a) - d1. As J1 is 
scheduled before Jj, c1 ( o) ;;;:;;. C; (a) + p1. The combination of these two inequal
ities yields d1 - Pi> d;, andhences1 ;;;:;;. d1 - p1 > d;;;;:;;. s;. D 

DoMINANCE RuLE. Let J; and J1 be two arbitrary jobs. IJ both s; ",;;; sj and d; ",;;; d1, 
where at least one of the inequalities is strict, then there exists an optima/ schedule for 
ll r[kJ = s1 Kk ,nmit I Lmax in which J; precedes Ji" 

PROOF. We will show that an optima! schedule a that does not satisfy the domi
nanee rule can be transformed by applying interchanges (not necessarily adja
cent) into a feasible schedule o that is optimaland that satisfies the dominanee 
rule. 

Consider an optima! schedule a that contains two jobs J; and Jj that satisfy the 
conditions of the dominanee rule, while Jj precedes J1 in a. Let J; and Jj be 
chosen such that the jobs scheduled between J; and J1 in a satisfy the order of the 
dominanee rule, implying that there is no job J1 scheduled between J; and J1 that 
has boths1 < sj and d1 < dj,orboths1 >s; andd1 > d;. 

Consider the schedule a, obtained by interchanging J; and J1. In order to prove 
that a is also an optima! feasible schedule, it suffices to prove the following two 
claims. 

(1) a is feasible with respect totherelease dates. 
(2) The latenessin (i of Jj and of the jobs scheduled between J; and Jj in o does 

not exceed L; (a)",;;; Lmax (a). 
Proof of ( 1 ). As s; ",;;; s1, (i is feasible with respect to the release dates of J; and 

J1. Suppose that there is a job J1 in a scheduled between J1 and Jj that starts 
before its release date in a. Henee, J1 can not be started when J; is completed, 
while J; precedes Jl in a. Application of Lemma 1 yields St > S; and d, > d;, con
tradicting the assumption. 

Proof of (2). As d; ~ d1; the second claim holds with respect to J1 and Jj. Sup
pose that there is a job J1 in o scheduled betweenJ; and J1, with L1(a) > L; ( o ). 
As d; ",;;;dj, we have L; ( o) = C; (a) d;;;;;;. C; (a) dj = c1 (a) dj = Lj (a), 
so the lateness of J1 is greater than the lateness of J1 in schedule a while J1 pre
cedes Jj. Application of Lemma 1 yields sj > s1 and dj> d1, contradicting the 
assumption. 

The interchange argument can be repeated until a schedule is obtained that 
satisfies the dominanee rule. This schedule is also feasible and optima!. D 



34 

THEOREM 2. The II rlkJ sj- Kk ,nmit I Lmax problem is solved to optimality by 
Algorithm A. 

PRooF. Suppose that Algorithm A yields a schedule a that is not optimal. Let a be 
an optimal schedule that satisfies the dominanee rule. 

Compare a and a, startingat the front. Suppose the first difference occurs in the 
kth position; let J1 be scheduled in the kth position in a and let Jj be scheduled in 
the kth position in a. 

Let û be the schedule that results when Ji and Jj are interchanged in a. It now 
suffiees to prove the following claims in order to prove that a is an optimal 
schedule that is feasible with respect to the release dates. 

( 1) û is feasible wi th respect to the release dates. 
(2) û is also optimal. 
(3) û can be transformed into a new schedule a that is optimal, feasible with 

respect to the release dates and equal to a with respect to the fust k positions, 
while this new schedu1e a also satisfies the dominanee rule. 

Proof of (1 ). Analogous to the proof of claim ( 1) in the dominanee rule. 
Proof of (2). Analogous to the proof of claim (2) in the dominanee rule, this is 

proven by showing that the lateness in û of Jj and the jobs scheduled between J1 

and Jj in a does not exceed Li (a). Because of the construction of a, we must have 
di ";;;;;dj, and henee, Lj ( û) ";;;;; L1 (a). Consider an arbitrary job ft, scheduled 
between ~ and J1 in a. Suppose that L1 ( Û) > L1 (a). As L1 (a) ;;;, Lj ( û ), we then 
have L1 (a) > Lj ( û ), while J1 precedes Jj in û. Application of Lemma 1 yields 
s1 > s1, and d1 > d" contradicting the assumption that a satisfies the dominanee 
rule. This implies that for each ft, scheduled between Jj and ft, the lateness of J1 

in û does not exceed the value of Lmax (a). This completes the proof of (2). 
Proof of (3). Unfortunately, o does not necessarily have to obey the dominanee 

rule, as a job J1 can exist that is scheduled between J1 and Ji in a, with 
d1 > d1 ;;;, d1 and s1 > s1 > s1; in that case, interchanging Jj and Ji yields a 
schedule that does not satisfy the dominanee rule. From the proof of the domi
nanee rule, however, it follows immediately that o can then be adjusted to a new 
schedule, named a again, that is also feasible and optimal, that satisfies the domi
nanee rule, and in which the first k jobs are the sameasin a. 

The interchange argument can be repeated until the schedule a and the newly 
obtained schedule a are the same. This proves that a, obtained through Algorithm 
A, is an optima} schedule that is feasible with respect totherelease dates, and that 
satisfies the dominanee rule. D 

TIIEOREM 3. Algorithm A solves the problems 11 P max ";;;;; P,nmit I Lmax and 
II Lmax ";;;;; L,nmit I P max to optimality. 

PRooF. The proof of the first part follows immediately from Theorem 2, as 
II P max ";;;;; P,nmit I Lmax is identical to II rJ SJ P,nmit I Lmax. 
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As to the secoud part of the proof, consider an arbitrary instanee 
VI= {pil ,dil ,SJJ, ••. •Pnl ,dnl ,Sn) ,L} of liLmax o;;;,L,nmit IPmax· Now con
struct the following instanee V2 {p 12 ,d12 ,s 12 , ••• •Pn2 ,d11 2 ,sn2 ,P} for 
11 P max ";;:;, P,nmit I Lmax: 

Pi2 =Pil for i I, ... ,n, 
n 

d;2 = 2: PJI sn for i= 1, ... ,n, 
j=l 

11 

si2 = 2:P;I- dil for i= 1, ... ,n, 
j=l 

p =L. 

Suppose that the application of Algorithm A to V 2 yields a2• An optimal schedule 
a1 for V1 is then obtained by reversing a2 , since 

n 

L;(a2) = C;(a2)-d;,2 = C;(a2)j~~mp1, 1 +s;, 1 = s;, 1 -S;aJ) P;(aJ). 

n 
P;(a2) = s;,2 -S;(a2) = 2: PJ, 1 -d;,J -S;(a2) = C;(a,)-d;, 1 = L;(aJ). 

j=! 

This implies that a 1 is optimaland feasible if and only if a2 is optima! and feasi
ble. D 

4. PARETO OPTIMAL POINTS IF NO IDLE TIME IS ALLOWED 
We now present an algorithm to determine ail values P of P max that may 
correspond to a Pareto optimal point. Once such a value P is known, the 
corresponding value of Lmax can be determined in O(n logn) time by solving tbe 
corresponding II P max ";;:;, P,nmit I Lmax problem through Algorithm A. Further
more, we prove that the number of Pareto optimal points with respect to P max 

and L max is no more than n, and that at most n values P of P max have to be con
sidered to determine all Pareto optimal points. We start by proving the following 
lemma. 

LEMMA 2. Consider an arbitrary job Jk in a, where a is the schedule constructed by 
Algorithm A to solve 11 P max ";;:;, P,nmit I Lmax. There are no two jobs J; and J1 
before h in a with a due date larger than dk. 

PROOF. Suppose to the contrary that there are two such jobs J; and JJ. Without 
lossof generality, let J; be scheduled before JJ. Because of the construction of a, 
job h cannot be available when J1 is selected, and hence, it cannot be started as 
soon as J; is finished. Application of Lemma 1 yields that therefore dk > di> con
tradicting the assumption. D 
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Given an optimal schedule o for II P max..;:; P,nmit I Lmax obtained by Algorithm 
A, where P is an arbitrary value of the upper bound on P max• it is possible to 
decrease Lmax only by interchanging two jobs that are not scheduled in EDD 
order. We prove that o can be partitioned into blocks that have the property that 
an interchange necessary to decrease Lmax can only take place within such a 
block. Partition the schedule o into blocks according to the following algorithm. 

P ARTITIONING ALGORITHM. 

(0) Start at the beginning of the schedule. 
(1) Select the next job J1 to be the first job in a block. Compare the due date of J1 

with the due date of its successors, until a job is found that does not have a 
smaller due date. Let this be J k. The block contains J1 and all its successors up 
toJk. 

(2) Proceed until the schedule has been completely partitioned into blocks. 

PROPOSITION 1. Let a be an optima! schedule for the 11 P max ..;:; P,nmit I Lmax prob
lem obtained by Algorithm A, where P is an arbitrary upper bound on P max. with 
P ;;;;. pMTST, where pMTST is equal toP max (MTS1). Partilion o into blocks, accord
ing to the Partitioning algorithm. Any block B has the followingproperties. 
(1) Ifjob J1 is the first job in B, then all jobs Jj in o with smaller due date scheduled 

after J1 also belong to block B. 
(2) The jobs in B are scheduled in the following order: the job with the largest due 

date is scheduled first, the other jobs are scheduled in EDD order. 

PROOF. (1) Suppose that there exists a job Jj with dj < d1 that is scheduled after J1 

and that does not belong to B. According to the Partitioning algorithm, there 
must exist a job ft, scheduled between J1 and Jj, with d1 ;;;;. d1 > dj. But then, both 
J1 and J1 have larger due date and are scheduled before J1, contradicting Lemma 
2. This con tradietion proves Property I. 

(2) Property 2 follows immediately from Lemma 2 and the Partitioning algo
rithm. 0 

THEOREM 4. Let P 1 and P 2 be two arbitrary values of the upper bound on P =• with 
P 1 ..;:; P 2. Let a1 and o2 be the optima/ schedules obtained by applying Algorithm A 
to Ij P max..;:; P 1 ,nmit I Lmax and Ij P max ..;:; P 2 ,nmit I Lmax, respectively. Partilion 
a1 into blocks according to the PartWoning algorithm. Let B be an arbitrary blockof 
a I> let T 1 and T 2 be the start and completion time of block B in a 1, respectively. Then 
the jobs belonging toB are processed in a2 during the interval [T 1, T 2.]. 

PROOF. Consicter the first block B of o1• Let J1 be an arbitrary job that does not 
belong to B. As P 2 ;;;;. P 1, it is feasible to schedule all jobs of B in the same posi
tion as in a1• As J1 does not belong toB, its due date is at least as large as the due 
date of the first job in B and therefore Algorithm A wil1 not choose J1 until all 
jobs that belong toB have been scheduled. This argument can be repeated for the 
second blockin o1 and so on, until only the last block remains. 0 
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THEOREM 5. Let u be an optima! schedule for Ij P max ~ P,nmit I Lmax obtained by 
Algorithm A, where P is an arbitrary upper bound on P max· Let B be a block that 
contains a job J1 with L1 (u) = Lmax (u). In order to decrease Lmax (u), it is neces
sary to increase P such that another job within block B can be scheduled flrst. 

PROOF. Lmax (a) can only be decreased by decreasing the completion time of job 
J 1• Application of Theorem 4 implies that a decrease of the completion time of job 
J1 has to be achieved by changing its position within the block B. As all jobs in B, 
except the job in the first position, are scheduled in EDD order, another job has to 
be scheduled in the first position of B to change the scheduling order in B. 0 

Theorem 4 and 5 provide the basis for the algorithm we present for determining 
all Pareto optima! points. First we prove that the number of Pareto optima! points 
is at most equal to n. 

THEOREM 6. Let a 1 and u2 be two schedules obtained by Algorithm A, which both 
correspond toa Pareto optima/ point, (P 1 ,L 1 ) and (P 2 ,L2 ), respectively. Suppose 
P 1 < P 2. PartWon o1 and u2 into blocks by applying the Partitioning algorithm. The 
munber of blocks into which u1 has been partitioned is smaller than the number of 
blocks in which a2 has been partitioned 

PROOF. Application of Theorem 4 proves that u2 has been partitioned in at least 
as many blocks as u1• Furthermore, Theorem 5 implies that, in order to achleve a 
lower value of Lmax• at least one of the blocks, in which a1 has been partitioned, 
must have been split in at least two blocks in o2• 0 

COROLLARY 6.1. The number of Pareto optima/ points is bounded by n, and this 
bound is tight. 

PROOF. The number of blocks is at most equal to the number of jobs. From 
Theorem 6 it follows immediately that there are no two different Pareto optima! 
points that have the corresponding schedules, obtained by Algorithm A, parti
tioned by the Partitioning algorithm into the same number of blocks. Hence, the 
number of Pareto optimal points is bounded by n. 

The following example shows that the bound is tight: 

p1 = 1 for i 1 , ... , n - I , 

d 1 = 2' di + 1 = di + i + 2 for i = I ' ... ' n -2, dn = Pn = dn I + 1 . 

lt is easily verified that the schedules (111 ,J 1 ,J 2• .•• Jn 1 ), 

(J 1 ,Jn ,J 2 ,J 3, · •. Jn 1 ), •.• , (J 1 ,J 2 ,J 3, ..• Jn) all correspond to Pareto 
optima! points. 0 

From Theorem 5 it follows immediately that a new Pareto optima! point can only 
be obtained by increasing the value P of the upper bound on P max such that for 
every block B that contains a job J1 with L1 = Lmax another job can be scheduled 
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in the first position in B. This observation forms the basis for an algorithm that, 
given an optimal schedule a for ll P max.:;;;; P,nmit I Lmax• determines the next 
P max-value that corresponds toa Pareto optimal point. 

ALGORITHM NEXT P 
(0) Partition a into blocks, according to the Partitioning algorithm. 
(1) Determine for each block B that contains a job J1 with L1 (a) = Lmax (a) the 

value of the upper bound P such that another job in B is allowed to be 
scheduled in the first position. If J; is the only job in B, then Lmax cannot be 
decreased; stop. 

(2) Choose the maximum of the values found at Step 1. This maximum is the new 
valueP. 

A straightforward implementation of all properties derived above yields an algo
rithm that deterrnines all Pareto optimal schedules in O(n 2 logn) time. We can, 
however, gain a little by not determining the Pareto optimal schedules but the 
Pareto optimalpoints; after selecting the point that yields minimal F(P max ,Lmax) 
value, the corresponding schedule is easily obtained. 

The algorithm highly depends upon the properties of the blocks. Assume that 
the jobs are numbered in order of nondecreasing due dates, where ties are settled 
according to nondecreasing target start times. Consider an arbitrary block B; sup
pose that it contains the jobs {I;, ... ,J1 }. Then the completion time of each one 
of the jobs { J;, ... , J1_ 1 } is equal to its completion time in the EDD schedule plus 
p1• Hence, the blockwise maximum lateness for B, that is, the maximum lateness 
within B, is attained by the job in {I;, ... ,J1 _ 1} that has maximum latenessin the 
EDD schedule. Furthermore, the job in B that will occupy the first position in B 
when the upper bound on P max is increased minimally is the job in {J;, . .. ,J, 1} 

that bas minimum target start time; the necessary minimal increase of P is equal 
tos1 - C1 1 (EDD)- P. 

The above observations show that, once the necessary orders are stored per 
block, we can determine the Lmax-value within Band the upper bound value that 
is needed to alter the sequence within B in constant time. Hence, if we store the 
blockwise Lmax-values and the next upper bound values in an ordered tree, then 
we can determine the next interesting P max-value and the corresponding Lmax
value in 0 (log n) time. As partitioning of the orders according to the blocks takes 
O(n) time, the running time of Algorithm Bis O(n 2

). The proof of correctness 
follows from the observations made above. 

ALGORITHMB 

(0) Solve ll nmit I P max• yielding pMTST, and solve ll P max .:;;;; pMTST,nmit I Lmax• 
yielding a; store (P max (a),Lmax (a)). Partition a into blocks by applying the 
Partitioning algorithm. 

(1) Determine the MTST-order, the L1 (EDD)-order, in which the jobs are 
ordered according to nonincreasing lateness in the EDD-schedule, and 
c1 (EDD), for j I, ... , n. Partilion the MTST and the L1 (EDD) order 
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according to the partitioning of G. Determine for each block B its blockwise 
maximum lateness value and its next upper bound value. Store these valnes in 
an ordered tree. 

(2) Determine the minimum element in the ordered tree containing the blockwise 
next upper bound values; let this beP. If P = oo, then go to 5; all interesting 
points have been discovered. Suppose that P originates from job J k; let this job 
be contained in the block B that contains the jobs {J;, ... ,J1 }. 

(3) Split B, the MTST-order, and the L1 (EDD)-order in two parts; the first part 
contains the jobs Ji, ... ,Jb while the second part contains the jobs 
h + 1, •.. ,J1• Determine for both parts the blockwise maximum lateness value; 
store these valnes in the ordered tree and delete the former maximum lateness 
value corresponding to B from the tree. Determine for the second part the 
blockwise next upper bound value; let this be P 1. lf P 1 ~ P, then the second 
part bas to be split further. This can be done in the same fashion as described 
above. This process repeats until the current P 1-value bas beoome greater than 
P. If P 1 > P, then we have obtained an interesting point with P max-value equal 
toP and Lmax·value equal to the maximal element in the ordered tree contain
ing the blockwise maximum lateness values. 

( 4) Store this point, and go to 2. 
(5) Compute for each of the interesting points its F-value, and choose the 

minimum. Suppose the minimum is attained by the point (P,L). The 
corresponding optimal schedule is then determined by solving 
II P max ~ P,nmit I Lmax through the extended Jackson rule. 

5. P ARETO OPTIMAL SCHEDULES IF IDLE TIME IS ALLOWED 

We prove that the 11 P max.;;; PI Lmax problem can be solved in O(n 2 logn) time, 
given P. Furthermore, we show that the trade-off curve of P max and Lmax, defined 
as the curve that connects all points (P,L ), where L is the outcome of 
1 I P max ~ P I Lmax• is piecewise linear with gradient altemately - 1 and 0 and 
that it can be computed in 0 (n 2 log n) time. 

Consider the II P max ~ P I Lmax problem. As Lmax is a regu/ar performance 
measure, implying that its value cannot be decreased by inserting idle time into a 
given schedule that is feasible with respecttoP max ";;; P, we may restriet our atten
tion to active schedules. An active schedule is a schedule in which no job can start 
earlierwithout increasing the completion time of at least one other job. 

The possibility of inserting idle time in a schedule bas an important conse
quence. Consider a partial schedule without idle time in which the first k I jobs 
have been fixed. Instead of scheduling the available job that bas the smallest due 
date in the kth position, it now may be advantageous to wait until another job 
with smaller due date becomes available. Although this looks similar to increasing 
the upper bound P to allow a job with smaller due date to be sequenced next, as in 
the previous section, both situations differ tremendously with respect to the 
consequences. Inserting idle time affects the completion times of all jobs still to 
come, even if the sequence in which the remaining jobs are scheduled stays the 
same, in contrast to increasing P in the previous section. We need position 
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dependent release dates, as defined in Section 3, in order to prevent unnecessary 
changes in the beginning of the schedule that possibly increase Lmax· We show 
that we can use the insight gained in the analysis of the I! P max ~ P,nmit I Lmax 

problem to deal with the I I p max ~ p I Lmax problem. 
The Ij P max ~ P I Lmax problem is not easily accessible itself. Therefore, we 

will solve it by formulating it in a different way. To this representation we apply a 
strategy that is very similar to the one used in Section 4. Consider an optimal 
schedule a for 1 I P max ~ P I Lmax; let a denote the corresponding sequence that 
remains after removing the idle time. Define P[iJ ('i7) as the promptnessof the job 
in the ith position in ö; define Kt= max1,.;;k.;;t Pril (i= 1, ... , n). The total 
amount of idle time that bas to be inserted into a before J 111 to make it feasible 
with respect to the constraint P max ~Pis equal to max{K1 - P, 0}. Hence, the 
II P max ~PI Lmax problem can altematively be formulated as the problem 
Ij Prn ~Kt ,nmit I maxJ,.;;t,.;;n {L[il + max{K1 P, 0}}, where the set of con
straints PriJ~ K 1 induces the set of positional release dates r111 = s1 K1 

(i I, ... ,n ;j = 1, ... ,n). Oneway to solve this probiemis by usinga step-wise 
approach: given a nondecreasing vector of upper bounds Ki that possibly 
corresponds to an optimal solution of the above problem, determine Ki + 1 by 
increasing at least one component of Ki such that LriJ is decreased, where J !iJ is 
the job that attains max1,.;;k ,.;;n {Lik! + max{ Kk - P, 0}}. Note that, given a vec
tor Ki (K.{, ... , K~) of upper bounds with K{ ~ K{ + 1 for i 1, ... , n 1, the 
optimal set of L1wvalues is found by solving Ij PriJ~ K{ ,nmit I Lmax through 
Algorithm A; hence, for simplicity, we denote the problem of determining the 
L 1wvalues given a vector Ki of upper bounds as Ij PriJ~ K{ ,nmit I Lmax· As the 
sequence without idle time bas to be made feasible with respect to P max ~ P by 
inserting idle time, there is nousein consiclering veetors K (Kb ... ,Kn) that 
are not nondecreasing, that is, that do not satisfy Kt ~ K1 + 1 for i = I, ... , n 1. 
Further note that every component of Ki + 1 bas to begreater than or equal to the 
corresponding component of Ki. Otherwise, the schedule that solves 
Ij P 111 ~ K{ + 1 ,nmit I Lmax doesnotlead toa smaller L1;rvalue than the schedule 
that solves ll Pril ~ K7 ,nmit I Lmax, where J 111 is the job that attains 

. h • . "+1 
max1,.;;k,.;;n {L[kl + max{Kk- P, 0} }, and where K1 mm{K1 ,K{ }; hence, 
Ki + 1 then cannot correspond to an optimal schedule. Let { K 1, ••• , Km } be the 
set of veetors that are obtained by applying the above step-wise approach. Define 
a1 as the sequence obtained by solving 11 P 1n ~ K1 ,nmit I Lmax through Algo
rithm A; define a1 (P) as the active schedule that is obtained when a1 is made 
feasible with respect to the constraint P max ~ P. Obviously, the veetors 
{K1

, ••• ,Km} have to be minima!, that is, if one of the components of Ki 
(j = I, ... , m) is decreased, then o1 must become infeasible with respect to the 
constraints P !iJ ~ KJ. 

We have now come to the point of implcmenting the above step-wise approach 
todetermine thesetof upper bound veetors {K1, ••• ,Km} that yield a possibly 
optimal schedule a1 (P) for II P max ~PI Lmax· We show that thesetof veetors 
{ K 1, .•• , Km } is obtained in a similar fashion as the set of P rnax-values 
corresponding to a possibly Pareto optimal point in the previous section. 
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Consider a vector K from the set {K1
, ••• ,Km}. Let k and l be such that 

Kk -I < Kk K1 < K1 + 1. The set of positions U, ... , k} is called a group of 
positions, thesetof jobs {J[kl• ... ,Ju1} is called a group of jobs. Note that the 
corresponding schedule o(P) contains no idle time within a group of jobs. Define 
the maximum lateness within the group Gas L(G)max = max{L1iJ ( o) IJ liJ EG} 
and define K ( G) as the common K-value for the group of positions corresponding 
toG. 

PROPOSITION 2. Consider a sequence o1 obtained when solving 
Ij PriJ~ K{ ,nmit ILmax through Algorithm A, where Ki E {K1

, ... ,Km}. Parti
lion o1 in groups, let G 1 and G2 be two arbitrary groups of jobs, where G1 is com
pleted bejore G2. Let J 1n and J UI be two arbitrary jobs in G1 and G2> respectively. 
Then dlil < duJ· 

PROOF. Let J 111 be the first job in G2• As Ki is minimal, KJ cannot be decreased, 
hence, J liJ cannot be started as soon as J [i 1 is completed. Application of Lemma I 
yields s[il < s 111 and d 111 < drlJ· As o1 is obtained by Algorithm A, either su1 ;;;;. s 111 
or du1 ;;;;;. driJ· As to the first case, J UI cannot be started as soon as Jlil is com
pleted, implying du1 > dlil; as to the second case, we obtain du1 ;;;;. drlJ >dril· D 

THEOREM 7. Let Ki and Kk be two arbitrary veetors jrom the set { K 1, ... , Km}. Let 
Kk be the larger ojthe two. Let o1 and ok be the optima/ sequences obtained by apply
ing Algorithm A to 11 PriJ~ K{ ,nmit I Lmax and 11 Pr;l ~ K7 ,nmit I Lmax• respec
tively. Partilion o1 and ok in groups. Let G1 and G2 be two arbitrary groups ofjobs in 
o1, where G1 is completed before G2 in o1. Let Jlal andJibl be two arbitrary jobs in 
G1 andG2, respectively. ThenJlaJPrecedesJlbJ in ok. 

PROOF. The proof follows from Proposition 2 and the way the jobs are chosen in 
Algorithm A. D 

From Theorem 7 it follows immediately that if we start with a vector K for the 
upper bound on P 111 then the only way to decrease L ( G)max is to increase the 
value of the upper bound for the whole group G or for a part of the group. This 
observation provides the basis for the following algorithm. 

ALGORITHM NEXT K. 
(0) Let K be a given vector of upper bounds on PriJ· Let o be the sequence 

obtained by applyingAlgorithmA to 11 P111 ~ K1 ,nmit I Lmax. 
(1) Let G be the first group in the schedule that attains max{L(G)max + K(G)}. 

Partition this group of jobs into blocks by the Partitioning algorithm. 
(2) Determine the set of blocks ~ in G that contain a job J1 with 

L; (a) L(G)max· 
(3) Determine for each block B in ~ how much the upper bound K ( G) has to be 

increased to let another job within B be scheduled in the first position in B. 
Denote this value by K(B). If B consistsof a single job, then K(B) = oo and 
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hence, L ( G)max cannot be decreased; stop. 
( 4) The next vector of upper bounds K can be computed from the old upper 

bound vector as follows. Let the first blockin liJD start in the (k + l)th position. 
The first k elements stay the same. Now consider the remaining positions in G, 
suppose these are the positions k + 1, ... , I. The new upper bound value K1 +I 
becomes equal to max{K1 ,K(B)}, where Bis the block that contains position 
i + l. The elements of the new upper bound vector K corresponding to posi
tions after G become equal to the maximum of K1 and their old value. 

Because every group of jobs G has the same K-value for every job J1 in G, the 
correctnessof this algorithm follows from Theorem 5. The time complexity of the 
algorithmis O(n). 

We are now able to formulate an algorithm to determine all veetors K 1, ••• , Km 
and the corresponding sequences ob ... ,om. Let KMTST denote the vector with 
Kf1TST = max{Pu1 (MTSl)IJ = 1, ... ,i}, fori = 1, ... ,n. 

ALGORITHM C. 
(0) Determinethevector KMTST; I~ 1; K' ~KMTST_ 
(1) Solve 11 Pril.;;; Kl ,nmit I Lmax by applying Algorithm A; this yields sequence 

o,. 
(2) 1~ l + 1. Compute the next vector K 1 by applying Algorithm Next K. If 

K < oo, then go to 1. 
(3) All veetors K E ( K 1, •.• , Km} have been determined. 

Screen the set of veetors {KI, ... , Km} in to remove all veetors that lead to dom
inated sequences. A sequence o1 + 1 is dominated by sequence o1 if 
Lmax ( o1) .;;; Lmax ( a1 + 1 ). We now prove that at most n upper bound veetors are 
determined by Algorithm C. 

TIIEOREM 8. Let Ki and Kk be two arbitrary vectorsfrom the set {K1, ... ,Km}. Let 
Kk be the larger of the two. Let o1 and ok be the optima/ sequences obtained by opply
ing Algorithm A to I! Prn.;;; K{ ,nmit I Lmax and II PriJ.;;; Kr ,nmit I Lmax• respec
tively. Partition o1 and ok into blocks according to the Partitioning algorithm. Then 
ok is partitioned into more blocks than o1. Hence, Algorithm C computes at most n 
schedules, and therefore, its time complexity is O(n 2 Iogn). 

PROOF. The proof is analogous to the proof of Theorem 6 and Corollary 6.1. D 

Let o1 (P) be the active schedule obtained by inserting idle time in o1 to make o1 
feasible with respect to the constraint P max .;;; P, for j 1, ... , m. Let J lil be an 
arbitrary job in o1 (P). We now have that 
LriJ ( o1 (P)) = LriJ ( a1 ) + max(O,K1 - P}. Therefore, the trade-off curve of P 
and Lmax ( o1 (P)) is obtained by combining the trade-off curves of 
L 11 1 ( o1) + max. { O,KJ - P} for i = 1, ... , n; hence, the trade-off curve of P and 
Lmax (a1 (P)) forms a continuous, piecewise linear step-function with altemate 
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gradients 1 and 0, for j = 1, ... , m. Furthermore, the number of breakpoints in 
every trade-off curve is no more than n. These trade-off curves can be combined 
to one trade-off curve by choosing for each value of P the minimum value of 
Lmax ( G1 (P)) for j = 1, ... ,m. The number of breakpoints in this trade-off curve 
is no more than mn ~ n 2• As 1 I P max ~ P I Lmax is solved by one of the schedules 
o1 (P), ... , Gm (P) for every value of P, the trade-off curve derived above is exactly 
equal to the trade-off curve of Pand Lrnax• where Lmax is equal to the outcome of 
the 11 P rnax ~PI Lrnax problem. The trade-off curve is determined in O(n 2 logn) 
time, this is the time needed to determine the set of upper bound veetors 
(K1, ••• ,Km} and to determine the set of sequences {a1, ••• ,om}. Hence, 
Ij P max .,;;; P I Lrnax is solved in 0 (n 2 log n) time 

THEOREM 9. The lj rj I Lmax problem is solvable in O(n 2 logn) time if 
rj E[dj - pj- C,dj - CLfor j 1, ... , n,for some constant C. D 

6. SOLVING THE lil F( P max ,Lrnax) PROBLEM IS ~'?P-HARD 
In this section we prove that ll I F( P max ,Lmax ) is ~'?P-hard in the strong sense. 
First, we need to prove that the problem of minimizing an arbitrary function 
f (x), where x belongs to an arbitrary set U of integers, is ~'?P-hard, by showing 
that the conesponding decision problem is ~'?P-complete. The rednetion is from 
the Hamiltonian circuit problem [Schrijver, 1989]. 

HAMILTONIAN CIRCUIT PROBLEM [Garey and Johnson, 1979]: Given a graph 
G = (V, H), does G contain a Hamiltonian circuit? 

We start by descrihing a rednetion from the Hamiltonian circuit problem to the 
problem of minimizing an arbitrary functionf(x), where x belongs to an arbi
trary set U of integers. Let G = (V,H) be an arbitrary graph and let the edges in 
H be numbered 1, ... , I H I, where I H I denotes the cardinality of H. Define 
U = { 0, ... , 21 H I } . Every integer x E U can be described by I H I zeros and ones, 
by using binary encoding. Further define for every x EU a subset Ux CH in the 
following way: the ith edge in H belongs to Ux if and only if the ith digit in the 
binary representation of x is equal to 1. Now we define the following function 
f(x). 

{ 

0 if I U x I = n and if U x is Hamiltonian, 

f (x) 1 otherwise. 

Clearly, the value of f (x) can be established in every point x in polynomial time. 

THEOREM 10. Given a set of integers S and a nonnegative integer y, the problem of 
deciding whether there exists an integer x ES with f (x) ~ y is ~'?P-complete. 

PROOF. The decision problem is clearly in ~~. For any given instanee of the 
Hamiltonian circuit problem, we construct a set of integers S and a function f (x) 
as described above, and set y = 0. This rednetion requires polynomial time. The 
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decision problem will be answered affirmatively if and only if the graph G con
tains a Hamiltonian circuit. 0 

THEOREM 11. The 111 F( P max ,Lmax) problem is 1!JU5J-hard in the strong sense. 

PRooF. The trade-off curve is piecewise linear with gradient - 1 and 0 altemately. 
This implies that the number of Pareto optimal points with respect to the criteria 
P max and Lmax is unbounded, as every value P EZ, with P not larger than the P
value of the first breakfoint, corresponds to a Pareto optimal point. Therefore, we 
are able toselect 2IH consecutive Pareto optimal points (with H equal to the 
edge set of an arbitrary graph) and hence, we can carry out the reduction from the 
Hamiltonian Circuit rroblem, with F( P max ,Lmax) = f (P - c ), where c is such 
that 0 =;;;; P - c < 21 H for every selected P-value. D 

Note that, if we impose the restrietion that P max bas to be nonnegative, then only 
a pseudo-polynomial nu:mber of Pareto optimal points remains, and hence, 
11 I F( P max ,Lmax ) is solvable in polynomial time. Suppose that a polynomial 
algorithm exists for this restricted problem. In that case, given a graph 
G = (V,H), all processing times can be multiplied by a factor 0(21H I ), after 
which we can select 21 H I consecutive Pareto optimal points ( the idle time can still 
be changed by one unit at a time) and we can carry out the rednetion as described 
above. Therefore, even in case P max is bounded from below there is no polyno
mial algörithm for IIIF(Pmax,Lmax), unless <5'='][.<5'. Further, note that the 
rednetion from the Hamiltonian circuit problem is not polynomial anymore, 
when P max is assumed to be nonnegative and therefore, we cannot conclude that 
this special case of 111 F( P max ,Lmax) is 'Jl,<?f'-hard in the strong sense. 

Note that this example is artificial. In practice, it will be very seldom that a 
function F is considered such that F (x, C -x) cannot be minimized in polyno
mial time. If we restriet ourselves to linear objective functions 
F( P max ,Lmax) = al P max + a2 Lmax, withal ,a2 ;;;. 0, then the situation is much 
brighter. lf a 1 > a2, then the optimum oost value will be equal to - oo, otherwise 
an optimum is found in one of the breakpoints; hence, I I I a 1 P max + a2 Lmax is 
solved in 0 (n 2 1og n) time, the time needed to de termine the trade-off curve. 

In case the function F( P max ,Lmax) is convex, then we can solve solve 
IIIF(P max ,Lmax) by applyingbinary search in O(max{n21ogn, log~pi}) time, 
provided that we impose the restrietion that P max is nonnegative. 
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1. lNTRODUCTION 

51 

A single-machine job shop can be described as follows. A set of n independent 
jobs bas to be scheduled on a single machine that is continuously available from 
time zero onwards and that can process at most one job at a time. Each job 
J1 (j = 1, ... , n) requires an uninterrupted positive processing time p1 and has a 
due date d1. Withoutlossof generality, we assume that the processing times and 
due dates are integral. A schedule o defines for each job J1 its completion time c1 
such that the machine availability constraints are satisfied. A performance meas
ure or scheduling criterion associates a value j(o) with each feasible schedule o. 
Well-known measures are total completion time ~C1 , maximum lateness Lmax• 

defined as max1 <J<n (C1-d1), and maximum earliness Emax, defined as 
max1<J<n(d1-s1-p1), where s1 denotes the start time of J1. In addition, we 
define f max as max 1 < 1..;; ,Jj( c1 ), where jj is an arbitrary regular oost function for 
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Jj (j = 1, ... ,n); regular means that !;(Cj) does not decrease when Cj is 
increased. Correspondingly, a performance measure is called regular if it is non
decreasing in the job completion times; total completion time and maximum late
ness are of this type. A schedule a* is optima! for a given performance measure if 
f(a*) = miD.a of(a), where 9 denotes thesetof feasible schedules. Note that in 
case of a regular performance measure there is an optimal schedule such that no 
job can start earlierwithout affecting the start time of any other job. In that case, 
a sequence or permutation of the n jobs defines a unique schedule. 

We consider the bicriteria probieros that arise when the criterion ~c1 is com
bined with one of the minmax criteria f max• Lmax• and E max. A second criterion is 
taken into account to prohibit a solution from being unbalanced; with unbal
anced we mean that the schedule performs perfectly well on one criterion, 
whereas its performance on the other criterion is very poor. 

The performance criteria under consideration are commonly used to model 
economie aspects. Total completion time is used to measure the work-in-process 
inventories; the elements needed in the processing of the job have to be stored 
until the job is completed. Maximum lateness measures the observance of due 
dates, whereas maximum earliness measures the observance of start times. The 
maximum oost criterion can be used to make the penalties job-dependent or to 
penalize large completion times more severely;!; ( c1) = w1 ( c1- dj), for example, 
resembles the first option, whereas !;(C1) = (max{O,Cj-dj }i resembles the 
second option. 

Basically, there are two methods to cope with multiple criteria. If the objectives 
are subjecttoa hierarchy, then the objectives are considered sequentially in order 
of relevance. An example hereof is the problem of minimizing maximum tardiness 
subject to the minimum number of tardy jobs (Shanthikumar, 1983); the primary 
criterion is to minimize the number of tardy jobs, and subject to this maximum 
tardiness is minimized. Note that in case of hierarchical minization we do not 
mind the schedule being unbalanced. 

This paper, however, is concemed with the simultaneous optimization of several 
criteria. In this approach, the performance measures, specified by the functions 
/k (k = I, ... ,K), are transformed into a single composite objective lunetion 
F: Sl~R. With each scheduleawe associatea point (j1(a), ... ,JK(a)) in RK and 
a value F(f1(a), ... ,fK(a)). In the remainder, the terros schedule and point are 
used interchangeably. The associated problem, from now on referred to as prob
lem (P), is formulated as 

(P) 

where F is nondecreasing in each of its arguments. Minimizing the number of 
tardy jobs and maximum tardiness simultaneously (Nelson, Sarin, and Daniels, 
1986) is an example of this method. 

A natura! question is whether problem (P) is solvable in polynomial time for a 
given lunetion F. It is straightforward that we can solve this problem in polyno
mial time for any function F that is nondecreasing in its arguments if we can iden
tify all of the so-called Pareto optima/ schedules in polynomial time. 
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DEFINITION 1. A schedule o E 0 is Pareto optima/ with respect to the objective 
functions f~o . .. ,JK if there exists no feasible schedule ?T with jk(on') ~ fic(o) for all 
k = 1, ... ,Kandfk(?T) <fic(a)foratleastonek, k = 1, ... ,K. 

Once the Pareto optima/ set, that is, thesetof all schedules that are Pareto optima! 
with respect to the functions (/1, ••• ,fK), has been detennined, problem (P) can 
be solved for any function F that is nondecreasing in each of its arguments by 
computing the cost of each Pareto optima! point and taking the minimum. As a 
consequence, if each Pareto optima! schedule can be found in polynomial time 
and if the cardinality of the Pareto optima! set is bounded by a polynomial in the 
problem size, then problem (P) is polynomially solvable. 

An interesting subclass of (P) is one in which the composite objective function 
is linear. The associated problem, hereafter referred to as problem (P 0), is formu
lated as 

where a= (a1, ••• ,aK) is a given real-valued vector of nonnegative weights. In 
analogy to problem (P), we wish to detennine the set of schedules that contains an 
optima! solution to problem (Pa) for any weight vector a;;;;:: 0. Wedefine this set as 
the set of extreme schedules. 

DEFINITION 2. A schedule a EO is extreme with respect to the objective functions 
ft, ... ,JK if it corresponds toa vertex of the lower envelope of the Pareto optima! 
setforf~> ... ,fK· 

Once the set of extreme schedules with respect to the objective functions 
f~> ... ,JK has been identified, problem (P ..,) can be solved for any given a ;;;;:: 0 by 
computing the cost of each extreme point and taking the minimum. 

Throughout the paper, we adopt and extend the notation of Graham, Lawler, 
Lenstra, and Rinnooy Kan (1979) to classify scheduling problems with multiple 
criteria. Por instance, lil F(:E.C1,Lmax) denotes the problem of minimizing an 
arbitrary nondecreasing function of total completion time and maximum lateness 
on a single machine, while 111 a 12:.C1 + a2Lmax denotes its linear counterpart. 

This paper is organized as follows. In Section 2, we present some fundamental 
algorithms for the underlying single-criterion problems. In Section 3, we consider 
the lil F(2:.C1,J max) problem. We establish the polynomiality of Van 
W assenhove and Gelders's conjecturedly pseudo-polynomial algorithm for 
lil F(2:.C1 ,Lmax) (Van Wassenhove and Gelders, 1980), thereby proving a con
jecture by Lawler, Lenstra, and Rinnooy Kan (1979). We show that 
1IIF(2:.C1,Jmax) is solvable in O(n 3min{n,logn +logpmax}) time, where 
Pmax = max1p1, and that 1 11 F(:E.C1,Lmax) is solvable in O(n 3

) time. These 
results make the branch-and-bound algorithms proposed by Sen and Gupta 
(1983) and Nelson et al. (1986) obsolete. 

InSection 4, we consider llpmtn I F(2:.C1,Emax); the notation pmtn signifies 
that job splittingis allowed, that is, the execution of a job can be interrupted and 
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resumed later. The maffi results are that IJpmtn J a1 ~C1 +a2Emax and, in the case 
thata1 ;;> a2, also 1 I I a1 ~e1 +a2Emax aresalvablein O(n4) time. 

2. FUNDAMENTAL ALGORITHMS AND NOTATION 

There are four single-machine single-criterion scheduling problems related to the 
bicriteria probieros under consideration. These involve the minimization of ~e1, 

Lmax, Emax, and fmax• respectively. The first three problems are solvable by 
arranging the jobs in a certain priority order that is specified in terms of the 
parameters of the problem type. 

THEoREM 1 (Smith, 1956). The problem of minimizing total completion time, 
denoted as IJ I ~e1 is solved by sequencing the jobs according to the shortest
processing-time (SPT) rule, that is, in order ofnondecreasingp1. 0 

THEOREM 2 (Jackson, 1955). The problem of minimizing maximum lateness, 
denoted as 1 I J Lmax, is solved by sequencing the jobs according to the earliest-due
date (EDD) rule, that is, in order of nondecreasing d1. 0 

THEûREM 3. The problem of minimizing maximum earliness subject to no machine 
idle time, denoted as 1 I nmit I E max. is solved by sequencing the jobs according to the 
minimum-slack-time(MST) rule, that is, in orderofnondecreasingd1-p1. 0 

The no-machine-idle-time constraffit nmit is imposed on the liJ Emax problem to 
avoid unbounded solutions. 

The fundamental argument that validates each algorithm is the following. Sup
pose that there is an optima! schedule with two adjacent jobs that are not 
scheduled according to the indicated priority order. The interchange of the jobs 
will possibly improve but certainly not worsen the objective value. An improve
ment contradiets the claimed optimality, whereas in the other case we can repeat 
the argument to obtaffi a schedule with equal objective value that matches the 
priority order. 

THEoREM 4 (Lawler, 1973). The 1Jifmaxproblem is solved asfollows: while there 
are unassigned jobs, assign the job that has minimum cost when scheduled in the last 
unassigned position to that position. 0 

3. MINIMIZING TOT AL COMPLETION TIME AND MAXIMUM COST 

Let ij: N ~ IR denote a regular cost function for job J1 (j = 1, ... , n ); accord
ingly, ij( e1) denotes the cost incurred by completing job J1 at time e1. In addi
tion, let fmax = max1ij(e1). We show that 1JJF(l:e1,Jmax) is solvable in 
O(n 3min{n,logn +logpmax}) time, withPmax = max1p1, for any functionFthat 
is nondecreasing in both ~e1 and f max· Note that lJ I F(~C1,Lmax) corresponds 
toa special case of IJ I F(~eJ,f max). 

In Theorem 4, we recalled Lawler's O(n2) time algorithm for IJlfmax· An 
extension bas been provided by Emmons (1975), who considered the hierarchical 
problem of minimizing ~e1 subject to the constraffit that f max is minima!; this 
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problem is denoted as 1 I f max ..,;;: f' I ~Cj, where f' denotes the solution value of 
the outcome of lll/max· Once f' has been determined by Lawler's algorithm, 
Emmons's algorithm requires O(n 2) time to minimize total completion time sub
ject to minimal max_!mum oost. Observe, however, that an upper bound onij(Cj) 
induces a deadline dj on the completion time of Jj. Each deadline can be deter
mined in O(log(~pj)l time by binary search over the O(~pj) possible completion 
times. Furthermore, dj is computed in constant time if ij has an inverse. Once the 
deadlines have been computed, the problem in the secon~ phase is to minimize 
total completion time subject to deadlines, denoted as 1 I dj I ~Cj, which requires 
only O(nlogn) time(Smith, 1956). 

We state the algorithm for 11/ max ..,;;: f I ~Cj, where fis some upper bound on 
the cost of the schedule. 

ALGORITHM I (Smith, 1956) 

Step 1. Compute for each job Jj the deadline dj induced by ij( Cj) ..,;;: f. 
Step2. T+-~Pj· 
Step 3. Determine U+-- {J1 E J I dj;;;;. T} as thesetof jobs that are allowed to be 

completed at time T. 
Step 4. De termine J1 such that PJ max {pj I Jj E U}; in case of ties, J1 is chosen 

to be the job with smallest oost when completedat time T. 
Step5.J +-J -{J1}; T+- T-p1. 
Step 6. If T > 0, then go to Step 3. 

THEOREM 5. Algorithm I delermines a Pareto optima/ point with respect to ~c1 and 
fmax· 

PROOF. It suffices to show that the algorithm generates a schedule a that solves the 
probierus llfmax ..,;;j I ~c1 and 11 ~c1 ..,;;: ~Cj(a) l/max simultaneously. Evi
dently, IJ so1ves 11/ max ..,;;: f I ~c1 . Assume that not a, but '1T is optimal for 
II ~cj..,;;: ~Cj(IJ) I/ max· This implies that /max('TT) <fmax(a) ..,;;j; hence, '1T is also 
feasiblefor 11/max ..,;;j I ~C1 . Therefore, wehave~Cj(7T) ~Cj(a). Compare the 
two schedules, starting at the end. Suppose that the first difference occurs at the 
kth position, which is occupied by jobs f; and J1 in a and 'TT, respectively. Since 
f max('TT) < f and because of the choice of job J; in the algorithm, we have p; ;;;;. PJ· 
If p; > p1, then '1T cannot be optimal, as the schedu1e that is obtained by inter
changing f; and J1 in '1T is feasible with respect to the constraint f max ..,;;: f and has 
smaller total completion time. Hence, it must be that p; = PJ and, because of the 
choice of job f; in the algorithm,.fi(C;(a)) ..,;;ij(Cj('TT)). This implies, however, that 
the jobs f; and J1 can be interchanged in '1T without affecting the oost of the 
schedule. Repetition of this argument shows that '1T can be transformed into a 
without affecting the cost, thereby contradicting the assumption that 
fmax('TT) </max(a). Therefore, IJ also solves 11 ~C1 ..,;;: ~Cj(a) I/max. and is hence 
Pareto optimal for ~c1 and f max. D 
It is obvious that the maximum oost of each Pareto optimal schedu1e ranges from 
f' tof max(SPT), where SPT denotes the schedule obtained by settling ties in the 
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SPT-order to minimize maximum cost. The next algorithm, which is similar to 
Van W assenhove and Gelders' s algorithm for I I I F('2'.Cj ,Lmax), exploits this pro
perty for finding the Pareto optimal set. 

ALGORITHM 11 
Step 1. ComputeJ* andJmax(SPT); letk~l. 
Step 2. Solve liJ max. ..;;;;J max(SPT) I '2'-Cj; this produces the first Pareto optimal 

schedule, denoted as o.(l), and the first Pareto optimal point, denoted as 
(ï':Cj( o(l)),J max(O'(l))). 

Step 3.k~k+l. Solve liJmax <f~,;;I) 1'2'-Cj; this produces the kth Pareto 
optimal schedule, denoted as Jk), and the kth Pareto optimal point, 
denoted as (ï':Cj(o(k)),J max(o(k))). 

Step 4. IfJ max(o(k)) > J*, then go to Step 3. 

A crucial issue is the number of Pareto optimal points generated by Algorithm II. 
In the remainder of this section, we prove that there are O(n 2) such schedules, 
thereby establishing the polynomial nature of the algorithm. 

we de fine the indicator function a ij ( 0) as 

_ {1 if S;(o) < Sj(o) and p; > Pj• 
a ij ( 0 ) - 0 otherwise, 

and A(o) '2'-;,j ajj(o). Note that 8iJ(o) = 1 implies that the interchange of the jobs 
1; and 1j will decrease total completion time. In that respect, 6u( o) = 1 signals a 
positive interchange. Observe that A(SPT) = 0 and A(o) ~ +n(n -I) for any 
o E Sl In addition, we define a neutral interchange with respect to o as the inter
change oftwo jobs 1; and Jj with p; p1. 

LEMMA I. IJ schedule 'lF can be obtained Jrom schedule o through a positive inter
change, then A(w) < A(o). 

PRooF. Suppose that J; and Jj, with p; > pj, are the jobs that have been inter
changed. The interchange affects only the jobs scheduled between J; and Jj. Let J1 
be an arbitrary job that is scheduled betweenJ; and Jj in o. Then it is easy tover
ify that 8u(o) + 8lj(o);;;;;. ap(1F) + afi(1F). 0 

THEOREM. 6. Consider two arbitrary Pareto optima/ schedules o and 'lT. IJ 
ï':Cj(o) < ï':Cj(7F), then A(o) < A(1F). 

PRooF. We show that schedule o can be obtained from schedule 'lF by using posi
tive and neutral interchanges only. Compare the two schedules, startingat the 
end. Suppose that the first difference between the schedules occurs at the kth 
position; J; occupies the kth position in o, whereas job Jj occupies the kth posi
tion in 'lT. Because of the choice of J; and Jj in Algorithm I, we have p; ;;;;;. pj; the 
interchange of J; and J; in 'lF is therefore positive or neutral. We proceed in this 
way until we reach schedule o. As ï':Cj(o) < ï':Cj(1F), at least one of the 
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interchanges must have been positive, and application of Lemma 1 yields the 
desired result. 0 

THEOREM 7. The number of Parèto optima/ schedules is bounded by +n(n 1)+ 1, 
and this bound is tight. 

PRooF. The first part follows immediately from Theorem 9. For the second part, 
consider the following instanee of lil F(:ZCj,Lroax); there aren jobs with process
ing timespj=n-2+j and due dates dj=:Z7=jp;+n-j, for j=I, ... ,n. 
Straightforward computations show that this example generates +n(n I)+ 1 
Pareto optimal schedules. 0 

COROLLARY 1. The lil F(:ZCj,f max.) problem 
O(n 3min{n,logn + logpmax}) time. 

is solvable in 

PROOF. Emmons's algorithm requires O(n 2
) time to solve llfmax ~/I ~Cj. An 

alternative is to determine the induced deadlines, which requires O(log(:Zpj)) 
time, and to apply Smith's algorithm subsequently. There are O(n 2

) of such prob
lems to be solved. 0 

COROLLARY2. The lil F(:ZCj,Lmax)problem is solvable in O(n 3) time. 

PRO~F. First, note that an upper bound L on maximum lateness induces a dead
line dj = dj + L, which is determined in constant time. Furthermore, in view of 
Smith's algorithm, it suffices tosort the deadlines only once, since a change of the 
value of the upper bound L does not affect the order of the deadlines. Once the 
processing times and deadlines have been sorted, Algorithm 11 can be imple
mented to take only linear time per iteration. 0 

4. MINIMIZING TOT AL COMPLETION TIME AND MAXIMUM EARLINESS 

In this section, we analyze the problem of minimizing total completion time and 
maximum ear1iness simultaneously. First, we make the additional assumption 
that machine idle time is forbidden, implying that all jobs are to be scheduled in 
the interval [0, :Zpj]; we show how the insight gained from analyzing this special 
case can be used to deal with the general problem. 

Due to the no-machine-idle-time constraint, it is evident that in each Pareto 
optima! schedule a we have that E max (a) ranges from E*, defined as the salution 
value of the outcome of 11 nmit I Emax• to Emax.(SPT), and that :ZCj(o) ranges 
from :ZCj * to :ZCj(MST), where ties in the SPT and MST schedule are settled in 
order to minimize slack time and completion time, respectively. Observe that an 
upper bound E on E max induces for each job Jj a release time 
rj max{O,dj-pj-E}. The associated value of :ZCj canthen be computed by 
solving 11 rj ,nmit I :ZCj. Lenstra, Rinnooy Kan, and Brucker (1977), however, 
show this problem to be 0L~-hard in the strong sense (Garey and Johnson, 1979). 
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Therefore, we make the additional assumption that preemption of jobs is 
allowal This is an important relaxation, since the llpmtn, r1 I ~C1 problem is 
solvable in O(nlogn) time by Baker's algorithm (Baker, 1974): always keep the 
machine assigned to the availaóle job with minimum remaining processing time. 
Note that this algorithm always generates a schedule without machine idle time if 
E;;;a.E*. 

The introduetion of preemption bas also a less convenient effect. Any value of 
Emax in the range (E*,Emax(SPT)] is now attainable, and therefore corresponds 
toa Pareto optimal point. Since Emax(SPT) E*.;:;;; ~p1, the number of Pareto 
optima! schedules is only pseudo-polynomially bounded. These 0 (~ p1) schedules 
are generated by the following algorithm. 

ALGORlTHM III 
Step I. Let EO) <~:-Emax(SPT) andk<~:--1. 
Step 2. Solve llpmtn, r1 = d1- p~-E(k) I ~C1 ; this yields the kth Pareto optimal 

schedule, denoted as rf-kJ. 

Step 3. k <~:-- k + 1; E(k} <~:-- E(k I) 1; if E(k) ;;a. E* max• then go to Step 2. 

CoROLLARY I. The ljpmtn,nmit jF(~C1,Emax) proólem is solvaóle in O(n~pj) 
time. 

PRooF. A decrease of E doesnotaffect the order of the release dates; hence, we 
have tosort the release dates only once. D 

As to the complexity of 11 nmit,pmtn I F(~C1 ,Emax), note that we can obtain a 
series of 2n cansecutive Pareto optima! points by multiplying the processing times 
by 2n. As the problem of minimizing an arbitrary function F(x,y) that is nonde
creasing in both arguments over 2n consecutive integral y values is 0L~-hard in the 
strong sense (Schrijver; see Hoogeveen, 1990), we have that 
llnmit,pmtn IF(~C1,Emax) is 0L~-hard in the ordinary sense (but not in the 
strong sense, as the processing times are exponential). 

It follows im:mediately from the above reasoning that llpmtn I F(~C1 ,E max) is 
0L~-hard in the strong sense. 

In the remainder of this section, we restriet ourselves to linear objective func
tions a 1 ~C1 +a2Emax· To solve the linear variant, we only have todetermine the 
set of extreme points. We start again with the assumption that machine idle time 
is not allowed; hence, we only have to consider E max values in the interval 
[E*, Emax(SPT)}. 

Let G(E) denote the schedule obtained by Baker's algorithm for 
ljpmtn, Emax .,;;;"EI ~C1 ; a(E) corresponds to(E,~Cj( G(E))). Wesay that a com
plete interchange bas occurred in G(E) if there are two jobs J1 and J1 such that J1 is 
started before J1 in G(E - 1 ), whereas J1 is started before J1 in G(E). 

LEMMA 2. An upper óound Eon Emax can only correspond to an extreme point for 
(ï:.C1 ,E max) if a complete interchange has occurred in G(E). 
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PROOF. Consider an arbitrary extreme point (E,~Cj(o(E))). Define 
Ll = ~Cj(a(E -1))- ~Cj(o(E)). As (E, ~c1 (o(E)) is extreme, we must have 
~Cj(a(E))- ~C;(a(E + 1)) < Ll. It is easy to see that this can only be the case if a 
complete interchange has taken place in o(E). D 

Obviously, the next step to determine the extreme set is to select the candidate 
values E; these should be such that a complete interchange takes place in a(E). 
Given a pair of jobs Ji and J1 with Pi > p1 and Ji started before J1 in o(E), the 
increase necessary to enable a complete interchange of Ji and J1 is equal to the 
difference between the release date for J1 that follows from the constraint 
Emax.;;;;;; E and the start time of Ji in o(E). However, if Ji is executed between the 
start and completion time of a preemptive job h, then an increase of E will first 
result in a shift of Ji and J1 to the left; the complete interchange of Ji and J1 can
not take place before a complete interchange has taken place between h and both 
Ji andJ1. 

These observations are used in Algorithm IV that, given an upper b2_und value 
E and the corresponding schedule a(E), computes the smallest value E > E that 
possibly corresponds to an extreme point. The variabie a1 (j = 1, ... , n) signifies 
the increase of E necessary to let a complete interchange involving J1 take place. 

ALGORITHM IV 
Step 1. Let T ~o and a1 ~ oo forj = 1, ... ,n. 
Step 2. Let J1 be the job that starts at time T. Consider the following two cases: 

(a) J1 is a preempted job. Then a1 is equal to the lengthof this portion of 
J1. LetJ1 be the firstjob that starts after time Cj(o(E)) withp1 ;;;;.: a1. Set 
T ~ SJ(o(E)). 
(b) J1 is not a preempted job. Then 
a1 ~min{ di-Pi- E -S1(a(E)) I Ji E J}, whereJ denotes thesetof jobs 
forwhichdi-Pi- E > S;(o(E)) andp1 >Pi· Set T ~ C;(a(E)). 

Step 3. If T 5- ~p1, then go to Step 2. 

Step 4. Put E ~ min1{ a1} + E. 

THEOREM 8. All values E that may correspond to an extreme point (E, ~C;(o(E))) 
are generated by the iterative application of Algorithm IV 

PROOF. Suppose that E, although corresponding to an extreme point, was not 
deterrr.!!ned by iteratively applying Algorithm IV. This imp~es that there is a value 
E 1 < E such that Algorithm IV determines a value E 2 > E when initialized with 
E 1• Hence, we have the situation that Algorithm IV did not notice the complete 
interchange of two jobs Ji and J1, which implies that the start time of Ji in o(E) 
was not considered in Step 2. This, however, could take only place in Step 2(a): Ji 
is started in the time interval [Sda(E)),Cda(E + 1))], where h is some 
preempted job. This, however, conflicts with the earlier observation that the inter
change of Ji and J1 has to wait until h has been interchanged with both Ji and J1. 
D 
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We prove that the number of values E of E max generated through Algorithm IV is 
polynomially bounded, thereby establishing that Ilpmtn,nmit I a1 ~ei+ a2E max 
is solved in polynomial time. Wedefinefora given schedule G the indicator func
tion 8iJ (<t) as 

{

I if e;(<t).;;;;; Sj(<t) and Pi> Pi• 
8iJ(<t) 0 otherwise. 

We forther define ai (<t) as the sum of the number of preemptions in Ji plus 
~f""l8ii• anda(<t) = ~;./);j(a). 

THEOREM 9. Let E 1 and E 2 be two Emax values that are generated through Algo
rithmiV, withEl >E2. Thena(o(EJ))<a(a(E2)). 

PRooF. We start by showing that a(a(E 1)).;;;;; a(o(E2)). Suppose to the contrary 
that a(o(E 1 )) > a(o(E 2)). Then there must exist a job Ji for which 
ai(a(E 1)) >ai {a(E2)). There are two possibilitiesfor an increase of ai. 

First, the number of preemptions of Ji in o(E 1) may begreater than in o(E2). 

An extra preemption of Ji can only occur when some job h with Pk <Pi is started 
after ei in a(E2) but before ei in <t(E I)· We then have, however, that 
8id<t(E 1)) = 0 and 8ik(o(E2)) = 1. This implies that an extra preemption of Ji 
deercases some ak by the same amount; hence, an extra preemption does not 
increasea. 

Second, we may have 8iJ (o(E 1)) = 1, whereas 8iJ (e1(E2)) 0. This implies that 
there exists some job J; with p; >Pi that is completed before Ji is started in e1(E 1) 

but not in o(E2). AsE 1 > E 2, tbis can only occur if there exists a job Jk that is 
completed before J; in a(E2) but after J; in a(E I)· Hence, ai is then increased by 
1, but ak is decreased by at least 1, implying that a does not increase. The same 
argument holds if there are some jobs scheduled between/i andJ; in a(E 1). Note 
that the decrease of ak is always greater than the increase of ai, unless h is 
preempted at the start of J; in a(E 1). 

As E 1 bas been determined by Algorithm IV such that either a preemption is 
removed or an interchange bas been completed, we have that 
a(o(E 1)) < a(o(El)). 0 

CoROLLARY 2. IJ preemption is allowed, then the number of extreme schedules with 
respect toEmax and~ei is bounded by+n(n -1)+ 1. 

PROOF. It is easy to show that a(o) is at most equal to +n(n -1) for every 
schedule o. Therefore, Theorem 9 yields the desired result. 0 

Although it is easy to construct an instanee such that Algorithm IV determines 
+n(n -1)+ 1 differentEmax values, it is yet an open question whethertbis bound 
is tight for the number of extreme points. 
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COROLLARY 3. The llpmtn,nmit la1~C1 +a2Emax problem is solvable in O(n 4) 

time. D 

THEOREM 10. IJ a 1 = a 2, then there exists a nonpreemptive schedule that is optima! 
Jor llpmtn,nmit I a1 ~C1 +a2Emax. IJ a1 > a2, then any optima/ schedule Jor 
llpmtn,nmit I a 1 ~C1 +a2Emax is nonpreemptive. 

PROOF. Suppose that the optimal schedule contains a preempted job. Start at time 
0 and find the first preempted job J; immediately scheduled before some 
nonpreempted job J1. Consider the schedule obtained by interchangingjob J1 and 
this portion of job J;. If the length of the portion of job J; is ~. then E1 is increased 
by ~. while C; is decreased by ~.As a 1 a2, the interchange does not increase 
the objective value. The argument can be repeated until a nonpreemptive 
schedule remains. In case a1 > a2 , then such an interchange would decrease the 
objective value contradiering the optimality of the obtained schedule. D 

We now drop the no-machine-idle-time constraint. As the insertion of idle time 
does not decrease a1 ~C1 +a2Emax if total completion time outweighs maximum 
earliness, we have the following corollary. 

If a 1 < a2, then the insertion of idle time can decrease the value of the objective 
function. Consider the schedules G(E) and e1(E + 1), with E < E*. The idle time 
inserted between the jobs displays the same behavior as a preemptive job that is 
completed last: ü E is increased by one unit then all jobs that have idle time 
between their start time and time 0 are shifted one unit to the left. Hence, given 
the Ernax-value E of the first extreme point we can determine thesetof extreme 
points by adding an extra job J 0 to the instanee with 
Po= do E*-E +Pmax + 1. The value E depends on the ratio q = a2 ! a1• If 
q > n, then the insertion of idle time always decreases the value of the objective 
function and the optima! solution is unbounded. If q ";;;;;; n, then the insertion of 
idle time decreases the value of the objective function as long as there are no more 
than r q - ll jobs that have idle time between their start time and time 0. The 
corresponding value of the upper bound on E max is easily determined. 

As the number of extreme points is at most equal to (n + 1)+ 1, and aseach 
Ernax-value that corresponds to an extreme point is determined by iterative appli
cation of Algorithm IV, the llpmtn I a1 ~C1 +a2Emax problem is solved in O(n 4

) 

time. 
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Since the introduetion of scheduling theory in the 1950's, most research has been concen
trated on single-criterion optimization. In real-life problems, however, multiple and usu
ally conflicting criteria play a role. There are two methods to cope with conflictin~ cri
teria. The first one is hierarchical minimization. The performance criteria/, ... , f are 
indexed in order of decreasing importance. First, l is minimized. Next, f is minimized 
subject to the constraint that the schedule has minimalf value. Then, l is minimized 
subject to the constraint that the values for f and J2 are equal to the values determined 
in the previous step; and so on. The first results on multicriteria scheduling (e.g., Smith, 
1956) concern this approach. The secoud methad is simultaneous minimization. The cri
teria are aggregated into a single composite objective function P (/, ... ,JK ), which is 
then minimized. 

In this paper, we choose the secoud approach. We address the following single
machine multicriteria scheduling problem. A set of n independent jobs has to be 
scheduled on a single machine, which can handle no more than one job at a time. The 
machine is assumed to be continuously available from time 0 onwards. Job 
Ji (i= 1, ... ,n) requires processingduringa given positive uninterrupted time p;. A 
schedule a defines for each job J; its completion time C; (a) such that the jobs do not 
overlap in their execution. The cost of completing Ji (i = 1, ... , n) is measured by K 
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penalty functions /t (k = I, ... ,K); each of these penalty functions is assumed to be 
non-decreasing in the job completion time. Given a schedule a, the penalty functions 
induce K performance criteria frnax (a) (k = 1, ... , K), defined as 
/max( a)= max1..:i..;;n/t (C;( a)), respectively. Given a function P :RK~R, we wish to 
find a schedule a that minimizes P </ max ( a), ... , tf.ax (a)). We additionally assume that 
P is non-decteasing in each of its arguments. We denote this problem by 
ljjP(f~ax• · · · ,J:f.ax)· 

Due to this additional assumption, we know that there is a Pareto optima/ point with 
respect to </ max, ... ,J<max) in which P attains the optimum. A schedule a corresponds to a 
Pareto optimal point if there is no feasible schedule 7T with / max ( 7T) o;;;; frnax (a), for 
k = 1, ... , K, where at least one of the inequalities is strict; in this case, we say that a is 
not dominated. 

The organization of the paper is as follows. In Section 2, we reeall Lawler's algorithm 
(Lawler, 1973) for Ijprec IJ max• where the acronym pree indicates that preeedenee con
straints have been specified; that is, for each job J; (i I, ... , n) there is a set of jobs that 
have to preeede J; and a set of jobs that ,ltave to succeed J; in any feasible schedule. 
Furthermore, we sho'!_ that we can solve 11 dj ,pree IJ max by adjusting Law1er's algorithm 
appropriately, where dj indicates that for each job a deadline on the completion time has 
been specified. InSection 3, we present an O(n 4) time algorithm todetermine all Pareto 
optimal points for the two-criteria problem. In Section 4, we analyze the three-criteria 
problem, and show how this analysis can be extended to the K-criteria problem, for any 
fixed K;;;. 4. Finally, inSection 5, we consider two problems that are solved analogously. 
The first problem allows preeedenee constraints; the second one has non-increasing 
penalty functions. 

2.LA WLER'S ALGORITHM TO MINIMIZE MAXIMUM COST FOR ONE CRITERION 

Lawler (1973) presented an O(n 2
) algorithm to solve lipree IJmax· The algorithm is 

based upon the following observation. Let S denote the subset of jobs that may be pro
cessed last, let T denote the sum of the processing times of all jobs, and let h be a job in 
S such thatfk (1) = minjeS {fj (1)}. Then there exists an optimal schedulein whichJk is 
last. 

LAWLER'S ALGORITHM 

(0) T+-~}=IPJ; ~+- {J~o · · · .Jn}· 
( 1) Determine the set 611 containing the jobs that have no successors in~· 
(2) Choose from 611 the job Jj that has minimal jj (1) value, settling ties arbitrarily; Jj is 

processed from time T -pj to time T; 

(3) T +- T-p1; ~+-~-{Jj}· 
( 4) If ~=F 0, then go to Step 1; otherwise, stop. 

THEOREM 1. Lawler's algorithm solves lipree IJ max· 

PROOF. Let a be the schedule obtained by Law1er's algorithm, and let a be an optima! 
schedule for Ij pree IJ max. Compare both schedules, startingat the end. Suppose that the 
first difference occurs at the kth position; let J; occupy the kth position in a. Adjust ö by 
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assigning l; to the kth position; the sequence of the other jobs stays the same. The new 
schedule a is feasible; J1 can be assigned to that position as a is feasible, and the sequence 
of the other jobs has notbeen changed. Furthermore, its cost has not been increased; J1 

was chosen by Lawler's algorithrn, soit must have minimal cost among the unassigned 
jobs that could be scheduled in that position. Proceed in the same way until a and a are 
identical, implying that f max( a).;;;; f max(a). Hence, a is optima!. 0 

Lawler's algorithrn is easily adjusted to deal with 11 dj ,pree IJ max· If a job Jk is a_candi
date for the last position, then we have to check whether h has no successors and dj ~ T. 
Hence, the set GlL contains the jobs that have no successors in ~ and that have a deadline 
gieater than or equal to T. Altematively, we can incorporate the deadlines by redefining 
jj (T) ~ oo for T >dj (j I, ... , n) and apply Lawler's algorithm to the adjusted 
Ij pree I f max problem. 

The deadlines do not have to be given explicitly, but may be indoeed by given opper 
bounds on other criteria. For example, if g1 is a non-decreasing penalty function, for 
i = I, ... , n, then the constraint g max .;;;; G indoces a deadline for each job J;. 

3. ANAL YSIS OF THE TWO-CRITERIA PROBLEM 

For notational convenience, we denote the penalty functions for J; (i 1, ... ,n) by j; 
and g;, respectively. Correspondingly, the maximum oost criteria are called fmax and 
g max• respectively. There are basically two ways to deal with the 11 I P (j max ,g max) prob
lem. The first one is to solve it directly, for instanee through branch-and-bound. The 
second one is to solveitin a roundabout way by determining the Pareto optima! set, that 
is, thesetof points that are Pareto optima! with respect to (j max ,g max), and then selecting 
the one that mininrizes P (j max ,g max)· We take the second option. From now on, when
ever we refer to the problem l!IP<fmax, ... ,~ax), it is assumed that we are going to 
determine all Pareto optima! points with respect to <fmax, .•.• ~ax). For instance, 
1 I dj I P(j max ,g max) denotes the problem of determining all Pareto optima! points with 
respect to (j max ,g max) subject to deadlines. 

In order to determine the Pareto op ti mal set, we apply the following strategy. We start 
by solving lil/ max; this yields the first value F that corresponds to a candidate Pareto 
optima! point (F, G). Next, we determine the corresponding value G by solving 
llfmax ",;;; F lgmax through Lawler's algorithrn. Then, wedetermine the next Iarger value 
F that corresponds to a possibly Pareto optimal point (F, G), solve IIJ max .;;;; F I g max to 
obtain G, and so on. 

There are two difficulties with the application of this strategy. The first one is how is 
the next value of F determined. The second one concerns the question of how many of 
these values are to be computed before all Pareto optima! points have been found. 

We start by addressing the first problem. Let a be the schedule obtained by solving 
liJ max .;;;; F I g max through Lawler's algorithrn, and let J1 be a job that attains g max( a), 
that is, g1 (Cj( a)) = max1.,;;;.;;n g; (C1( a)). As g1 is non-decreasing, a Pareto optima! point 
with smaller g max value can be obtained only if the completion time of J1 is decreased. 
Hence, some job Ji that is before J1 in a and that has gi ( c1 (a)) < g max has to be com
pleted no earlier than time cj ( (1 ). 
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This observation provides the basis for our algorithm to determine the increase of P 
that is necessary to reach a new candidate Pareto optimal point. 

ALGORITHM NEXT UPPER BOUND (NUB) 
(0) Given a schedule a obtained by La wier's algorithm, determine the set :} of jobs that 

attain g max( a). 
(I) Determine for each 11 E:} the set Gi11 of jobs Ji that are scheduled befare 11 in a and 

that have gi(Cj(a))<gmax(a). If Gi11 = 0 forsome 11 then gmax(a) cannot be 
decreased; stop. ForeachjobJ1 E:}, defineP1 = min{Ji (Cj( a)) jJi E~}. 

(2) The new upper bound Pon f max is the maximum of the valnes P1. 

THEOREM 2. Let (P, G) be a Pareto optima! point with respect to (/ rnax ,g max), and let a be 
the corresponding schedule. Let P be the new upper bound on f max that is obtained by applJ!.· 
ing Algori(hm ~UB, given a. There is no Pareto optima! point corresponding to a value F, 
withP>P>P. 0 

A decrease of c1 does not necessarily in duce a decrease in g1 ( c1 ), and hen~ the new 
upper bound F does not necessarily correspond to a Pareto optimal point. The remaining 
question is how many valnes P are determined by Algorithm NUB, before all Pareto 
optimal points have been found. 

THEOREM 3. The Algorithm NUB determines at most n (n - 1) I 2 values F. 

PROOF. Every new value P obtained by applying Algorithm NUB to a corresponds to a 
combinationof twojobs {Ji,J1}, whereg1 (C1 (o))=gmax(<J) a»dfi(Cj(a))=P. We 
wi11 show that every upper bound value P that is obtained by Algorithm NUB 
corresponds toa different combination of jobs. 

Define f* and g* as the outcome of lllfmax and lllgmax, respectively. Let a 1 be the 
schedule obtained by I_.-awler's algorithm when solvi?'g ;l{max ~!* !gll!ax· For 
a = 1, ... , A, apply Algonthm NUB to schedule a a to obtam P , and determme a a+ 1 
by solving 11 f max ~ pa+ 1 I g max; A is such that ~ max( a A ) = g*. Suppose that the combi
nation { Ji ,J1} corresponds to bath pa+ 1 and P + 1, with a < b. Without loss of general
ity, let Jj attain g max( O'a ); A ( cj ( <1a )) = pa+ I. We have to consider two cases: either l; 
or 11 attains gmax(ab)· First, suppose that g1 =gmax(ab); Ji(C1 (ab))=Pb+ 1

• As 
gJ(Cj(aa)) gmax(aaP"' gmax(ab) gJ(Cj(ab)), we must have CJ(aa);;;;..CJ(ab)· 
This implies that l; is allowed to be completed at time c1 ( ab) when ab is constructed, 
because pb >pa+ 1• As Lawler's algorithm selected 11 to be completed at time c1 ( ab ), 
we must have that either J; had already beeri scheduled or g1 ( c1 ( ab )) ~ gi ( c1 ( ab )). In 
bath cases, Algorithm NUB will nottake J1 into consideration, when applied to ab. In the 
same fashion, we prove that 11 will not be taken into consideration by the algorithm if 11 

attains gmax( ab ). Hence, every pair of jobs (Ji>JJ) corresponds to at most one of the 
values P obtained by Algorithm NUB. This proves the theorem. 0 

COROLLARY 1. The number of Pareto optima! points with respect to (fmax ,gmaJ is at most 
equal to n(n -1)12 + 1. D 
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The following example shows that this bound is tight, even if both maximum cost func
tions are of the maximum lateness type, that is, fi: C1 ~ C1 d1, and g1 : C1 ~ C1 e1, 

for i = I, ... , n. 

d1 = (n -i)(n -i +3)/2, for i I, ... ,n, 
i 

e1 = i 1 + ~ d1 + 1, 
)=2 

p1 n -i, 

for i = 1, ... , n -1, 

for i = 1, ... , n -1. 

Pn = dn (n -l)(n -2)/2; 

It is easy to check that the Pareto optimal schedules for this example are: 
(Jn' ···,I 2 ,I I), (In'··· ,I I ,I 2), ···'(I I • In • ···,I 3 ,I 2), • · · • 

(I I ,I 2 ,In • · · · ,J 4 ,I 3), · • • ' (I l ' · • • Jn). 

For sake of completeness, we list the algorithm todetermine all Pareto optimal points 
and the optimal solution value. lts correctness follows from Theorems 1 and 2. 

ALGORITHMA 

(0) Determine f' and g* by solving liJf max and IJl g mmo respectively; put F <E-f'. 
(l)Solve llfmax .-.;;.F Jgmax; let G denote the outcome. Add (F,G) to thesetof Pareto 

optimal points, unless it is dominated by the previously obtained Pareto optimal 
point. If G = g*, then go to Step 3. 

(2) Determine the next value of F by applying Algorithm NUB to the schedule obtained 
in the previous step. Go to Step I. 

(3) The Pareto optima! set bas been obtained. The IJl P (j max ,g max) problem is solved by 
computing the value of the objective function for each point of the Pareto optimal set, 
and by choosing the optimum. 

The running time of Algorithm A is O(n 4 
); this is the time needed for solving O(n 2 ) 

instances of the liJ max .-::;;;. F I g max problem. 

4. ANAL YSIS OF THE K-CRITERIA PROBLEM 

We prove that the K-criteria problem can be solved by solving a polynomial number of 
(K -1)-criteria problems. First, we analyze the three-criteria problem; later on, we show 
how this analysis can be extended totheK-criteria problem. For notational convenience, 
the criteria are called f max• g max• and h max• respectively; correspondingly, the penalty 
functionsfor I 1 (i = 1, ... , n) are called fi,gf> and h1, respectively. 

Note that each Pareto optimal point (F, G) for (j max ,g max) yields a Pareto optimal 
point (F, G,H) for (j max ,g max ,h max), where H is obtained by solving 
llfmax .-::;;;. F,gmax .-::;;;. G I hmax• and that each dominated point (F,G) can only correspond 
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to a Pareto optima! point (F, G,H) if H is attractive enough. Note further that, if (F, G,H) 
is Pareto optimal, then (F,G)is a solution of 11 hmax,.;;; H I Pifmax ,gmax)· These observa~ 
tions provide the basis for our strategy to solve the three-criteria problem 
lil P (j max. ,g max ,h max). 

We will determine all Pareto optimal points (F,G,H) for ifmax ,gmax ,hmax) by consid;. 
ering all hmax values that correspond to a candidate Pareto optimal point. The hmax 
values under consideration lie in the interval [h* ,H]; h* is the solution of 11 I h max.• and H 
is an upper bound on the hmax value of any Pareto optim~l point that we will establish 
now. Obviously, H should be such that solving II hmax.;;;:;; H I P(j max. ,gmax) yields the set 
of Pareto optimal points for (j max. ,g max). Hence, H is determined by solving 
llfrnax.;;;:;; F,gmax,.;;; G lhmax for every Pareto optima! point (F,G) for ifmax,gmax) and 
selecting the maximum. If we want to determine new Pareto optimal points (F, G,H), 
then we have to decrease the upper bound on hmax• such that at least one of the currently 
determined Pareto optimal points is eliminated. This leads to the following outline for an 
algorithm to determine all Pareto optimal 'points for (j max. ,g max. , h max)· 

(0) Determine the set of Pareto optimal points (F, G) with respect to (j max. ,g max.)· For 
each of these points, compute the correspondinghmax value, say, H. Store these Pareto 
optimal points (F, G,H) in a set U i· 

(1) Determine H as the maximum of the h max. values in U i· Remove the Pareto optimal 
points with h = value equal to Hand store them in a set U 2. 

(2) lf H = hf, then st~; thesetof Pareto optimal points isequal to U 1 U U 2 • 

(3) Solve ll h = < H I P (j max. ,g max), and compute for these points (F, G) the 
corresponding h max values H. Add these points (F, G,H) to U 1• Go to 1. 

We solve I I h max < H I P (j max ,g max.) by adjusting ~orithm A such that every solution 
that is generated by Algorithm A satisfies hmax < H. As observed before, tbis is easily 
achieved by adjusting the penalty functions appropriately. 

Defore proving that this strategy determines all points (F, G,H) that are Pareto optimal 
with respect to (j max ,g max. ,h max.), we prove two preliminary results. 

Tm!OREM ~Let (F,G) be an arbitrary Pareto optima/ point that is obtained when solving 
ll hmax < H I P(j max ,gmax). Solve liJ max .;;;:;; F,g max ,.;;; G I hma:x• let H be the outcome. The 
point (F,G,H) is Pareto optimalfor (j max. ,gmax ,hmax)· 

PROOF. Suppose that there_e~ists a Pareto optimal point (F,G,Ht that dominates 
(F,~H). This implies that (F,G) is obt'!ined when solving 11 hmax,.;;; H I P(bnax ,gmax)· 
As H,.;;; H < H,_ tJ.!e constraint hmax ,.;;; H is at least as restricti~ as hmax < H, implying 
t]lat the poÎJ:!t (F, G) is also obtain~d when solving 1 I h max < H I P (j max ,g max)· Hence, 
F = F and G = G, implying that H = H, as both values are equal to the outcome of 
ll/max.;;;:;; F,gmax,.;;; G lhmax• 0 

CoROLLARY 2._!:et (F, G,H) be an arbitrary point with H < H that is not foun_d !;Yh!n solv
i!Jg l.l!z max. < H LPif max ,g DJaXf Then there exists a Pareto optima! point (F, G,H) with 
H < H such that F .;;;:;; F and G < G, where at least one of the inequalities is strict. 0 



73 

THEOREM 5. Every Pareto optima! point with respect to (j max ,g max ,hmax) is Jound. 

PRooF. Let (F, G,H) be an arbitrary Pareto optima! point with respect to 
(j max ,gmax ,hmax). If (F,G) is Pareto optima! with respect to ifmax ,gmax), then (F,G,H) is 
determined at the initialization. Otherwise, there must exist a Parejo_o:e_timal point that 
dominates (F,G,H) with respect to ifmax ,gmax)· Suppose that (F,G,H) is the Pareto 
optimal point with the smallest hmax value that dominates (F,G,H) with respect to 
ifmax ,gmax)· Hence, (.f,G,H) will be generated as soon astheupper bound on hmax has 
beoome smaller than H. 0 

A straightforward implementation of the strategy leads to an O(n 4 I Z I) time algorithm, 
where I Z [ denotes the cardinality of thesetof Pareto optima! points. The factor O(n 4

) 

sterns from solving an liJ max ~ F ..:_g max ~ G I hmax problem for every point (F, G) that is 
obtained when solving ll hmax < H I P(j max ,gmax)· Note that we have not yet taken pre
cantions to avoidapoint (F, G) being generated more than once. Hence, we may imprave 
the time complexity by determining a quick way to generate every Pareto optimal point 
only once. This is achieved by generating only the Pareto optima! points that are not 
present in the cuiTent set U 1, when solving 11 h max < H I P(j max ,g max); these are exactly 
the points that are dominated with respect to (j max ,g max) by a Pareto pptimal point 
(f,G,!!_) with H = H, but not by any other Pareto optimal point (F,G,H) in U1 with 
H < H. In order to determine only these Pareto optima! points, we derive lower and 
upper bounds on the J max value such that a new Pareto optima! point must have a J max 
value that is in between. We then search within this region for J max values that 
coiTespond to a possibly Pareto optimal point by applying Algorithm NUB. The 
schedule weneed to start with is obtained simultaneously with the bounds. 

Order the Pareto optima! points in the set U 1 lexicographically, that is, put the points 
in non-decreasing order of J max value, settling ties according to non-decreasing g max 
values. Let(F1 ,G 1 ,H1

) bethelast point before(F,G,H) in the list with H 1 < H, and let 
a1 be the ooiTesponding schedule. If there is no such point, then F 1 is ~ual to the out
comeof II hmax <H !Jmaxo G1 to the outcomeof liJmax ~ F 1 ,hmax < H lgmax• and H 1 

to the outcome of l[J max ~ F 1 ,gmax ~ G1 I hmax• respectively; a1 is then the 
ooiTesponding schedule. Let (F2 ,G2 ,H2) be the first point after (F,G,H) with hmax 
value smaller than H. If such a point does not exist, then F 2 = oo. 

The new Pareto optimal points are determined by an iterative procedur~. Apply Algo
rithm Nl!B to a 1; this yields" an J max value F. Qetermine" G by solving 
liJ max ~ F ,hmax < H I gmax;. and H by solving l[J max ~ F ,g max ~ G I hmax; call the 
ooiTesponding schedule o. If F ;;;;;. F 2

, then stop; otherwise repeat the above procedure, in 
which Algorithm NUB is applied to o. 

THEOREM 6. Let (F, G,H) be an arbitrary Pareto optima/ point that is dominaled with 
respect to (j max ,g max) by (F, G,H), but that is notdominaled JVith respect to (j max ,g max) by 
a point jn" U; with hmax value smaller than H. Then F ~ F < F 2

; these Pareto optima/ 
points (F, G,H) are all determined by the procedure described above. 
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(F, G,H) be the first point in the list with h max value equal to H. Determine the bound 
F 2 and the schedule a1

, and solve ll F Eï;; f max < F 2 ,h max < H I P(j max ,g max) as 
d~sçribed on the previous page, and scan the solution set for Pareto optimal points 
(F, G) withArespeet toA (j max ,g max). Determine the corresponding h max value by solving 
llfmax Eï;; F,gmax s;; G I hmax· Remove (F,G,H) from UI and store it in the set u2. 
Add the newly obtained points to U 1• 

(2) If H is greater than the outcome of 111 hmax, then go to Step 1. Otherwise, the union 
of the sets U1 and U2 contains all Pareto optimal points (F,G,H) with respect to 
ifmax ,gmax ,hmax)· 

It is easily checked that the strategy that was foliowed to solve the three-criteria prob
lem can also be applied to solve the K-criteria problem, as the Theorems 4 and 5 and 
Corollary 2 still hold for the K-criteria case. Unfortunately, Theorem 6 no longer holds, 
so we can no longer guarantee that each Pareto optimal point is generated only once. We 
now solve 0 ( I P I ) times the problem of determining all Pareto optima! points for a 
(K 1)-criteria problem with a given UJ5'er bound on rmax; for each of the obtained 
points, wedetermine the corresponding.Fmax value. 

The proof of Theorem 7 can be extended to the K-criteria case, showing that there are 
at most(n(n -1)/2+ I)K-I Pareto optimal points. Therefore, our strategycan be imple
menled torunin O(nK(K+I)-6) time, for K;;;:. 4. 

5. RELATED PROBLEMS 

Wefinally consider the probieros ljpree IPlfmax, ... ,JCmax) and IIIP(g~, ... ,g!ax), 
where the functions g~ax are induced by penalty functions gj that are non-increasing in 
the job completion times, for k = 1, ... , K. We show that we can solve both probieros by 
Algorithm B by modifying the penalty functions appropriately. 

First, we deal with I I pree I p (J~ax, ... , rmax ). Let ~i denote the set of jobs Jj that have to 
succeedJi in any feasible schedule a. As C; (a)< Cj (a) for each job Jj E~;, the costof a 
does not increase if at time T (T E[O,~pj]) the value of the penalty functions /! 
(k =I, ... ,K) is set equal to max{/! (T),!J (T)}, for each Jj E~;. The next theorem 
shows that the preeedenee constraints can be handled by adjusting the penalty functions 
as described above. 

THEOREM 8. The lipree I Plfma"-' ... ,.frr;ax)problem is solved by a4justing the penalty fune
tions as described above, provided that ties in Lawler's algorithm are settled according to the 
preeedenee eonstraints. 

PROOF. Let gf (k = I, ... , K) denote the adjusted penalty functions. The proof consists 
of two parts. First, we have to show that every Pareto optimal point for 
11 I P (g~ax, ... , g~ax) corresponds to a schedule that is feasible with respect to the pre
eedenee constraints. This is guaranteed by the requirement to settie ties in Lawler's algo
rithm according to the preeedenee constraints. 

Second, we have to prove that the sets of Pareto optimal points for 
I I pree I P lfmax, ... ,.frr;ax) and 11 I P (g~ax, ... , g~ax) are the same. No te that a point 
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(P 1
, ••• ,PK) is Pareto optima! with respect to lfmax•···,_rmax) subject to preeedenee 

constraints if and only if, for k = 1, ... ,K, the outcome of the problem of miniruizing 
.fmax subject to the constraints /max ~pi (i 1, ... ,K; i =/=k) and preeedenee con
straints is equal to pk. Furthermore, a point (P1, ••• , pK) is Pareto optimal with respect 
to (g!nax, ... ,giftruJ if and only if, for k 1, ... ,K, the outcome of the problem of 
minimizing lroax subject to the constraints g:Uax ~ pi (i 1, ... , K; i =!= k) is equal to 
pk. Hence, if we prove that the rroblems llfmax ~pi, ... ,,rm;;;,I ~ pK -I ,pree l.rmax 
and lj ginax ~ P 1, ... , gift;; I ~ P -I I ~max yield the same outcome, then we are done. 
To that end, we have to justify the following three claims. 

(1) The outcome of the problem 11/max ~ P 1, ••• ,.f~I ~ pK-I ,pree l_rmax stays the 
sarne if we replace the constraints .fmax ~ pk by g~ax ~ pk, for k = 1, ... , K- 1. 

(2) The outcome of the problem Ij ginax ~ P 1, •.• ,gift;;_ 1 ~ pK -l ,pree l.fmax stays the 
same if we replace the objective function .fmax by g~. 

(3) The preeedenee constraints in the problem 
ljginax <pi, ... ,gift;' ~ pK-l ,pree jgiftax are redundant. 

Proof of (1 ). The first claim is proven by showing that the sets of feasible schedules are 
identical for both problems. The nontrivia1 part consists of showing that every schedule 
aE {a lfmax ~ P 1, ... ,f'max 1 ~ pK -l ,pree} has g~ ~ pk (k 1, .. :, K -1). Suppose 
to the contrary that there exists a feasible schedule a with gf ( C; (a))> pk for some job 
J1, for some k. Then J1 must have a successor Jj such that 
g~ (C1 (a)) IJ (C1 (a)) ~IJ (Cj (a))~ pk, contradicting the assumption. 

Proof of (2). The second claim is proven by showing that _rmax (a) = ~max (a) for every 
feasible schtdule a. By definition, _rmax (a)~ giftax (a). Let giftax be attained by J1; sup
pose that _rmax (a) < giftax (a). Hence, J1 must have a successor Jj with 
ff (C1 (a))= gf (C1 (a)). In that case, however, · 
!rnax ;;;;. Jf ( Cj (a));;;;. Jf ( C1 (a))= gf ( C1 (a)) =~max. contradicting the assumption. 

Proof of (3). Consider an arbitrary job J1; letJj be a successor of J;. As gf (T);;;;. gj (T) 
(k = 1, ... ,K -1; T = 1, ... ,"2-pj), job Jj will be available for processingif job J1 is. 
Hence, Lawler's algorithm yields an optimal schedule for 
Ij g!nax ~ PI, ... , ~~ 1 ~ pK -I I giftax that satisfies the preeedenee constraints, pro
vided that ties are settled according to the preeedenee constraints. 0 

COROLLARY 3. The 11 ~,pree IPlfmm ... ,_rmax)problem ean besolvedin O(n 2K) timefor 
K 2,3, andin O(n < +I)-6) timefor K;;;;. 4. 0 

The second problem we consider in this sectionis Ij nmit I P(g!nax, ... ,~max), where the 
maximum cost functions lmax (k 1, ... ,K) are induced by penalty functions gj 
j = 1, ... , n ;k 1, ... , K) that are non-increasing functions of the job completion 
times. In order to avoid unbounded solutions, we make the additional assumption that 
no machine idle time is allowed. This assumption is denoted by the acronym nmit, and 
implies that all jobs are processed in the time interval [0, "2-pj ]. We show that this problem 
can be transformed into a problem that fits in the existinf, framework, and hence, that it 
issolvedin O(n2K) timefor K = 2,3, andin O(nK(K+l)- ) timefor K;;;;. 4. 

'THEOREM 9. Lawler's algorithm solves 1lginax ~ G 1, ... ,gift;' ~ GK-l ,nmit jgiftax to 
optimality. 
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PRooF. Consider an arbitrary instanee of the 
Ilg~ax..;;;; G1, ••• ,g-K~ 1 ..;;;; GK-l ,nmit ~max problem. Now construct the following 
instanee of llfmax..;;;; P 1, ... • ~;;;. 1 

..;;;; P -I l.f'max· Theprocessingtimes areidenticalfor 
both problems,ft (T) g't("2-p1 + p1 - T) (i= I, ... ,n; k = 1, ... ,K; T I, ... , "2.p1), 
and pk = Gk, for k 1, ... , K 1. Suppose that Lawler's algorithm yields schedule a 

for 
1 

llf~ax..;;;; P 1 '..:.ï ·~i1Jf'max: An . optim~ schedule ~ for 
llgmax..;;;; G , ... ,g-Kmax ..;;;; G ,nmlt l~ax 1s obtamed by reversmg a; 
Ci (ä) = "2-p1 + Pt Ct (a) (i = I, ... , n), and henee, g't (Ct (0:)) ft (C1 (a)) 
(i 1, ... , n ; k 1, ... , K). This implies that a is optimaland feasible if and only if 0: is 
optimal and feasible. D 

COROLLARY 4. A point (P1, ... , pK) is Pareto optima! with respect to <fmax• ...• ~ax) if 
and only ifthis point is Pareto optimalwith respect to (g~ax• ... ,g:iax,). D 

From Corollary 4 it follows inunediately that we can solve 1 I nmit I P (g~, ... , g~ax) by 
transforming it to an lil P <fmax, ...• ~ax) problem as Èescribed in Theorem 9, and by 
applying Algorithm B to this instance. As a deadline d1 for the IIIP<fmax, ...• ~ax) 
problem corresponds toa release date r1, that is, a lower bound on the start time for J1, 
II r1 ,nmit,prec I P(g~ax• ... ,g-Kmax) is solvable in O(n 2

K) time for K = 2,3, and in 
O(nK<K+l)-6) timefor K;;;;. 4. 
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1. INTRODUCTION 

83 

A single-machine job shop can be described as follows. A set of n independent 
jobs has to be scheduled on a single machine that is continuously available from 
time zero onwards and that can process no more than one job at a time. Each job 
Ji (i = 1, ... , n) requires processingduringa positive time Pt· In addition, it has a 
due date d1, at which it should ideally be completed. A schedule defines for each 
job J1 its completion time ei such that no two jobs overlap in their execution. A 
performance measure or scheduling criterion associates a value j(a) with each 
feasible schedule a. Some well-known measures are the sum of the job completion 
times ~ei, the maximumjob lateness Lmax = max1.,;t.,;n (e;-dt), and the max
imum job earliness E max = max1 .,; i .,; n (d; e;). 

In this paper, we adopt the terminology of Graham, Lawler, Lenstra, and Rin
nooy Kan (1979) to classify scheduling problems. Scheduling problems are classi
fied according to a three-field notation a I /31 y, where a specifies the machine 
environment, /3 the job characteristics, and y the objective function. For instance, 
11 nmit IE max denotes the single-machine problem of minimizing maximum earli
ness, where nmit denotes that no machine idle time is allowed. 

Most research bas been concemed with a single criterion. In reallife schedul
ing, however, it is necessary to take several performance measures into account. 
There are basically two approaches to cope with multiple criteria. If the 
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scheduling criteria are subject to a well-defined hierarchy, they can be considered 
sequentially in order of relevance. An example is the problem of minimizing max
imum lateness subject to the minimum number of tardy jobs, for which Shanthi
kumar (1983) presents a branch-and-bound algorithm. 

The secoud approach is simultaneous optimization of several criteria. The K 
performance measures specified by the functions fdk = 1, ... ,K) are then 
transformed into one single composite objective function F: 0 ~ R, where 0 
denotes the set of all feasible schedules. We restriet ourselves to the case that Fis a 
linear composition of the individual performance measures. This leads to the 
problem class (P) that contains all problems that can be formulated as 

K 

minaEO ~ aJ'k(a), (P) 
k=J 

where a = (a1, ••• , aK) is a given vector of real nonnegative weights. The problem 
of minimizing a linear function of the number of tardy jobs and maximum late
ness, denoted as lil~~+ Lmax• is a memher of this class. Nelson, Sarin, and 
Daniels (1986) present a branch-and-bound algorithm for its solution. 

In addition to solving some problem in (P) for a given a ;;;;;. 0, it may he of 
interest to determine the extreme set. The extreme set for given functions 
f 1, ••• ,JK is defmed as the minimum cardinality set that contains an optimal 
schedule for alo/ weight vector a ;;;;;. 0. The elements of this set are the extreme 
schedules. If this set bas been identified, then we can solve any problem for these 
functions by computing the function value for each extreme schedule and choos
ing the best. Hence, if the cardinality of the extreme set is polynomially bounded 
in n, the nümber of jobs, and if each extreme schedule can be found in polynomial 
time, then any problem in (P) with respect to these functions j 1, ••• ,fK can be 
solved in polynomial time. 

Suppose that some problem in (P) is 'X'!P-hard and that one wishes to design a 
branch-and-bound metbod for its solution. In that case, good lower bounds are 
required. Until now, virtually alllower bound computations for problems in (P) 
are based upon the so-called maximum potential improvement method. We prove 
in Section 2 that these bounds are dominated in terms of quality and computa
tional effort by a much simpter metbod that we name objective splitting. In Section 
3, we refine the basic objective splitting method. 

The problem ll I ~C; + Lma:x + E ma:x is our benchmark in comparing the two 
lower bound approaches. It is still an open question whether this problem is 'X'!P
hard, Sen, Raiszadeh, and Dileepan (1988) develop a branch-and-bound algo
rithm and derive lower bounds by means of the maximum potential improverneut 
method. There is an optima! schedule for this problem without machine idle time, 
although E ma:x is nonincreasing in the job completion times. lt is not meaningful 
to insert idle time, as the gain for E ma:x will at least be compensated by the 
increase of ~C1 • We reeall the following fundamental algorithms for the three 
embedded subproblems. 
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THEOREM 1 (Smith, 1956). The 1 I I ~C1 problem is solved by sequencing the jobs 
according to the shortest-processing-time (SPT) rule, that is, in order of nondecreas
ingp1. 

THEOREM 2 (Jackson, 1955). The 1 I I Lmax problem is solved by sequencing the jobs 
according to the earliest-due-date ( ED D) rule, that is, in order of nondecreasing d1• 

'I'HEOREM 3. The 11 nmit I Emaxproblem is solved by sequencing thejobs according to 
the minimum-slack-time ( MST) rule, that is, in order of nondecreasing d1 - p1• 

The proof of each of these algorithms proceeds by a straightforward interchange 
argument. Note that each of these problems is solved by arranging the jobs in a 
eertaio priority order that can be specified in terms of the parameters of the prob
lem type. 

The optimal solution values for these single-machine scheduling problems will 
be denoted by ~c;, L~ax• and E~ax• respectively. Furthermore, ~C1(o), Lmax(a), 
and Emax(a) are the objective values for the schedule a. In analogy, C1(o), L1(a), 
and E1(a) denote the respective measures for jobJ1 (i = 1, ... ,n). Whenever(a) is 
omitted, we are consirlering the performance measure in a generic sense, or there 
is no confusion possible as to the schedule we are relerring to. The schedules that 
minimize ~C1 , Lmax• and Emax are referred to as SPT, EDD, and MST respec
tively. In addition, v (·) denotes the optimal objective value for problem ·. 

2. MAxiMUM POTENTlAL IMPROYEMENT VERSUS OBJECTIVE SPLITTING 

Townsend (I 978) proposed the maximum potential impravement metbod to com
pute lower bounds for minimizing a quadratic lunetion of the job completion 
times. Since then, the metbod bas been extended to problems in (P), including 
lil ~C; + Lmax (Sen and Gupta, 1983), ll nmit I Lmax + Emax (Gupta and Sen, 
1984), and lil ~C1 + Lmax + Emax (Sen, Raiszadeh, and Dileepan, 1988). To our 
knowledge, there is only one publication on objective splitting avant la lettre: 
Tegze and Vlach (1988) obtained an extremely simple, but provably stronger 
lower bound for I! nmit I Lmax + Emax· 

Meanwhile, Hoogeveen (1990) and Hoogeveen and Van de Velde (1990) have 
found polynomial-time algorithms for ll nmit I a1Lmax +a2Emax and 
llla1 ~C1 +a2Lmax· The former problem has O(n) extreme schedules, each of 
which is found in O(nlogn) time. The latter problem bas O(n 2) extreme 
schedules, each of which is determined in 0 (n) time after appropriate preprocess
ing. However, it is an interesting issue how to derive lower bounds for ~~-hard 
problems in (P). The maximum potential impravement metbod is a cumhersome 
procedure. However, by viewing it from a different angle, we derive a closed 
expression for the resulting lower bound. lt is then immediately clear that the 
maximum potential impravement metbod is completely dominated by the much 
simpler objective splitting method. 

Objective splittingis based upon the observation that 

lllÎno E o [ f akfk(a)] ;;;. f ak [min., E ofk(o)], 
k I k=l 
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if ak ;a. 0 for k = 1, ... , K. The application of this idea to 1 I I ~ei + Lmax + E max 
yields the problems lj I ~ei, liJ Lmax, and 1 I nmit 1 E max· Each problem is poly
nomially solvable, and we obtain the bound LB 0 = ~e; + Lmax + E:Oax· This 
bound is computed in 0 ( n) time in each node of the search tree, provided that the 
SPT, EDD, and MST sequences have been stored and that we employ a con
venient branching strategy. 

It is relatively easy to apply the maximum potential improvement metbod to 
problems in (P) for which each embedded single-machine problem h~ a priority 
order. The 1 I I ~ei+ Lmax + E max problem has three: the SPT order for ~e1 , the 
EDD order for Lmax• and the MST order for Emax· Clearly, we have solved an 
instanee of this problem in case these orders concur; in general though, the prior
ity orders are conflicting. 

Suppose we start with the MST schedule, which we refer to as the primary 
priority order. The scheduling cost induced by the MST schedule is ~ei(MST) + 
E:nax + Lmax(MST); this is obviously an upper bound on the optimal solution 
value. In addition, we know that any optimal schedule t/ must have 
Emax(<J) ;a. E:Oax, and ~e;(o*)+ Lmax(a*).;;:; ~ei(MST) + Lmax(MST). The 
maximum potential improverneut metbod assesses the current schedule with 
respect to the maximum improvement that can be obtained for each of the perfor
mance measures separately. Accordingly, we get a lower bound by subtracting the 
total maximum potential impravement from the upper bound. 

First, consider the maximum lateness criterion, which is the secondary priority 
order. If we interchange every pair of adjacent jobs J1 and Jj for which d1 >dj and 
e1<ej, then weneed to conduct O(n 2) interchanges before we have transformed 
the MST schedule into an EDD schedule. The actual effect on the objective value 
by one particular interchange depends on the interchanges that have been con
ducted thus far. Jt might have no effect whatsoever on the performance of the 
schedule; this is true if both the maximum lateness and the maximum earliness 
remain unchanged. The maximum possible decrease of the scheduling cost, how
ever, is di -dj; if a and 'IT denote the schedule before and after the interchange, 
respectively, then the maximum decrease is realized if Lmax(a)=Lj(a), 
Lmax('1T)=L1('1T) and Emax('IT) = Emax(a). The effect that the interchange might 
have on the sum of the job completion times is not considered here and dealt with 
separately. Any interchange conducted to transform the MST schedule into the 
EDD schedule may improve the maximum lateness by the corresponding max
imum possible decrease. The sum of these is the maximum potentlal improvement 
with respect to the initiallateness Lmax.(MST). It is given by 

MPI2 ~ (d1-dj)· 
i,j:~ >d1, c, < c1 

Note that the maximum potential improvement does not depend on the order in 
which the interchanges are conducted. 

Second, the sum of the job completion times, which is the tertiary priority 
order, is reduced by interchanging two adjacent jobs J1 and Jj with p1 > Pj and 
e1 < ej. The maximum potential improverneut is then Pi-Pj• which is also the 
true improvement. The maximum potential improverneut with respect to 
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"2-Cj(MST) is then 

MP/3 = ~ (p;-p1). 
i,J :p, >Pi· c, < c1 

The lower bound LBMPI suggested by Sen, Raiszadeh, and Dileepan (1988) for 
lil "2-C;+ Lmax + Emax is then 

LBMPI = E~ + Lmax(MST) MP/ 2 + "2-C;(MST) MP/ 3· 

Since "2-C;(MST)- MP I 3 = "2-C;(SPT) = "2-C; and Lmax(MST)- MP I 3 ~ L~, 
as we have systematically overestimated the rednetion in maximum lateness, we 
coneinde that 

LBMPI E':nax + "2-C; + Lmax(MST) MP/ 2 ~ LB 0 s. 

The maximum potential improverneut method can he generalized to problems 
in (P) as follows. Let <1 ~ denote an optimal schedule for the kth individual objec
tive. Furthermore, let the optimal sequence that goes with the kth objective he the 
kth preferenee order. The first step is then to sequence the jobs according to the 
primarypreferenceorder, whichgives theupperbound aJ!1(<1i)+"2.f=2 ak.fk(ai). 
Wethen have to transform the primary preferenee order into the kth preferenee 
order, for k = 2, ... , K, and determine the corresponding maximum potential 
improverneut MP h· The lower bound is then given by 

K 

LBMPI = aJ!1 (a~) + ~ ak(fk(Gi) MPh). 
k=2 

Note that this procedure requires O(n 2) time for fixed Kin addition to the time 
required to determine <1 ~. for k = 1, ... , K. Sinee fk( a i)-MP h ~ .fk( a k:) for each 
k = 1, ...• K, we have the following theorem. 

THEOREM 4. For any problem in (P), the lower bound obtained by the maximum 
potenttal improvement method is dominated in terms of both quality and speed by the 
lower bound obtained by the objective splitting method. 0 

Consider the following example that is taken from Sen, Raiszadeh, and Dileepan 
(1988) for the problem lil q "2-C; +(1-q)(Lmax + Emax) with 0 ~ q ~ 1. 

14 7 
20 14 
6 7 

6 7 
15 17 
9 10 

By means of the maximum potential improverneut method, we obtain the lower 
bound LBMPI = 64q +9. It is easy to verify that "2-Cj = 73, L':nax = 14, and 
E~ 6. This gives the bound LB 0 s = 53q +20. Note that 53q +20;;;;;. 64q +9 
for all qwith 0 ~ q ~ 1. 
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3. lMPROVING THE OBJECTIVE SPLITTING PROCEDURE 

The objective splitting procedure above was given in its simplest form: we 
separated the composite objective function into K single-criterion scheduling 
problems. We now propose arefinement that gives us a lower bound that is at 
least as good, but requires more time. Our more general approach allows combi
nations of objecrive functions. Let (T 1, ••• , T 8 ) be a parrition of the set 
{ 1, ... , K}, i.e., the sets Th are mutually disjoint and U ff = 1 Th = { 1, ... , K}. For 
any problem A in the class (P) we clearly have 

v(A) ~ f [minaE9 ~ aJk(ak)l ~ f ak [rk(aZ)] = LB 0 s. 
h=l k T, k=l 

This idea can be refined even further, since it is not obligatory to match each per
formance criterion fk with only one set Th. Hence, let us relax the assumprion that 
(T 1> ••• , T 8 ) is a parrition of {1, ... , K}, and let akh denote the fraction of Jk that 
is assigned to Th. We must have that ~h akh = ak for each k = I, ... , K, and also 
that akh ~ 0, since the composite objective function associated with the set Th bas 
to be nondecreasing in each of its arguments, for h = 1, ... , H. We can compute 
the lower bound for given values of akh as 

v(OS) f [min., ED ~ akhfk(a)]. (OS) 
h=l kET, 

An interesting question is how to determine the values of akh that maximize the 
lower bound v (OS). This problem, referred to as problem (D), is to 

subject to 

maximize v (OS) 

H 

~ akh = ak for k = 1, ... ,K, 
h=l 

akh~o fork=l, ... ,K,h=1, ... ,H. 

(D) 

A sufficient condition for solving problem (D) in polynomial time (for fixed K) 
is that the extreme set for each problem induced by Th (h = 1, ... , H) can be 
determined in polynomial time. In that case, there is only a polynomial number of 
extreme schedules involved, and problem (D) can then be formulated as a linear 
programming problem with a polynomial number of constraints and variables. 
Let N (h) be the number of extreme schedules for the problem associated with Th 
(h 1, ... , H), and let aj(h) denote the jth extreme schedule for the problem asso
ciated with Th. There are at most 2K- 2 sets Th ( I Th I < K and Th =I= 0 ). The 
linear program is then to 

maximize w 

subject to 
H 

w~ ~ ~ akhfk(aj(h)) forj(h)= 1, ... ,N(h),h l, ... ,H, 
h !kET, 
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fork = 1, ... ,K, 

fork 1, ... ,K,h 1, ... ,H. 

In general, it would be unreasonable to presurne that each of the possible 2K-2 
sets Th would result into a polynomially solvable problem; it may be a formidable 
challenge to identify those that will. If we touch upon a problem that appears to 
be hard to solve, then we may relax the assumptions by allowing preemption. (I.e., 
the processing of jobs may be interrupted and resumed at a later moment in time; 
this is denoted by pmtn.) This may be useful with respect to the computational 
complexity, but also with respect to the lower bound quality. The latter follows 
particularly from the following theorem. 

THEOREM 6. The optima/ objective value of llpmtn I ~f 1 aifk is greater than or 
equal to ~akfk( a k), where a k is the optima/ value Jor 1 I lfk (k I, ... , K). 

PROOF. The proof follows from the observation that aZ also solves llpmtn lfk, if 
fk is either monotonically nondecreasing or monotonically nonincreasing in the 
job completion times. 0 

If we apply the refined objective splitting procedure to lil ~C1 + Lmax + Emax• 
then, except for the obvious single-criterion problems, we have to consider three 
problems: llla1~Ci+a2Lmax• Ilnmitla1~Ci+a2Ema"' and 
II nmit I a1Lmax +a2Emax· Hoogeveen (1990) presents an O(n 2logn) time algo
rithm for 11 nmit I a1Lmax +a2Emax to find the O(n) extreme schedules, and 
Hoogeveen and Van de Velde (1990) present an O(n 3) time algorithm for 
lllat~C1 +a:2Lmax• which has O(n 2

) extreme schedules. Por the problem 
11 nmit I a:1 ~C1 +a:2Emax• there is only a polynomial-time algorithm available if 
a1 ;;;;. a:2 (Hoogeveen and Van de Velde, 1990). The complexity of the case a: 1 <a:2 

is unknown. However, 11 nmit,pmtn I a 1 ~C1 + a2E max is solvable in 0 (n 4) time 
and bas 0 (n 2) extreme schedules. 

If we reconsider the example, we find that there is one extreme schedule for ~C1 
and Lmax with ~C1 = 73 and Lmax = 14; there are two extreme schedules for 
Lmax and Emax with values Lmax = 14 and Emax =7, and Lmax = 17 and Emax =6; 
there are three extreme schedules for E max and }";C1 if we allow preeroption with 
values Emax =6 and LC1=96, Emax =7 and LC1=74, and Emax =9 and ~C1 
respectively. 

The lower bound that is obtained by the improved objective splitting metbod 
depends on the parameter q. Suppose q Then we obtain LBMPI = 41 and 
LB 0 s = 46+. It is easy to verify that the improved objective splitting metbod 
gives 47+ as a lower bound. This bound is tight, since the optima! sequence 
(J 2,J 3,J 4,J 1) has the same value. 
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A set of n jobs bas to be scheduled on a single machine which can handle 
only one job at a time. Each job requires a given positive uninterrupted pro
cessing time and bas a positive weight. The problem is to find a schedule 
that minimizes the sum of weighted deviations of the job completion times 
from a given common due date d, which is smaller than the sum of the pro
cessing times. We prove that this problem is ']UP-hard even if all job weights 
are equaL In addition, we present a pseudopolynomial algorithm that 
requires O(n2 d) timeand O(nd) space. 
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Recently, we have seen a growing interest in just-in-time manufacturing. This 
concept decrees that products should be completed as close to their due dates as 
possible in order to avoid both storage costs as a result of early completions and 
penalty costs inflicted on account of late deliveries. This might in duce the follow
ing type of problems for the single machine job shop. 

A set of n independent jobs has to be scheduled on a single machine, which can 
handle only one job at a time. The machine is assumed to be continuously avail
able from time 0 onwards. Job Ji (i = 1, ... , n) has a given positive uninterrupted 
processing time p1 and should ideally be completedat a given due date d1• Without 
loss of generality, we assume that the processing times and the due dates are 
integral. A schedule defines for each job J1 a completion time e1 such that the jobs 
do not overlap in their execution. Given a schedule S, the earliness and tardiness 
of job J1 are defined as E1 max { d1 - e1 , 0} and T1 max {ei - d1 , 0}, respec
tively. The just-in-time philosophy is reflected in the objective tunetion 

j(S) ~;= 1 (atEt+PtTt). 
Fora review on problems with this type of objective function, see Baker and 
Scudder (1990). 
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An important subclass contains the set of problems that deal with a common 
due date d for all jobs. The common due date is either specified as part of the 
problem instance, or is a decision variabie that bas to be optimized with the job 
sequence simultaneous1y. As the first job may start later than time 0, the optima] 
schedule is identical for both probieros unless the common due date dis restric
tively small (d < l:.p;). Therefore, the fust variant is referred to as the restricted 
problem and the secoud variant as the unrestricted problem. 

We will call the earliness and tardiness penalty weights symmetrie if ai Pi for 
each i = 1, ... , n. Por the case of nonsymmetrie weights, only one problem type 
bas been investigated, namely the case in which all a; are equal and all /J; are 
equal. Bagchi, Chang and Suilivan (1987) and Eromons (1987) present an 
O(nlogn) algorithm for the unrestricted variant, while Bagebi et al. (1987) pro
pose a branch-and-bound algorithm for the restricted problem. 

If the earliness and tardiness penalty weights are symmetrie, then the problem 
reduces to finding a schedule S that minimizes the weighted sum of the deviations 
of the completion times from the common due date: 

f(S)=~: 1 w;jC; dl. 
There are two notabie results for the case that d;;;. '2-p;. Kanet (1981) gives an 

O(nlogn) time algorithm to findan optima] schedule, if all weights are equal. 
Halland Posner (1991) show that the problem with symmetrie weights is ~'3>
hard. 

In coAtrast, we focus our attention on the case that d < '2-p;. In Section 2 we 
prove some properties of an optima] schedule. In Section 3 we establish ~'3>
hardness of the problem, even for the case that all job weights are equal. We note 
that Hall, Kubiak and Sethi (1991) independently obtained this result by a 
slightly more complicated proof. This result justifies the development of enumera
tive algorithms by Bagchi, Suilivan and Chang (1986) and by Szware (1989) for 
minimizing '2.7 = l I C1 d I subject to a common due date d < '2-p;. In contrast, 
we present a pseudopolynomial algorithm in Section 4 for ll I '2. W; I C; - d I , 
which requires O(n 2d) time and O(nd) space. Our algorithm is applicable toa 
more· general problem type than the pseudopolynomial algorithm of Hall et al. 
(1991), which can only handle equal job weights. InSection 5 we present some 
well-solvable cases. 

2. BASIC CONCEPTS 

It is straightforward to verify that no optima] solution bas any idle time between 
the execution of jobs. In case there were idle time, the scheduling cost could be 
reduced by closing the gap. The next two theorems further characterize any 
optimal solution. 

THEoREM 1. In any optima/ schedule S, the jobs J; that are completed before or at the 
common due date d are scheduled in order of nondecreasing values of W; I p;, and the 
jobs that are starled at or after d are scheduled in order of nonincreasing values of 
W;fp;. 
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PROOF. This follows immediately from Smith's ratio rule (Smith, 1956). D 

THEOREM 2. In each optima/ schedule S, either the first job starts at time 0 or the due 
date d coincides with the start time or completion time of the job with the largest ratio 
W;lp;. 

PRooF. Fora given schedule S, let B(S) denote thesetof jobs that are completed 
befare or at the oomman due date and A (S) the set of jobs oompleted after the 
due date. Define A= ~J, EB(S) w1 ~J, EA(S) w1• We consider the cases in which 
A< 0 and A;;;;.. 0 separately. 

Suppose first A < 0. If S starts at time T > 0, determine t = 
min{T,min1, EA(s)C1 -d}. If the entire schedule is putt time units earlier, then 
the reduction in oost equals - t A > 0. In the new situation either schedule S starts 
at time T = 0 or one job has moved from A (S) to B (S). If still T > 0 and A < 0, 
we repeat the procedure until we arrive at a situation in which T = 0 or A ;;;;.. 0, and 
no further impravement is possible. The latter case implies that the due date ooin
cides with the completion time of one job and the start time of another. Because 
of Theorem 1, one of these jobs must be the job with the largest ratio w1 I p1• 

On the other hand, in the case of A;;;;.. 0, reverse argumentscan be applied to 
show that the due date coincides with the completion or start time of the job with 
the largest ratio w;l p1• D 

Note that Theorem 1 does nat impose any restrictions on a job that is started 
befare and completed after the due date. Consider the following instanee with 
n =3,p 1 = 8,p2 = 10,p 3 4, w1 = 5, w2 7, w3 = 3, and d 15. The optimal 
salution is shown in Figure 1 and demonstrates that such a job can exist, and that 
it can even have the smallest ratio w1 I p1• 

0 d=15 

FIGURE 1 

3. SCHEDULING AROUND A SMALL COMMON DUE DATE IS m_~-HARD 

In this section we prove that this problem is m.~-hard even if w1 1 for each job 
11, by showing that the oorresponding decision problem is m.~-complete. The 
reduction is from Even-Odd Partition. 

EVEN-ÜDD PARTITION (Garey, Tatjan and Wilfong, 1988): Given a set of 2n posi
tive integers B = {bI> ... , b2n} such that b1 >bi+ 1 for each i= I, ... , 2n 1, is 
there a partition of B into two subsets B 1 and B 2 such that 
~bEB b1 = ~b EB b1 =A and such that B 1 oontains exactly one of {b 21 -~>b 21 } l 1 r 2 

for each i = 1, ... , n? 
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We start by descrihing a rednetion from the Even-Odd Partition problem to the 
small common due date problem with w1 = 1 for all J1• Let B { b" . .. , b 211 } be 
an arbitrary instanee of the Even-Odd Partition problem, with A = '2.b1 I 2. Con
struct the following set of jobs: 2n 'partition' jobs J1 with processinÎ times 
Pi b1 +nA for each i 1, ... ,2n, an additional job J 0 with p 0 3(n + l)A, 
weights wi 1 for i= 0, ... , 2n, and a common due date d = (n 2 + l)A. In addi
tion, we define a threshold value y 0 = '2.f= 1[(i + l)(pu- 1 + p 21 )] + d on the 
scheduling cost. 

Consider a partitioning of the set of partition jobs { J 1, ••• , J 211 } into the sets 
B 1 ={J 11 ,J21>···•Jnd and B2 {J12,J22 , ... ,J11 2}, where {Jn,J12} = 
{J21 1Ju}foreachi l, ... ,n. 

LEMMA 1. IJ the partitioning into the sets B 1 and B 2 corresponds to a solution of the 
Even-Odd Partilion problem, then the cost of schedule S 0 constructed as shown in 
Figure 2 equals the threshold value Yo· 

FIGURE 2: SCHEDULE S o 

PROOF. Note that the jobs in B 1 and B 2 are scheduled as indicated in Theorem I. 
The verification then only requires straightforward computations. 0 

We now prove that, conversely, any schedule S with f(S) ~Yo must have the 
same structure as S 0, and that the subsets B 1 and B 2 must correspond to a solu
tion of the Even-Odd Partition problem. 

PROPOSITION I. Suppose Sis a schedule with scheduling cost f ( S) ~ y 0• Then S has 
the followingproperties. 
(I) At most n jobscan be completed before the due date d 
(2) The first job must start at time 0. 
(3) The additional job J 0 is scheduled last. 
( 4) At least n I jobs must be completed before the due date d. 

PROOF. 
( 1) This is due to the choice of the processing times. 
(2) This follows immediately from the first property and the proof of Theorem 2. 
(3) Soppose J 0 is not scheduled last. Then, because of Theorem I, J 0 must start 
before the common due date d. Since at most n jobs can be scheduled before job 
J 0 , for at least n + 1 jobs inS we have ei -d;;;;. p 0 -d = 2d. This implies that 
f(S);;;;. 2(n + l)d;;;;. (n +4)d. However, aseach of the multipliers of ph ... ,p11 in 
y 0 is at most -hn + 3), while '2.7 = 1 (i + 1) +n (n + 3), we have the following ine

quality: 



99 

Yo = ~~ 1[(i + I)(pzt 1 + P2i)] + d < -}(n +3)~;:lt + d = (n + 4)d :;;;;;,f(S), 

which contradiets the assumption. 
( 4) This follows immediately from the first three properties and the choice of the 
processing times. D 

LEMMA 2. Suppose S is an optima/ schedule with f (S) :;;;;;, y 0• Then the due date d 
must coincide with the completion time of the n-th job in the schedule S, the schedule 
S must have the same structure as the schedule S 0, and provide an affirmative answer 
to the Even-Odd Partition problem. 

PRooF. Assume that s (i) denotes the index of the job that is scheduled on position 
i in schedule S. We compute the scheduling cost relative to the imaginary due date 
k = Ps<t> + ... + Ps<n>· Then we have 

~;:o I ct k I = ~7= 1 [0 -I)ps<t>1 + ~~:n +, [(2n +2-0Ps<t1 + 3d = 

~7= 1 [(i + l)ps(i)] + ~~:n+l[{2n +2-i)Ps(t)l + 3d- 2k = 

~7= 1 [(i + l)Ps(i)] + ~7= 1 [(i + l)ps(2n+l-nJ + 3d- 2k ~ 

~7= 1 [(i + l)(p2i-t + P21)] + 3d -2k = Yo + 2d- 2k. 

The true scheduling cost f ( S) can be written as 

f(S) ~;:o !Ct-dl =~;:o !Ct kl +(d-k)(card(B(S))-card(A(S))), 

where card denotes the cardinality function. Because of Proposition 1, we have 
only three cases to consider: 
- if d = k, thenf(S) ~ yo, 
- if d >k, then card(B(S)) = n, and thereforef(S);;;;:. Yo + d -k > yo, 
- ifd < k, thencard(B(S)) = n -I, andhencef(S);o:. Yo + k- d>yo. 
This implies that if f(S) :;;;;;,y0, then Cs(n) = d, that is, the completion time of the 
n-th jobinS must coincide with the due date. Furthermore, f(S) :;;;;;,y0 implies 
{ Js(i),Js(2n + 1-i)} = { J 2t -I ,J 2i} for i I, ... , n. Therefore, the schedule S has 
the same structure as the schedule S 0 depicted in Figure 2. This means that the 
original Even-Odd Partition problem has an affirmative answer. D 

THEOREM 3. Given a set ofjobs and a nonnegative integer y, the problem of deciding 
whether there exists a schedule S 0 with f ( S 0) :;;;;;, y is q}(_iff-complete. 

PROOF. The decision problem is clearly in q}liff. Por any given instanee of the 
Even-Odd Partition problem, we construct a set of jobs as described above and 
set y = y 0 . This reduction requires polynomial time. Theorem 3 now follows from 
Lemmas 1 and 2. D 

4. A DYNAMIC PROGRAMMING ALGORITIIM 

Theorem 3 implies that, unless iff=q}liff, no polynomial algorithm exists for solving 
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the small common due date problem. We present a pseudopolynomial algorithm 
that requires O(n 2d) time and O(nd) space, for which Theorems 1 and 2 provide 
the basis. According to Theerem 2 we must consider two cases: one in which the 
job with the largest weight to processing time ratio is scheduled such that either its 
completion or its start time coincides with the due date, and one in which all the 
jobs are scheduled in the interval [0, 2:pi1· 

For the first option, we renumber the jobs according to nonincreasing weight to 
processing time ratios. Let Fj(t) denote the optimal objective value for the first i 
jobs subject to the condition that the interval [ d - t, d + 2:{ == 1 p1 - t] is occupied 
by the first i jobs. Then the initialization is 

{

0 for t 0, i 0, 
Fj(t) oo otherwise, 

and the recursion for i = 1, ... , n is given by 

Fj(t)=min{Fj 1 (t-pj)+wj(t-pj),Fj-I(t)+wj('2.~==lPi t)} for O~t~d. 

In the second case, all jobs are scheduled in the interval [0, 2:p1 ]. In such a situa
tion it might occur that one of the jobs is started before and yet completed after 
the due date (see Figure 1). To allow for this possibility, we leave one job out of 
the recursion, and repeat the recursion n times, once for each job. Since the costof 
the schedule can now only be computed relative to the endpoints of the interval, it 
is assumed that the jobs have been renumbered according to nondecreasing valnes 
of wJPi· Consequently, we know that the first job either starts at time 0 or fin
ishes at time 2:pi. 

Assume thatJh is the job that will be scheduled around the due date. Let Gj(t) 
denote the optimal oost for the first i jobs subject to the condition that the inter
~als [0, t] and [2:7 = j + 1 Pi + t, 2':pd are occupied by the first i jobs. The initialization 
IS 

h _ {0 for t 0, i = 0, 
Gj(t)- oo otherwise, 

and therecursionfori = 1, ... ,nis 

Gj_ 1(t) ifi=h, 

Gj 1 (t) + wj(2.7=,Pi +t d) if d -pj ~ t ~ d, 
Gj(t)= 

Gj-I(t-pj)+wj(d-t) if 2:j+1Pi<d-t, 

m:in{Gj-1 (t) + w/2.7 =jPi +t -d),Gj- 1 (t -pj) + wj(d -t)} otherwise. 

The reenrsion leaves the interval [t,t +Ph] idle, and it is bere that we insert the job 
J h and compote the resulting cost as 

{
G~(t) + wh(t +ph -d) if d -ph~ t ~ d, 

Ghn(t) = ,.,., 
"" otherwise. 

The optimal salution is then found as 



j (S) =min{ min1 .;;h ".;; nmind-p • .;;t .;;d G~(t), mÎllo".;t .;;d F11(t)}, 

by which we have established the following result. 
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THEOREM 4. The dynamic programming algorithm solves the problem in O(n 2d) 
time and 0 (nd) space. 

Note that the dynamic programming algorithm can be modified to cope with any 
common due date problem with nonsymmetrie earliness and tardiness penalty 
weights that allow for a prespecified processing order of the jobs that are com
pleted before or started after the common due date. This includes the problem 
with all ai equal and all fJi equal, for which Bagebi et al. (1987) presented a 
branch-and-bound algorithm. In addition, the weighted tardiness problem with a 
common due date possesses this property. 

5. POLYNOMIALLYSOLVABLECASES 

5.1ldenticaljobs 
If the jobs are identical, we have p1 = p for each job J1• Since the processing times 
and due date are assumed to be integral, this situation is more general than the 
one in which all p; 1. Suppose the jobs have been renumbered according to 
nonincreasing weights. 

If d ;;;.. p r n 121, then it is easy to show that Emmons' matching approach 
(Emmons, 1987) generates an optimal schedule S by partitioning the jobs into sets 
A(S)= {h; Ji 1, ... , ln12j} and B(S)={J2i-1 Ji 1, ... , fn/21}, where 
the first job in B(S) starts at time t = d ~~. eB(S)Pi = d -p fn12l In this 
notation, l n I 2 J denotes the largest integer smaller than or equal to n I 2, and 
f n I 21 denotes the smallest integer greater than or equal to n I 2. 

Conversely, if d <p rn/21, then there are two options: either the firstjob starts 
at time 0 orthelast job in B {S) is completedat time d. It is easy to see that in both 
cases Emmons' matching approach generates optimal schedules, and the problem 
is solved by choosing the better one. 

5.2 The jobs have equal weight to processing time ratios 

THEOREM 5. In theevent that p; = wdor each job h there is an optima! schedule for 
any value of d in which the jobs are scheduled according to nonincreasing processing 
times. 

PROOF. Consider two adjacent jobs that are not scheduled according to the indi
cated order. If both jobs are completed before or started after the common due 
date, then these jobs can be interchanged without affecting the cost of the 
schedule S, unless the due date lies in the interval between the start time of the 
first and the completion time of the other job. We prove that even in that case, an 
interchange of these two jobs does not increase the scheduling cost. Without loss 
of generality, let J 1 and J 2 be the two jobs that have to be interchanged, with 
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p 1 ;;;;. p 2, and let J 2 start at time t. We have to investigate the following three 
situations. 

(1) t..; d..; t + p 2• Then the interchange leads to a schedule with the same 
oost. 

(2) t + p 2 < d ..; t + p 1• Then the interchange lowers the cost by 
2p 2 (d p 2);;;;. 0. 

(3) t + p 1 < d ..; t + p 1 + p 2 • Th en the interchange decreases the oost by 
2dp2 2dpl + 2pt 2p~ = 2(pl + P2 d)(p1 p2) ;;;;. 0. D 

Assume that the jobs have been renumbered in order of nonincreasing processing 
times. Sopposeris the smallest index for which ~~ = 1 p1 ;;;;. ~~ + 1 Pt· Theorem 5 
then implies that, if d;;;;. ~~ 1p1, the problem is solved by putting 
B(S) {J1 !i I, ... ,r} and A(S) = {J1 !i= r + 1, ... ,n}. If d < ~'i=1Pt. the 
first job needs to start at time 0, and the jobs are processed in order of nonde
creasing processing times. 
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Suppose a set of n jobs has to be scheduled on a single machine, which 
can handle no more than one job at a time. The problem is to find a 
schedule that minimizes the sum of the deviations of the job completion 
times from a given common due date that is smaller than the sum of the 
processing times. This problem is known to be ~~-hard. There exists a 
pseudo-polynomial algorithm that is able to solve instances up to 1000 
jobs. Branch-and-bound algorithms can solve instances up to only 25 
jobs. We apply Lagrangian relaxation to find in O(nlog n) time new lower 
and upper bounds. Based u pon this upper bound, wedevelopa heuristic 
whose salution value is guaranteed to be no more than 4/3 times the 
optima! salution value. We identify conditions under which the lower and 
upper bound concur; these conditions can be expected to be satisfied by 
many instances with n not too smal!. For processing times drawn from a 
uniform distribution, all our computational experiments exhibit that the 
bounds concur al ready for n ;;;;,. 40. For the case these bounds do not 
concur, we present a refinement of the lower bound. Th is is obtained by 
solving a subset-surn problem that is of considerably smaller dimension 
then the common due date problem to optimality by a pseudo-polynomial 
algorithm. Finally, we indicate to what extent the analysis also applies to 
the case that all early completions are weighted by a common weight a: 
and all tardy completions by a common weight fJ. 
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Key Words & Phrases: single-machine scheduling, common due date, 
Lagrangian relaxation" approximation algorithm, worst-case behavior. 
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The just-in-time concept for manufacturing has induced a new type of machine 
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scheduling problem in wbich both early and tardy completions of jobs are penal
ized. We consider the following single-machine scheduling problem that is associ
ated with this concept. 

A set of n independent jobs has to be scheduled on a single machine, which can 
handle no more than one job at a time. The machine is assumed to be continu
ously available from time zero onwards only. Job Jj requires processing during a 
given uninterrupted time pj and should ideally be completed at a given due date 
dj. Withoutlossof generality, we assume that the processing times and the due 
dates are integral. We assume furthermore that the jobs are indexed in order of 
nonincreasing processing times. A schedule o defines for each job Jj a completion 
time Cj, such that the jobs do not overlap in their execution. The earliness and 
tardiness of J1 are defined as E1 = max { d1 - c1 , 0} and Tj max { Cj - dj , 0}, 
respectively. The just-in-time philosophy is reflected in the objective function 

n 

f(o) = ~ (a1 E1 + p1 Tj), 
j=l 

where the deviation of c1 from dj is penalized by either aj or p1, depending on 
whether Jj is early or tardy, for j l, ... , n. Fora review of probieros with this 
type of objective function, we refer to the survey by Baker and Scudder (1990). 

An important subclass contains probieros with a due date d that is common to 
all jobs. The common due date is either specified as part of the problem instance, 
or is a decision variabie that bas to be optimized simultaneously with the job 
sequence. As the first job may start later than time zero, the optimal schedule is 
identical for both probieros unless the common due date d is restrictively small. 
The first variant is therefore referred to as the restricted problem and the second 
variant as the unrestricted problem. 

Bagchi, Chang, and Sullivan (1987) propose a branch-and-bound approach for 
the restricted variant with all earliness penalties equal to a and with all tardiness 
penalties equal to {3. Szware (1989) presents a branch-and-bound approach for 
the case that a = {3. These branch-and-bound algorithms are able to solve 
instances up to 25 jobs. Sundararaghavan and Ahmed (1984) present an approxi
mation algorithm for the case a P that shows a remarkably good performance 
from an empirical point of view. Lee and Liman (1991) present an approximation 
algorithm withperformance guarantee 3!2; this means that for any instaneetheir 
approximation algorithm produces a solution with value no more than 312 times 
the optimal solution value. Hall, Kubiak and Sethi (1991) and Hoogeveen and 
Van de Velde (1991) establish the 'V'U!P-hardness of the problem, even if a= {3, 
thereby justifying the enumerative and approximative approaches. Furthermore, 
Hall et al. (1991) propose a pseudo-polynornial time algorithm running in 
O(n"Zp1) time and space, and provide computational results for instauces up to 
1000 jobs. Their experiments, however, show that the algorithm is limited by 
space, not time. 

We present a Lagrangian-based branch-and-bound algorithm for the case 
a= {3. Using Lagrangian relaxation, we find new lower and upper bounds in 
O(nlogn) time. We identify conditions under which the lower and upper bound 
concur; these conditions can be expected to be satisfied by many instauces with n 
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not too small. This is confirmed by our computational results when the processing 
times are drawn from a uniform distribution. 

For the case that these bounds do not ooncur, we present arefinement of the 
lower bound, which is obtained by solving a subset-surn problem to optimality by 
a pseudo-polynomial algorithm. This can be clone very fast, since the subset-surn 
problem in our application is of a oonsiderably smaller dimension than the com
mon due date problem. Computational experiments show that, if any, only a 
small number of nocles are examined in the branch-and-bound algorithm. 

In addition, wedevelopa beuristic that is based upon the Lagrangian upper 
bound with performance guarantee 4/3. This means that the beuristic produces a 
solution with value guaranteed to be no more than 4/3 times the optimal solution 
value. 

This paper is organized as follows. In Section 2, we review Emmons's matching 
algorithm (Emmons, 1987) for the unrestricted variant of the oommon due date 
problem with general a and f:J. In Section 3, we develop a lower bound based upon 
Lagrangian relaxation for the restricted variant with a = f:J. In Section 4, we use 
the insight gained in Section 3 to develop a beuristic for the restricted variant. In 
Section 5, we show that this beuristic has performance guarantee 4/3. InSection 
6, we describe the branch-and-bound algorithm, and in Section 7, we present 
some computational results. Finally, we briefly indicate to what extent the 
analysis applies to the case a f:J. 

2. EMMONS'S MATCHING ALGORITHM FOR THE UNRESTRICTED PROBLEM 

Kanet (1981) presents an O(nlogn) algorithm for the unrestricted variant with 
a= f:J. Bagchi et al. (1987) and Emmons (1987) propose O(nlogn) algorithms for 
the case a We briefly review the ooncepts of Emmons's matching algorithm, 
since they provide the insight needed for the subsequent sections. 

THEOREM 1 (Kan et, 1981 ). No optima/ schedule has idle time between the execution 
of the jobs. D 

THEOREM 2 (Kanet, 1981 ). There is an optima/ schedule for the unrestricted variant 
in which the due date d coincides with the start time or completion time of the job with 
the smallest processing time. D 

Emmons's matching algorithm is based upon the concept of positional weights. 
The scheduling problem reduces then to an assignment problem where jobs have 
to be assigned to positions. The oost of assigning J1 to the kth early position is 
equal to a(k l)p1; the oost of assigningJ1 to the kth tardy position is equal to 
{:Jkp1. The assignment problem is solved in O(nlogn) time by matching the job 
that has the jth largest processing time with the position that has the jth smallest 
weight, for j = 1, ... , n. 

Emmons's matching algorithm shows that in any optimal schedule the jobs 
completed before or at d are scheduled in order of nonincreasing processing times 
and the jobs started at or after d in order of nondecreasing processing times. Due 
to this structure, optimal schedules are said to be V-shaped. 
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Optimal schedules for the restricted variant have the same structure, albeit that 
there may be one job that is scheduled around d. For this particular job, it holds 
that the early or tardy jobs have larger processing times. 

3. A NEW LOWER BOUND FOR THE RESTRICTED VARIANT 

We look upon this 0U?J>-hard problem as an 'easy' problem complicated by the 
'nasty' constraint that the machine is only available from time zero onwards. If 
this constraint were not present, then the problem could easily be solved through 
Emmons's algorithm. This is exactly the approach Szware (1989) follows to deter
mine a lower bound. The structure of the problem, however, suggests that the 
technique of Lagrangian relaxation might be more successful. We remove the 
nasty constraint, and put it into the objective function, weighted by a nonnegative 
Lagrangian multiplier. The resulting problem is easy to solve. It will be referred to 
as the Lagrangian problem; its solution provides a lower bound for the original 
problem. 

The nasty constraint can be formulated as 

W<:;;;d, 

where W denotes the total amount of work that is processed up to time d. If we 
introduce a Lagrangian multiplier i\ ;a. 0 and bring this constraint weighted by i\ 
into the objective function, then we get the following Lagrangian problem, 
referred to as problem (LI\): find the value L (i\), which is the minimum of 

1 n 

~ (Ej +'Ij)+ i\(W- d), (Lx) 
j=l 

for a given i\ ;a. 0. Obviously, L(i\) is a lower bound for the original problem. 
There are two questions that immediately arise: Given a value of i\, can L(i\) be 
determined in polynomial time? If so, can the value i\* that maximizes the lower 
bound L(i\) be found in polynomial time? The latter problem is referred to as the 
Lagrangion dual problem. The following two theorems provide affirmative 
answers to both questions. 

THEOREM 3. Fora given i\, the Lagrangian problem is solved by applying Emmons's 
matching algorithm with the weights of the early positions increased by i\. 

PROOF. Straightforward arguments show that there exists an optimal schedule for 
the Lagrangian problem in which some job is completed-exactly on time d. Hence, 
there is an optimal schedule with W ~J, e&PJ• where & denotes thesetof jobs 
that are scheduled in the early and just-in-time positions. The Lagrangian objec
tive function can then altematively be written as 

n 

{~(Ei+ 'Ij)+ ~ Àf'J} i\d. 
j=l J1 ES 
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Since the last term is a constant for a given À, we need to minimize only the 
expression inside the braces. This is achieved by applying Emmons's matching 
algorithm to the case where the weight of the kth early position is equal to 
k-I+À. 0 

THEOREM 4. The optima! value À*, that is, the value that maximizes the Lagrangian 
lower bound, is equal to the index À for which 

l(n -i\)!2J l(n -i\-1)12j 
~ PH2J > d;;:. ~ PH 1+2J, 

j=O j=O 

where l x J denotes the largest integer smaller than or equal to x. IJ no such index 
exists, then À* 0. 

PROOF. Consider an arbitrary value À. If À is not integral, then all optimal 
schedules for (Li\) have equal W. If À is integral, then there are multiple optimal 
schedules with different W; these are found by breaking ties differently in 
Emmons's algorithm. Define for each integer À (À = 0, ... , n) orn as the optimal 
schedule for the Lagrangian problem (Li\) with W minimaL In the same fashion, 
the schedule orax is defined as the optimal schedule for the Lagrangian problem 
(Li\) with W maxima!, for À = 0, ... , n. We define wrn and Wfax as the amount 
of work processed before time d in orn and orax, respectively. Straightforward 
calculations show that orn remaiDs optimal if the Lagrangian multiplier is 
increased by E, with 0 ~ E ~ 1; hence, we have that orn ÎS identical to ar.f\ and 
Wfin Wf~x1 • This implies that L(À) is a piecewise-linear and concave function 
of À. The breakpoints correspond to the integral values À I, ... , n, and the gra
dient of the function between the integral breakpoints À and À+ 1 is equal to 
wrn d, for À = 0, ... , n - I. The Lagrangian dual problem is therefore solved 
by putting À* equal to the index À for which ~ > d ;;:. wrn. Due to the index
ing of the jobs, the theorem follows. 0 

Let o* be an optimal schedule for the Lagrangian dual problem. If À* 0, then 
a* ognn is feasible for the original problem, and hence optimal. Note that this 
also implies that d ;;:. p 1 + p 3 + ··· + Pn if n is odd, and d ;;:. p 1 + p 3 + ... + Pn - 1 
if n is even. This agrees with the observation by Bagchi et al. (1987) that the 
schedules (J 1 , J 3, ... , Jn, Jn -I , ... ,J 2) and (J 1 , J 3, ... Jn 1 , Jn, . .. ,J 2) are 
optimal under the respective conditions. 

In the remainder, we assume that À* ;;:. I. Depending on whether n - À* is odd 
or even, o* has the following structure. First, suppose n - À* is odd. Then the 
jobs J 1, ••• ,J i\* - 1 occupy the last À* -1 positions in a*, the pair {J i\*,J i\*+ 1} 

accupies the first early position and the À *th tardy position, the pair 
{h•+2,h·+3 } occupies the secoud early position and the (À*+ l)th tardy posi
tion, and so on. Finally, the pair {Jn 1,Jn} occupies the positions around the due 
date. Second, if n - À* is even, then o* has the same structure, except that Jn is 
positioned between Jn- 2 and Jn-I> and is started somewhere in the interval 
(d- Pn 'd]. 
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PROPOSITION l. IJ there exists a schedule a* that is optima! for the Lagrangion dual 
problem in which the jirst job is started at time zero, then the Lagrangian lower 
bound L(A *)is light and a* is an optima[ schedule for the original problem. 

PROOF. 

L(A*) 
In 

"'E(E; + T1) + l\*(W 
this 
d) 

we have 
f(a*). D 

If no such schedule o* exists, then there is a gap between the optimal value for the 
original problem and the Lagrangian lower bound. We get a better lower bound, 
however, by solving the modified Lagrangian problem, which is to find a schedule 
that minimizes 

n 

2: IC; dl +A*(W d)+ lW-dj. 
j 1 

Clearly, the modified Lagrangian problem yields a lower bound for the original 
problem for any À* ;., 1. 

THEOREM 5. The modified Lagrangian problem is solved by a schedule from among 
the optima[ schedules for the Lagrangian dual problem that has minimal I W d I· 

PROOF. Suppose that '1T is a schedule that bas minimal Lagrangian oost from 
among the optimal schedules for the modified Lagrangian problem; suppose 
further that '1T is not optimal for the Lagrangian dual problem. Then either the 
jobs are not assigned to the optimal set of positions, or that there are at least two 
jobs J1 and J1 with p; >Pi that are not optimally assigned. As to the first case, 
assigning J1 to a position with smaller weight decreases the Langrangian cost by 
at least p1, while I W- dI is increased by at most p1• As to the secoud case, the 
interchange of J1 and J1 decreases the Lagrangian oost by at least p1 - p1, while 
I W- d I is increased by at most p1 -Pi· Therefore, in both cases 7T is easily 
transformed into a schedule 7i that is also optimal for the modified Lagrangian 
problem but that bas smaller Lagrangian cost than 'lT. This contradiets the 
assumption that '1T bas minimal Lagrangian cost. Hence, 7T must be also optimal 
for the Lagrangian dual problem. D 

The problem of minimizing I W - d I is transformed into a considerably smaller 
instanee of subset-surn in the following way. Renurnher the jobs such that 
h-t-'-À* becomes h for k 1, ... ,n -)\* + 1; n becomes equal ton-)\*+ 1; 
the jobs previously denoted by J 1, ••• ,J À* _ 1 are now simply referred to as the 
'remaining' jobs. Hence, the jobs { J 2k _ 1 ,J 2k} form a pair in the Lagrangian dual 
for k = 1, ... ,I, with I l, ... , Ln!2J. Define a1 as the difference in processing 
time between the jobs of the jth pair (j = 1, ... , /), and define D = d - ~n. 
Remave the values ai that are zero; suppose that m of them remain. Define ét as 
the multiset oontaining the m remaining a;-values; let au1 denote the jth largest 
element in ét. 

If n is even, then the problem of minimizing I W- d I is equivalent to deter
mining a subset A ç ét, whose sum is as close to D as possible. If n is odd, then an 
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optima! schedule for the Lagrangian dual problem is optimal for the original 
problem in case W E [d Pn, d]. Finding such a schedule is equivalent to deter
mining a subset A ç ft whose sum falls in the interval [ D - Pm D ]. If no such sub
set exists, then the goal is to find a subset A whose sum is as close as possible to 
either D- Pn or D. Thls problem, known as the optimization version of SUBSET

SUM, is q)L'?f-hard in the ordinary sense (Garey and Johnson, 1979). 
The instanee of subset-surn can then be solved to optimality by dynamic pro

gramming requiring O(mD) time and space. Note that D ~ 2.a1 ~pmax; hence, 
the subset-surn problem is of a smaller dimension than the underlying common 
due date problem. 

4. A NBW UPPER BOUND FOR THE RESTRICTED VARIANT 

Consider an optimal schedule for the Lagrangian dual problem. If W ~ d, then it 
is also a feasible schedule for the common due date problem; if W > d, then we 
defer the schedule to make it feasiblè. The analysis in the previous section sug
gests that we should look for an optimal schedule for the Lagrangian dual prob
lem with I W - d I minimaL However, only if W = d, then we have a 
guaranteedly optimal schedule for the common due date problem. 

We develop an approximation algorithm for the common due date problem 
based upon Johuson's approximation algorithm (Johnson, 1974) for subset-sum, 
whicb runs in 0 ( m) time. 

JOHNSON'S ALGORITHM 

Step 1. ée = 0 ; j <c- 1. 
Step2. If au1 ~ D, thenée<c-ée u {au1} and D <c-D- auJ· 
Step 3.j <c- j + 1; ifj ~ m, then go to Step 1. 

Using an approximation algorithm for subset-surn rather than an optimization 
algorithm doesnotaffect the worst-case behavior; see Section 5. As to the empiri
ca! behavior, our computational results suggest that the lossin accuracy, if any, is 
small. 

Furthermore, we can identify a class of instances for which Johnson's algorithm 
always finds a solution value equal to the target sum D. Thls class comprises the 
instauces possessing the so-called divisibility property; this class is important in 
our application, as many instauces can be expected to belong to it. 

DEFINITION. A multiset ofvalues {a 1, ... , am }, with 1 =a 1 ~ a 2 ~ ··· ~ am is said 
to possess the divisibility property if Jor every j (j = 1, ... , m) and Jor every value 
DE {1,2, ... , 2.{= 1 a1} there exists a subset A Ç {a I> ..• ,a1 }, whose sum is equal to 
D. 

THEOREM 6. A multiset of values {ah . .. , am }, with I =a 1 ~ az ~ ··· ~ am 
possesses the divisibility property if and only if a1 + 1 ~ 2.1 1 a1 + 1, for 
j = 1, ... ,n -1. D 
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THEOREM 7. IJ an instanee of subset-surn satisfies the divisibility property, then 
Johnson's algorithm finds a subset with sum equal toD. D 

In our application, each aj is equal to the difference in processing times between 
two successive jobs in the shortest processing time order. If the number of jobs 
with different processing times is not too smalt, then the values aj tend to be 
smalt. This intuitive reasoning suggests that many instances possess the divisibil
ity property. 

Johnson's algorithm always yields a subset with sum no more than D. This handi
~p is overcome by applying the algorithm also to the target sum 
D = "'BJ' 1 aj- D and taking the complement of the resulting subset with respect 
to ct. We use the subscripts I and 2 to distinguish the approximation from below 
and from above: A 1 and D 1 denote the resulting subset and the gap for the 
approximation from below, and A 2 and D 2 denote the resulting subset and the 
gap for the approximation from above. 

If both D 1 > 0 and D 2 > 0, then we apply the next algorithm to derive feasible 
schedules for the common due date problem from the subsets A 1 and A 2• 

ALGORITHM TRANSFORM 

Step I. Consider A 1. Starting with o~n, interchange the jobs that correspond to 
aj E A 1 for j = 1, ... , m, thereby increasing W by aj per interchange. 
De termine the schedule corresponding toA 2 in a similar fashion, starting 
from o~t"ax. Let the resulting schedules be 111 and 112. 

Step 2. The schedule o1 is started at time D 1• Shift the schedule to the left until the 
first job is started at time 0 or the number of jobs completed before or at 
d exceeds the number of jobs completed after d by two. Rearrange the 
jobs to make the schedule V-shaped again. The resulting schedule is 
denoted by <71• 

Step 3. The schedule o2 is started at time - D 2. Defer the schedule such that the 
first job is started at time zero, and rearrange the jobs to make the 
schedule V-shaped again; this schedule is denoted as <J~. If some h is 
scheduled around d, then defer (J~ until h is started exactly at d. Rear
range the jobs to make the schedule V-shaped; let the resulting schedule 
beo2. 

We now presentour approximation algorithm for the common due date problem; 
in the remainder, we refer to it as the Even-Odd Heuristic. 

EVEN-ÛDD REURISTIC 

Step 0. Given an instanee of the common due date problem, solve the Lagrangian 
dual problem, and apply Johuson's algorithm to the corresponding 
instanee of subset-sum. 

Step 1. If D 1 ~ D 2 , then apply Algorithm Transform; go to Step 5. 
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Step 2. Let Q = { aj I aj ;;;;;. D 1 }. If Q =i={ a 1 }, then apply Algorithm Transform, 
and go to Step 5. 

Step 3. If pI > d, then apply Algorithm Transform to determine a~ 0 Furthermore, 
solve the Lagrangian dual problem under the condition that J 1 and all 
the 'remaining' jobs occupy the last positions; go to Step 5. 

Step 4. Solve the Lagrangian dual problem under the condition that J 1 and the 
'remaining' jobs are assigned to positions after d, and solve the Lagran
gian dual problem with J 1 assigned to a position before d. Apply 
Johnson's algorithm and Algorithm Transform to all these solutions. 

Step 5. Choose a schedule with minimal cost. 

5. WORST-CASEBEHAVlOR 
For any instanee I of the common due date problem, let EOH (I) denote the solu
tion value determined by the Even-Odd Heuristic, and let OPT(I) denote the 
optima! solution value. We define p as 

p = inh {EOH(I)I OPT(I)}. 

In this section, we prove that p.;;;; 413, that is, that the Even-Odd Reuristic has 
performance guarantee 413. 

Suppose first that Johnson's algorithm does not solve the corresponding 
instanee of subset-surn to optimality, that is, D 1 or D 2 is not minima!. This means 
that we do not know the minimal value of W- d, and therefore cannot use the 
strengthened lower bound in our analysis. 

LEMMA 1. IJ Johnson's algorithm does not solve the resulting instanee of subset-surn 
to optimality, then p .;;;; 8 I 7. 

PROOF. A straightforward analysis shows that, if Johnson's algorithm leaves a gap 
G that is not minima!, then at least 3 a rvalues greater than G have to be involved; 
this means that are at least six jobs with processing times at least equal to 
3G, 2G, 2G, G, G, and 0, respectively. Furthermore, due to the structure of the 
solution of the Lagrangian problem, the À* - 1 'remaining' jobs must have pro
cessing times at least 3G. 

First, assume D 1 .;;;; D 2 . Then we have for any instanee I that 

EOH(I) .;;;j(a1) = L(À*) + À*D 1 .;;;; OPT(I) + À*D 1• 

Inspecting a~ax, we see that L(À *) ;;;;;. D 1 ( 5 + 3À * (À* + 1) I 2). Hence, 
p.;;;; 1 + (2À* 1(10+3À* (À*+ 1))).;;;; 817 for any À*;;;;;. 1. 

Second, assume D 1 > D 2 • If D 1 is not minima!, then we use the above analysis 
and find p .;;;; 8 I 7. If D 1 is minima!, then D 2 is not. Consider an element aj ft. A 2 

and suppose that aj < D 1 + D 2 . This implies that 

D < ~ ak + aj < D + D 1; 
kEA 2 

as a consequence, the sizes of the elements in ét - A 2 - { aj} add up to a value 
between D- D 1 and D, contradicting the minimality of D 1• Hence, 
aj ;;;;;. D 1 + D 2 , and the above analysis can be applied to establish p .;;;; 8 I 7. D 
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So, if Johnson's algorithm does not give minimalvalues D 1 and D 2, then we 
surely have p ~ 413. From now on, we assume that D 1 and D 2 are minima!; 
hence, we can now use the strengthened lower bound. 

PROOF. Again, we have that EOH(l) ~ L(À*) + À*D 1. Furthermore, from 
Theorem 5 it follows that OPT(I);;;;. L(À *) + D 1. Every element a1 tlA 1 must 
have si ze a1 ;;;;. D 1 + D 2 ;;;;. 2D 1. Inspeering oK!ax, we see that 
L(À*);;;;. À*(À* -I)D 1; this gives p ~I+ ((À* -1)/(1 +À*(À* -I))):,.;; 4/3 for 
anyÀ;;;;.I. 0 

N ow suppose that D 1 > D 2 • It is easy to show p = 4/3 if there exists an element 
ak ;;;;. D 1 with k ;;;;. 3. If no such element exists, then we consider the costs of all 
schedules determined by Algorithm Transform. To that end, we need an upper 
bound on~ f (02)- f (o2)· 

PROPOSITION 3. Suppose that the first job in G2 has processing time no more than d. 
Then ~ is no more than the sum of the positional costs in a2 of the last k jobs befare d 
and the first k + I jobs after 4 where k is the number of jobs that have been 
transferred from a position befare d to a position after d. 

PROOF. Withoutlossof generality, we assume that nis even; if not, then we add a 
dummy job with zero processing time. For matter of convenience, renurnher the 
jobs temporarily such that J I> ••. ,Jk are the jobs that are transferred from posi
tions before d to positions after d (Jk is completed at time á), and 
J 2h ... ,Jk + 1 ,J 0 are the first k + 1 jobs after d (J 2k is started at time á). Note 
that the jobs 11 and h +i (i = I, ... , k) forma pair in the Lagrangian dual; hence, 
we musthave thatmin{p1 •Pk H};;;;. max{p1 +I •Pk+i+I), for i 1, ... ,k 1. 

Suppose that J 0 accupies position À* + p. in a2 , with p. ;;;;. 0. Twice the positional 
costof the jobs J 0 , .•• ,J 2k in o2 is then equal to 

2((p.+ l)p1 + · · · + (p.+k)Pk +(À* +p.)po +···+(À* +p.+k)P2k);;;;. 

(À* + p.)po +((À*+ p.)po +(À*+ p.+ I)pk 1 + 2pl) + · · · 

+((À* +p.+k -1)p2k-l +(À* +p,+k)p2k +2kPk);;;;. 

(À* +p,)po +(À* +p.+ l)(p1 +pk+l) + min{p1 •Pk 1} +(À* +p,+3)(p2 +p, 

+ min{p2 •Pk+2} +···+(À* +p.+2k -1)(pk+P2k) + min{pbp2k}· 

The last expression is exactly equal to the positional cost due to the jobs 
J 0 , ••• ,J 2k in a2 . 0 

LEMMA 3. Suppose that a 1 and a 2 are the only elements larger than D 1• Then 
p..;;4!3. 
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PRooF. First, suppose that p 1 + p 3 ~ d. Partition the jobs in two subsets: the first 
one is { J 3, ••. ,111 }, the second one consists of J 1 , J 2 , and the 'remaining' jobs. 
As p 1 +p 3 ~ d, it follows immediately from Proposition 3 that for (12 the sum of 
the positional costs of the jobs in {J 3, .•• Jn} is at least equal to .:1. The sum of 
the positional costs of the jobs in the other subset is at least 
(1 +À* 2)D 1 ;;;;;. 2À*D 1• Hence, OPT(l);:;;. 2À*D 1 + .:1, implying thatp ~ 4/3. 

Second, suppose that p 1 + p 3 > d. As a 1 and a 2 are the only two elements 
greater than DI> it follows immediately that D 1 d - p 1 - p 4 - p 5 - ••• if 
a1;:;;. az, and that D1 = d-p2 -p3 -ps··· otherwise; Dz 1 +p3+p6 +···-d. 
An easy interchange argument, validated by the inequality D 1 > D 2, proves that 
J 1, J 3, 111 , Jn -I, · · ·is an optima! schedule for the case that J 1 and J 3 are started 
before time d. Hence, we are done unless J 1 or J 3 is started at or after time d in 
any optima! schedule. In this case, however, we impose the additional constraint 
to the common due date problem that J 1 or J 3 is started at or af ter time d. Con
sider the modified Lagrangian problem with such an additional constraint. Along 
the lines of the proof of Theorem 5, we can show that this problem is solved by an 
optimal schedule for the Lagrangian dual problem with J 1 or J 3 scheduled after d 
for which I W- d I is minimal; this is exactly the schedule a1• We have therefore 
that OPT(J);;;;.L(À*)+D 1 ;:;;.(À* 2 +2)D 1• As EOH(l)~L(À*)+À*D~> we 
obtainp~ l+((À* -l)/(À* 2 +2))<413. 0 

The analysis of the case that a 2 is the only element greater than D 1 proceeds 
along the same lines. 

LEMMA 4. Suppose D 1 > D 2, a 1 is the only element greater than D h and p 1 > d. 
ThenEOH(I) = OPT(l). 

PROOF. An easy interchange argument, validated by the inequality D 1 > D 2, 

proves that in any optima! schedule J 1 is either started at time 0 or scheduled 
immediately before the 'remaining' jobs. The inequality D 1 > D 2 also implies 
that Emmons's matching algorithm determines a feasible and hence optima! 
schedule for the case that J 1 and the 'remaining' jobs are started at or after d. 0 

If p 1 ~ d, then we solve both the Lagrangian dual problem with the additional 
constraint that J 1 and all 'remaining' jobs are scheduled after d and the Lagran
gian dual problem with the additional constraint that J 1 is scheduled before d. 

LEMMA 5. Suppose that D 1 > Dz, that a 1 is the only element greater than DI> and 
that p 1 ~ d. Then we have p ~ 4/3. 

PROOF. First, suppose that there is an optima! schedule in which J 1 and the 
'remaining' jobs are started at or after d. Suppose that solving the Lagrangian 
dual problem under th~ co!!_dition that J 1_and all 'remaining' jobs are assigned to 
positions af~r d gives À*, D 1 and D 2 . lf À* = 0, then we .!!_ave found an optima! 
schedule. If À* ;:;;. 1, then the schedule that corresponds to D 2 must begin with J 2 , 

J 3 , and J 4 ; if not, then Wnot sum up tod+ D 2 • Hence, we have a1 ;;;;.p4 • This 
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- -
giv~s EQH(I) ~ L(À*) + À*D" OPT(I) ;a;. L(À*), and 
L(À*) ;a;. (3 +((À*+ l)(À* +2)/2)D" from which p ";;; 4/3 follows. 

Second, suppose there is an optimal schedule in which J 1 or some 'remaining' 
job is not started after d. The optimal solution for the Lagrangian dual problem 
with the additional eenstraint that J 1 or some 'remaining' job is not started after 
d is such that J 1 is started before d and all the 'remaining' jobs after d; this is 
easily proven h.J ~ interch~ge argument. Suppose that solving this Lagrang!!m 
proble_!ll gives À*, D" and D 2• Consider the schedule cr that corresponds to D 2• 

Since ~* ;a;. À*+ 1, the firsUob af_!er J 1 musthesome h with k ;a;. 4; hence, we 
have Q1 o;;;p 4 • The case D 1 .;;; D 2 is easy to handle; assume therefore that 
D 1 > D 2.AlongthelinesofLemma3, it canthen he proven thatp~ 4/3. 0 

THEOREM 8. The Even-Odd Beuristic has performance guarantee 413, and this 
bound can be approximated arbitrarily close. 

PROOF. The first part follows immediately from the Lemmas 1 to 5. The following 
example, based upon the case that only a 2 > D 1, shows that we can get arbi
trarily close to this bound. Let D he an arbitrary positive integer. There are 
n = 2D + 6 jobs { J 1, ... , J n} with processing times 

PI= Pz = P3 = Dz + 2D, 

P4 =ps =p6 =D, 

P6+i = 1 for i 1, ... ,2D, 

and with common due date 

d 2D2 + 5D. 

The Even-Odd Henristic gives the schedulesJ 1 ,J 4 ,J 5 ,J 7, ... .Jn ,J 6 ,J 3 ,J 2 with 
J 1 started at time D 2

, and J 1 ,J 3 ,J 5 ,J 7, ..• .Jn ,J 6 ,J 4 ,J 2 with J 1 started at 
time zero. Both schedules have cost 4D 2 + 18D. The optima! schedule 
J 1 ,J 3 ,J 7, •.• .Jn ,J 6 ,J 5 ,J 4 ,J 2• has cost 3D2 + 19D, however. Hence, we get 
arbitrarily close to 4 I 3 by choosiug D sufficiently large. 0 

6. BRANCH-AND-BOUND 

First, we solve the Lagrangian dual problem. If À* = 0, then cr* = a/fin is an 
optimal solution for the common due date problem, and we are done. Otherwise, 
we determine upper bounds as described in Section 4; we also apply the beuristic 
presented by Sundararaghavan and Ahmed. If the lower and the best upper 
bound do not concur, then we solve the subset-surn problem to optimality by 
dynamic programming. If the bounds still do not concur, then we apply branch
and-bound. 

For the design of the search tree we make use of the V-shapedness of optimal 
schedules. Assume the jobs have been reindexed in order of nonincreasing pro
cessing times. A node at level j (j = 1, ... , n) of the search tree corresponds to a 
partial schedule in which the completion times of the jobs J 1, .•• ,J1 are fixed. 
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Each node at level j has at most (n- j) descendants. In the kth (k 1, ... , n-j) 
descendant, J k is started before d and the jobs Jj +I> .•. , Jj +k 1 are to be com
pleted after d. Given the partial schedule for J 1, ••• ,Jj, a partial schedule for 
J 1, ... , Jj + k can easily be computed. 

The algorithm that we propose is of the 'depth-first' type. We employ an active 
node search: at each level we choose one node to branch from. We consistently 
choose the node, whose job has the smallest remaining index. A simple but power
ful rule to restriet the growth of the search tree is the following. A node at level j 
(j = 1, ... ,n) corresponding tosome Jk can be discarded if another node at the 
samelevel corresponding tosome J1 with Pk = p1 has already been considered. 
This rule obviously avoids duplication of schedules. 

Inthenodes of the tree, we only compute the lower bound L(i\*); we neither 
solve the modified Lagrangian dual problem nor compute additional upper 
bounds. 

7. COMPUTATIONAL RESULTS 

The processing times were drawn from the uniform distribution [1, 100]. Compu
tational experiments were performed with d = lt2:pjJ for t 0.1, 0.2, 0.3, 0.4, 
respectively, and with the number of jobs ranging from 10 to 1000. Por each com
bination of n and t we generated 100 instances. The algorithm was coded in the 
computer language C; the experiments were conducted on a Compaq-386 per
sonal computer. 

The results are shown in Table 1; its design reflects our three-phase approach. 
The third column'# O(nlogn)' shows the number of times (out of 100) that the 
Even-Odd Beuristic finds a schedule with oost equal to the Lagrangian lower 
bound L(À *); this is the number of times that the common due date problem was 
provably solved to optimality in O(nlogn) time. The fourth column '# DP' 
shows how many of the remaining instances were provably solved to optimality 
by dynamic programming applied to subset-sum. The fifth column '# Even-Odd 
optimal' shows the number of times that the Even-Odd Beuristic found an 
optimal schedule. The sixth column '# SA optimal' gives the same information 
for the approximation algorithm presented by Sundararaghavan and Ahmed. The 
last column '# LB tight' shows the number of times that the lower bound 
(strengthened or not) was equal to the optimal solution value. 

From these results we may draw the condusion that the common due date 
problem for randomly generated problem instances is extremely easy to solve 
from a practical point of view. If n ;;;;,40, then the O(nlogn) algorithm solves all 
randomly generated instances to optimality; for n ;;;;;, 30, dynamic programming 
applied to subset-sum suffices to solve the remaining instances; for n ~ 20, 
branch-and-bound is occasionally needed, but requires only a very small number 
of nodes, and always less than 1 second of running time. 
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n t #O(nlogn) #DP #Even-Odd #SA #LB 
optimal optimal tight 

10 0.1 66 20 72 77 86 
10 0.2 69 20 72 58 89 
10 0.3 68 23 68 59 93 
10 0.4 82 1 85 62 85 
20 0.1 81 12 84 51 94 
20 0.2 94 5 94 43 99 
20 0.3 99 0 100 42 99 
20 0.4 99 1 99 35 100 

30 0.1 100 0 100 50 100 
30 0.2 98 2 98 51 100 
30 0.3 100 0 100 57 100 
30 0.4 100 0 100 68 100 

40 0.1 100 0 100 63 100 
40 0.2 100 0 100 64 100 
40 0.3 100 0 100 63 100 
40 0.4 100 0 100 54 100 

50 0.1 100 0 100 72 100 
50 0.2 100 0 100 63 100 
50 0.3 100 0 100 69 100 
50 0.4 100 0 100 75 100 

100 0;1 100 0 100 81 100 
100 0.2 100 0 100 86 100 
100 0.3 100 0 100 78 100 
100 0.4 100 0 100 78 100 

TABLE 1. Computational results. 

8. ExTENSIONS 
The lower bound approach can he extended to the restricted variant of each prob
lem that is solvable by Emmons's matching algorithm. The most important prob
lem in this context is the I I d1 = d I ~( aE1 + {3T1 ) problem. 

Without 1oss of generality, we assume that a and f3 are integral and relatively 
prime. A similar analysis shows that the optimal value À* is the value 
À* E {1, ... ,n/3} for which wr.ax;;;;. d > fliTin. Furthermore, Theorem 5 still 
holds. 

It is straightforward to develop a beuristic for the common due date problem 
with a =1=/3 by applying Johuson's algorithm and Algorithm Transform; its 
worst-case performance, however, is still an open question. 
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The just-in-time concept decrees not to accept ordered goods before 
their due dates in order to avoid inventory cast. This bounces the inven
tory cost back to the manufacturer: products that are completed before 
their due dates have to be stored. Reducing this type of starage cost by 
preelusion of early completion conflicts with the traditional policy of keep
ing work-in-process inventories down. This paper addresses a single
machine scheduling problem with the objective of minimizing total inven
tory cost, comprising cost associated with work-in-process inventories 
and starage cast as aresult of early completion. The cast components 
are measured by the sum of the job completion times and the sum of the 
job earlinesses. This problem differs trom more traditional scheduling 
problems, si nee the insartion of machine idle time may reduce total cost. 
The search for an optima! schedule, however, can be limited to thesetof 
job sequences, since for any sequence there is a clear-cut way to insert 
machine idle time in order to minimize total inventory cost. We apply 
branch-and-bound to identify an optima! schedule. We present five 
approaches for lower bound calculation, based upon relaxation of the 
objective tunetion, of the state space, and u pon Lagrangian relaxation. 

1980 Mathernaties Subject Classification (1985): 90835. 
Key Words and Phrases: just-in-time manufacturing, inventory cost, 
work-in-process inventory, earliness, tardiness, machine idle time, 
branch-and-bound algorithm, Lagrangian relaxation. 

1. INTRODUCTION 

The just-in-time concept has affected the attitude towards inventories signifi
cantly. In order to keep inventories down, there is a reluctance to accept ordered 
goods prior to their due dates. This implies that manufacturers have to store early 
completed goods befare they can be shipped to their destinations. This has added 
a relatively new aspect to machine scheduling theory: the preelusion of earliness. 
In principle, earliness can be avoided by allowing machine idle time, thereby 
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deferringjobs. Machine idleness, however, runs counter to the natural instinct to 
minimize work-in-process inventories, to maximize machine utilization, and to 
observe due dates. 

Within this context, we address the following situation. A set;}= {J 1, ..• ,Jn} 
of n independent jobs has to be scheduled on a single machine, which is continu
ously available from time zero onwards. The machine can handle at most one job 
at a time. Job Jj (j = I, ... , n) requires a positive integral uninterrupted process
ing time pj and should ideally be completed exactly on its due date dj. A schedule 
specifies for each job Jj a completion time Cj such that the jobs do notoverlap in 
their execution. The order in which the machine processes the jobs is called the job 
sequence. For a given schedule, the earliness of Jj is defined as 
Ej = max{O, dj-Cj} and its tardiness as 1j = max{O, Cj-dj}· In addition, we 
define maximum earliness as Emax = max1,.-;;j,.-;;n Ej and maximum tardiness as 
T max = maxl..-;;j,.-;;n Tj. Accordingly, 11 is called early, just-in-time, or tardy if 
Cj <dj, Cj=dj, or Cj >dj, respectively. 

In this paper, we follow the terminology of Graham, Lawler, Lens tra, and Rin
nooy Kan (1979) to classify scheduling problems. Deterministic scheduling prob
lems are classified according toa three-field notation a I fj I y, where a specifies the 
machine environment, fj the job characteristics, and y the objective function. For 
instance, a = 1 refers to a single machine, fj = pmtn signifies that the jobs may be 
preempted, that is, the processing of a job may be interrupted and resumed later, 
and y = ~Cj means that the objective is to minimize the sum of the job comple
tion times. Since earliness is nonincreasing in the job completion times, it may 
generally be advantageous to permit machine idle time. The inclusion of the acro
nym nmit in the second field signifies that no machine idle time is allowed. 

Three types of single-machine scheduling problems invalvingjob earliness have 
been considered in the literature. The best-known is the minimization of Emax· If 
machine idle time is not allowed, then the problem is solved by scheduling the 
jobs in nondecreasing order of dj-pj; this is known as the minimum slack time 
order. If machine idle time is permitted, then the problem is trivial: for any given 
sequence, we defer the jobs until all are just-in-time or tardy. This approach also 
applies to Ij I ~Ej, but, surprisingly, lj nmit I ~Ej is ~C?J>-hard in the ordinary 
sense (Du and Leung, 1990). The third problem is to maximize ~wjEj, where wj is 
the weight of job Jj, denoted as Ij I ~wjEj; this problem is solvable in pseudo
polynomial time by an algorithm due to Lawler and Moore (1969). 

The combination of earliness with another performance measure, reflecting 
other considerations, takesus into the arena of bicriteria scheduling. The state of 
the art, as far as a measure of earliness is concerned, is as follows. For the 
1 lpmtn, nmit I a~Cj + fiEmax problem, Hoogeveen and Van de Velde (1990) 
present an algorithm that runs in O(n 4) time. They show that the same algorithm 
also solves 1 I I a~Cj +{JE max in case a ? fj. Hoogeveen (1990) presents algo
rithms that solve 11 I aEmax +fiT max and 11 nmit I F(Emax,T max) in O(n 2logn) 
and O(n 2) time; Fishere an arbitrary nondecreasingfunction of Emax and T max· 

For the 11 nmit I ~(ajEj + {JT1) problem, Ow and Morton (1989) propose alocal 
search metbod to generate approximate solutions. A voluminous part of research 
is concerned with common due date scheduling. Here, we have dj = d 
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(j = 1, ... , n); the objective is to minimize some function of earliness and tardi
ness. A survey of problems, algorithms, and computational complexity is pro
vided by Baker and Scudder(l990). 

In this paper, we consider the problem of minimizing total inventory cost, 
which is supposed to comprise two components: cost due to work-in-process 
inventory and storage cost as a result of early completions. These components are 
assumed to depend linearly on the sum of job completion times and the sum of 
job earliness. If we let a and fJ denote the cost per unit time for work-in-process 
inventory and storage of finished product, respectively, then the total inventory 
cost fora given schedule o is 

n n 

f(o) =a~ c1 + fJ ~ Ef 
j=! j=! 

Withoutlossof generality, we assume a and fJ to be integral, positive, and rela
tively prime. Since we have by defmition that Ej = T1 - c1 + dj for j = 1, ... , n, 
the objective function can alternatively be written as 

n n 

(a- fJ) ~ c1 + fJ ~ (T1 +dj)· 
j=l j=! 

If a ;;;;a-: fJ, then this a regular objective function, and hence there is an optimal 
schedule without machine idle time. The case a = fJ reduces to 11 jl: ~' which is 
':i:JU!.P-hard in the ordinary sense (Du and Leung, 1990). Garey, Tarjan, and Wilfong 
(1988) prove that the case a< fJ is ':iJL~-hard, too. We note that the case fJ >na 
reduces to 11 rj I.Z c1, which is also ':iJL~-hard in the strong sense (Lenstra, Rin
nooy Kan, and Brucker, 1977). 

We address the case fJ ;;;;a-: a, in which the insertion of machine idle time may be 
advantageous. Our purpose is to find a feasible schedule o that minimizes f ( o). 
This problem was introduced by Fry and Keong Leong (1987 A), who formulate it 
as an integer linear program. They used a standard code to find an optimal 
schedule. Not surprisingly, the proposed metbod solves problems up to 12 jobs 
only. 

The search for an optimal schedule, however, can be reduced to a search over 
the n ! different job sequences, as there is a clear-cut metbod to insert machine idle 
time to minimize total cost for a given sequence. This method, which requires 
0 ( n 2) time, is described in Section 2. 

The freedom to leave the machine idle singles out our problem from most con
current research on scheduling problems with earliness penalties. To our 
knowledge, this is the first paper that presents a branch-and-bound algorithm for 
a single-machine scheduling problem with a nonregular objective function, where 
insertion of machine idle time is allowed. Machine idle time affects the design of a 
branch-and-bound algorithm significantly. In Section 3, we discuss some com
ponents of the algorithm such as the upper bound, the branching rule, the search 
strategy, and the dominanee rules. Lower bounds are presented in Section 4. The 
range of the due dates in proportion to the processing times mainly dictates when 
the first job is started and how much machine idle time is inserted between the 
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execution of the jobs. To cope with the variety of due date pattems, we propose 
five approaches for lower bound computation. Each of these methods seems to be 
suitable for a certain class of instances. Some computational results are reported 
inSection 5; conclusions are presented inSection 6. 

2. THE INSERTION OF IDLE TIME FOR A GIVEN SEQUENCE 

The search for an optima! schedule can be reduced to a search over the n ! dif
ferent job sequences, as there is a clear-cut procedure to insert machine idle time 
so as to minimize total cost fora given sequence. 

This procedure, however, is not new. Similar methods have been presented (cf. 
Baker and Scudder, 1990), including the ones proposed by Fry and Keong Leong 
(1987B) for the Ill~(aC1 +,8E1 +y1j) problem and by Garey, Tarjan, and Wil
fong (1988) for the 111 ~(E1 + T1) problem. This is not surprising: as we have 
already noted, T1 = c1 + E1 - d1 for all j; for specific choices for a and ,8, our 
problem is equivalent with theirs. 
_ Suppose that the scheduling order is a= (Jn, ... ,J I). Accordingly, 
e1 = ~%=JPk is the earliest possible completion time of J1 in this sequence. We 
introduce a vector x = (x 1, ••• , Xn) of variables, with x1 (j = 1, ... , n) denoting 
the amount of idle time immedi~tely before the execution of J1. The actual com
pletion time of Jj is then ej =ei+ ~k =jxk. The problem of minimizing inven
tory cost for the given job sequence is then equivalent to determining valnes 
x1 (j = 1, ... , n) that minimize 

n _ n n _ n 

a~ (e1 + ~ xk) + {3 ~ max(O, d1-e1- ~ xk) 
j I k=j j=I k=j 

subject to 

forj = 1, ... ,n. 

By the introduetion of auxiliary variables E1 denoting the earliness of J1 
(j = 1, ... , n ), we can easily transform this problem into a linear programming 
problem. We know therefore that the optimum is attained in a vertex of the 
unspecified LP polytope. In addition, we know that the optima! x1 are integral, 
since the due dates, the processing times, a, and ,8 are integral. A necessary condi
tion for x to he optima! is that all existingprimitive directional derivatives at x are 
non-negative. The primitive directional deratives are equal to the change of the 
scheduling oost if x1 is increased by one unit, and the change of the scheduling 
cost if x1 is decreased by one unit, for j 1, ... , n. The increase of x1 by one unit 
only affects J1 and the jobs succeeding J1 up to the fust period of machine idle 
time after J1. We call these jobs the immediate successors of J1. Let Q1 denote the 
set containing J1 and its immediate successors, let n1 be the number of early jobs 
in Q1, and let g1 be the primitive directional derivative for increasing x1. We have 
then that g1 = a I Q1 I - {3 n1. Reeall that each J1 is ideally completed on its due 
dated1. 

Using the above observations, we develop an inductive procedure for finding 
an optimal schedule for a. This procedure finds an optima! schedule for the 
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subsequence (h ... ,J 1 ), given an optima! schedule for the subsequence 
(J1_ b ... ,J 1 ), for l = 2, ... , n. The first:step is to find out whether putting 
C1 = d1 is feasible; if so, then we have an optima! schedule for (It, ... ,J 1 ). Sup
pose C1 = d1 is not feasible, because J1 overlaps with some other job. We then ten
tatively put C1 = C1_ 1 - p1_ 1, and compute the optimal deferral of the jobs in Q1, 

disregarding the jobs not in Q1• The optimal deferral, denoted by 8, is dictated by 
the first point where g1 becomes non-negative. This deferral is feasible if 8 is no 
larger than the length of the period of idle time immediately after the last job in 
Q1; let this length be 8max· If 8 :s;;; 8max• then we get an optima! schedule for 
(h ... ,J 1) by deferring the jobs in Q1 by 8. If 8 > 8mm then we defer the jobs in 
Q1 by 8max· At this point, we repeat the process for J1: we update Q1, and evaluate 
if additional deferral of the jobs in Q1 is advantageous. We now give a step-wise 
description of the idle time insertion algorithm. 

IDLE TIME INSERTION ALGORITHM 

Step 0. C 1 ~ d 1; l ~ 2. 
Step 1. If l = n + 1, go to Step 9. 
Step 2. Put C1 ~min{d1,C1 _ 1 -p1_ 1 }. If C1 = d1, thengo to Step 8. 
Step 3. Determine Q1 and evaluate g1• If g1 ;;;;. 0, then go to Step 8. 
Step 4. Compute E1 for each job J1 E Q1• 

Step 5. Compute 8max• i.e., the lengthof the period of idle time immediately after 
the last job in Q1• 

Step 6. Let a ~ l ( I Q1 1 )a I ,8 J , and k ~ I Q1 I -a. Determine the kth smallest 
value of the earlinesses of the jobs in Q1; this value is denoted as E[kJ· If the jobs 
in Q1 are deferred by 8 = E[kJ• then at most a jobs in Q1 remain early; due to the 
choice of a, g1 then becomes non-negative. 

Step 7. Defer the jobs in Q1 by ~=min{ 8,8max}· If 8 > 8max• then go to Step 3. 
Step 8. l ~ l + 1; go to Step 1. 
Step 9. An optima! schedule for the sequence (Jn, . .. ,J 1) has been determined. 

THEOREM 1. The idle time inserfion algorithm generat es an optima! schedule for a 
given sequence. 

PROOF. The proof proceeds by induction. The algorithm clearly produces the 
optimal schedule in case of a single job. Suppose that we want to find an optima! 
schedule for the sequence (h ... ,J 1), having an optimal schedule for the 
sequence (J1_ b ... ,J 1) available. There are two cases to consider. First, suppose 
d1 :s;;; C1_ 1 - Pt-l; in this case, we let C1 = d1, and retain the completion times of 
the other jobs; this specifies an optima! schedule for the sequence (h ... ,J 1). 

Suppose now d1 > C1- p1; for this case, deferring J1_ 1 and thereby its immedia te 
successors, i.e., the jobs contained in the set Q1_ 1, may be advantageous. We can 
compute the cost of defening Q1_ 1 by one unit; the benefit of deferring J1 by one 
unit is equal to ,8-a. If the oost is higher than or equal to the benefit, then we put 
C1 = C1_ 1 - Pt- b and we have an optima! schedulefor (It, ... ,J 1 ); otherwise, we 
defer the jobs in Q1_ 1 by one unit, and evaluate whether additional deferral is 
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advantageous. The idle time insertion algorithm shortcuts this procedure by com
puting the break-even point, that is, the point where additional deferral is not 
advantageous. 0 

Consider the example for which the data are given in Table 1. Let a. = 1 and 
f3 = 4. We construct the optimal schedule for the sequence (J 3 ,J 2 ,J 1 ). First, we 
put C1 = d, = 15. Next, we let C2 = d2 10, as d2 E;;; Cl-PI· Note that 
d 3 > C 2 - p 2 . Therefore, we tentatively put C 3 C 2 - p 2 = 7, and consider 
deferring J 3 and J 2 . Apparently, we have Q 3 = {J 3 ,J 2 }, n 3 = I, 
g3 2a.-f3<0, and Er21 3. However, 8max = C 1-p 1 C2 = 2, therefore, we 
defer J 2 and J 3 by 2 units. At this point, the three jobs are processed consecu
tively. N ow we have g 3 3a.- {3, and additional deferral is still advantageous. As 
E r31 = I, we insert one more unit of machine idle time. The optimal schedule for 
each subproblem is depicted in Figure I. 

JJ PJ dJ 
J, 3 15 
J2 3 10 
J3 6 10 

T ABLE 1. Data for the example. 

j 

0 2 4 6 8 10 12 14 16 18 

FIGURE 1. Schedules for the example. 

The algorithm runs in O(n2
) time. A complete run through the main part of the 

algorithm, i.e., steps 2 through 8, takes 0 (n) time: this is needed to identify the set 
Q1, to compute the primitive directional derivative g1, the valnes 8max and 8, and 
to defer the jobs, if necessary. The value 8 is deterrnined in O(n) time through a 
median-finding technique; see Abo, Hopcroft, and Ullman (1982). Aftereach run 
through the main part of the algorithm, a gap between two successive jobs is 
closed. As at mostn -2 such gaps exist, the algorithmruns in O(n 2

) time. For the 
case 2a. = /3, i.e., for the problem lil ~(E1 + Tj), Garey, Tarjan, and Wilfong 
(1988) show that the idle time insertion procedure can be implemented to run in 
O(niogn) time. 

The problem of inserting machine idle time can also be solved by a symmetrie 
procedure starting with the first job in a. Because of our specific branching rule, 
however, we choose tostart at the end. 

In the remainder, we use the terros sequence and schedule interchangeably. 
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Unless stated otherwise, a also refers to the optima! schedule for the sequence a 
and to thesetof jobs in the sequence a. From now on, we letp (a)= };1j E aPJ· 

3. THE BRANCH-AND-BOUND ALGORITHM 

We adopt a backward sequencing branching rule: a node at levelk of the search 
tree corresponds to a sequence '1T with k jobs fixed in the last k positions. We 
assume from now on that the first job in a partial schedule '1T is not started before 
time p (~-'TT); this additional restriction, imposed to leave space for the remaining 
jobs, is easily incorporated in the i dl~ time insertion algorithm. Let f ( '1T) denote 
the minimal inventory cost for '1T. Let j( 'TT) denote the minimal invento_ry cost for '1T 
if the first job may be started before time p(~-7r); the notation j('TT) is only 
needed in this section. For any partial schedule7T, we have f ('TT);;;;. j('TT). 

We employ a depth-first strategy to explore the tree: at each level, we generate 
the descendant nodes for only one node at a time. At level k, there are n - k des
cendant nodes: one for each unscheduled job. The completion times for the jobs 
in '1T are only temporary. Branching from a node that corresponds to 'TT, we add 
some job J1 leading to the sequence JF. Subsequently, we determine the associ
ated optima! schedule for J17T, and possibly defer some jobs in iT. We branch from 
the nodes in order of non-increasing due dates of the associated jobs. Before 
entering the search tree, we determine an upper bound on the optima! solution 
value. We use the optima! schedule conesponding to the minimum slack time 
sequence as an initial solution, and try to reduce its cost by pairwise adjacent 
interchanges. 

A node is discarded if its associated partial schedule '1T cannot lead to a com
plete schedule with cost less than UB; UB denotes the currently best solution 
value. Let LB(~-7r) besome lower bound on the minimal costof scheduling the 
jobs in the set ~-'TT. Obviously, we discard a node ifj(7r)+ LB(~-'1T);;;;. UB. The 
following ruleis usually overlooked. Letg(a1,a2) be a lower bound on the cost for 
scheduling the jobs in a1 given the final partial schedule a2 • 

THEO~M 2. The partial schedule '1T can be discarded ifthere exists a J1 E ~-'TT for 
whichf(JF) + g(~-'1T-J1 , 'TT);;;;. UB. 

PROOF. Consider a complete sequence a that has '1T as final subsequence. Thus, a 
can be written as a = '1T1J1'1T2'1T. Accordingly, we have 

j(a) = j('1T1J1'1T2'1T);;;;. j(J1'1T) + g('1T1'1T2,'1T);;;;. UB. 0 

It is_essential that g(~-'1T-J1,'1T) depends only on '1T and not on J17T, and that we 
use f(J1'1T) insteadof f (J17T). We derive two corollaries from Theorem 2. 

foROLLARY 1. IJ for a given partial schedule 'TT, we have that 
j(J1h'1T) + g(~-'1T-J1 -h ,'TT);;;;. UB forsome J1 E ~-'TT and hE ~-'TT, then Jk 
precedes J1 in a~ry complete schedule a'TT with f ( a'TT) < UB. 0 
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CoROLLARY 2. The partial schedule w can be di!_carded i[two jobs J1 E ~-wand 

JkE~-wexistwithg(~-w-J1 -Jhw) + minff(J1Jkw),f(hJ1w)} ~ UB. D 

If a partial schedule w* =F w exists comprising the same jobs as w and having 
f ( aw*) .;:;;; f ( aw) for any sequence a for the remaining n - k jobs, then we can also 
discard w. If j(aw*) <j(aw) for some a, then w is dominaled by w*. If 
j(aw*) = f(mr) for every a, then we discard eitherw* or w. The dominanee condi
tion above can be narrowed by the requirement that f ( w*) .;:;;; f ( w) and that the 
circumstances to add the remaining n - k jobs to w* are at least as good as the cir
cumstanees to add the remainingjobs to w. The question whether such a sequenee 
w* exists is of course 0L0>-complete. We strive therefore to identify sufficient con
ditions to discard w. The temporary nature of the job completion times for w com
plicates the achlevement of this goal. We have to be careful with dominanee con
ditions that are based on interchange arguments: the conditions must remain 
valid if the jobs in w are deferred. 

Soppose that the jobs in w have been reindexed in order of increasing comple
tion times. In each of the following theorems, stating the dominanee rules, the 
sequenee w* is obtained from w by swapping two jobs, say, J1 and h- We do not 
compote the optimal completion times for the sequence w*. Instead, wedetermine 
the job completion times for the sequenee w* as follows. Let Ct and Ct* be the 
completion time of J1 in the schedule w and w*, respectively. Then we let 

for i = 1, ... ,j -1, i k + 1, ... , I w I, 
Ct*= Ct-p1+pk, for i= j + 1, ... ,k 1, 

ck * c1-p1+pk, 

C/ =Ck. 

Let F(w*) be the cost associated with the completion times C1*, for 
i 1, ... , lwj. Hence, F(w*)~j(w*). To validate the following dominanee 
rules, we must verify thatj(w) ~F(w*), even if the jobs are deferred. Due to the 
relation between w and w*, this comes down to verifying that for each set of non
negativevalues~1 (i= 1, ... ,n) 

k k k k 
a~ C1 +{J~ max{O,d1 C1 -~t} ~a~ C1 *+{J~ max{O,d1 -C1('ir~;}. 
i=j i =j i=j i=j 

We start with a straightforward result. 

THEOREM 3. There is an optima/ schedule with J1 preceding h if p1 = Pk and 
d1 .;:;;; dk· D 

THEOREM 4. The parttal sequence w can be discarded if there are two jobs J1 and J k 
with Ck = C1+"2:.f=J+IPJorwhich 

p1 >ph and 
k k k k 

a~ C1 + fJ ~ max{O,d1 -Cila~ C1*+{J ~ max{OA-C1*}. (2) 
i=j i=j+l i=j i=j+l 
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PRooF. Asthere is no idle time between the jobs in the block that begins with Jj 
and ends with h, the idle time insertion algorithm will defer all jobs in this block 
by the same amount of time a. Define c(a) as the change of cost due to the inter
change, after deferring the jobs by a ;;;. 0; i.e., 

k k k k 
c(a) =a~ C1 + ,B~ max{O,d1 C1- a} -a:~ C1*-,B~ max{OA- C1"'- a}. 

i=i i=i t=i i=i 

We prove that c(À);:;;.: 0 for all À;;;. 0. From condition (2), it follows immediately 
that c(O);:;;.: 0. Furthermore, Cj < C/ implies max{O,dj Cj- a};:;;.: 
max{O,dj C/ -.1} for all a;;;.O; Ct> C1* for i= j + 1, ... ,k implies 
max{O,d; -C1-a} -max{O,dt -Ct* -.1};;;. max{O,d1 Ct}- max{O,d1-C1*} 
for all a;;;.o. Combining the inequalities, we get the desired result. 0 

The possible increase of Ej is excluded here. The following theorem shows that in 
case no idle time exists between two adjacent jobs, then dominanee already exists 
if condition ( 1) is satisfied for a = 0. 

THEOREM 5. The partia/ sequence 7T can he discarded if there are two jobs Jj and h 
withek = cj + Pkforwhich 

and 

Pj >pk> 

a(pj- fk) + ,Bmax{O,dj C1} + ,Bmax{O,dk-Ck};:;;.: 

,Bmax{O,d1 Ck} + ,Bmax{O,dk-Ck+pj}· (3) 

PROOF. Define c(a) as the change of cost due to the interchange, after deferring 
the jobs by a;.. 0; i.e., 

c(À) = a(pj- Pk) + ,Bmax{O,dj Cj-.1}- ,Bmax{O,dj ek-.1} + 

,Bmax{O,dk ek-À}- ,Bmax{O,dk ek+pj-.1}. 

Weneed to show that condition (3), stating that c(O) > 0, implies c(À);;;. 0 for all 
a;:;;.: 0. Note that a< ,B implies that at least one due date is smaller than Ck; oth
erwise, condition (3) is not valid. 

The expression c (À) has three components. The first component is a(p1- fk); it 
is a constant. The second component is ,Bmax{O,dj-Ci-a}
,Bmax{O,dj- ek-a}; it is a piecewise linear function of À. The function value is 
.BPk if dj ;;;. ek +a, and 0 if dj ~ cj +a. If ek +À >dj ;:;;.: ej +À, then the gradient 
is 1. The third component is ,Bmax{O,dk-Ck-.1}-
,Bmax{O,dk -Ck +pj-.1}; it is also a piecewiselinearfunction of a. Thefunction 
value is - ,Bp1 if dk ;;;. ek +À, and 0 for dk ~ ek-Pi+ À. The gradient is l if 
ek +a > dk ;;;. ek-Pi+ À. Combining the three components yields a piecewise 
linear function whose behavior depends on the due dates. We now make the fol
lowing observations. First, c(a)>O if a;;;.dk Ck+Pj· Second, if c(t)>O for 
some t;;;. dk-Ck> then c(a) > 0 for all À;;;. t. As at least one due date is smaller 
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than Ck, the second observation implies that, if dk ~dj, then c(~) >0 for all 
~~0. 

The only case left to consider is d1 < dk and 0.;;;; ~.;;;; dk Ck. Then, we have 
c(~) = a(p1 -pk) {Jpj + {Jmax{O,dj-Cj-~}. As dj C1 -~ ~ d1 Cj 
d1 -Ck+Pk~Pk> we get c(O)~(a.-{J)(p1 -Pk).;;;;O, which contradiets the 
assumption. This completes the proof. 0 

In Corollary 3, explicit conditions for the existence of dominanee are derived 
from Theorem 5. This corollary is referred to when lower bounds are discussed in 
Section4. 

CoROLLARY 3. The partial sequence 11' can be discarded if there are two jobs Jj and 
h with Ck = Cj + Pk such that 

Pj >pk, 

and one of the following conditions is satisfted: 

ck-Pj ~dk> 

ck-pj < dk> ck ~ dba(pj-Pk) ~ {J(dk-Ck+p1), 

ck-pj < dk> ck < dk>a(p1- Pk) ~ {Jpj, 

ck -p1 <db ck ~db~ fJ(dk -d1 -Pk +p1).o 

THEOREM 6. The partial sequence 11' with J k scheduled last is dominaled if there is a 
J1 such that 

PROOF. Let 11' = 'fi'1J111'2h and 11'* = 'fi'JJk11'2J1. We compute the effect of the inter
change on the scheduling cost. Since J k is the last job in the optima! schedule 11', 
we have Ck ~dk. In addition, we know C/ max{d1,ck-pk+p1} and 
Ck * = c1 -p1 +Pk ~ dk. First, suppose C/ = d1. The effect of the interchange is 
then equal to 

a(C1+Ck (C1 -p1 +Pk)-dj)+{J(d1 -C1)~ 

a(Ck+PJ -pk -d;)+a(d1- C) > 0, 

as Ck-Pk ~ c 1. Second, suppose that C/ = Ck-pk+p1. The effect of the inter
change is then equal to 

a[C1+Ck-(Ck-pk+p1)-(C1-pj+Pk)]+{Jmax{O,d1 C1} ~0. 

The effect remains non-negative if the jobs are deferred. 0 

TlmOREM 7. There is an optima/ schedule in which h is not scheduled in the last 
position, if there is some Jj with p1 > Pk and dj-p1 ~ dk-Pk· 
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PROOF. We let w = w1J1w2Jk and w* = w1Jkw2J1 and compute the effect of the 
interchange. We have Ck;;;;.. dk and Ck -pk;;;;.. C1; in addition, we define bere 
C1* = max{d1,ck-Pk +p1}. Theeffectoftheinterchangehas to benon-negative; 
we therefore have to prove that 

aCk + ,8max{O,d1-C1};;;;.. a(pk-p1+C/) + ,8max{O,dk-pk+~4}C1 }. 

First, we examine the case c1 * = Ck -pk + p1. Expression ( 4) is then equivalent to 

,8max{O,d1-C1};;;;.. ,Bmax{O,dk-pk+PJ CJ}, 

which is true for any c1 since d1- PJ ;;;;.. dk-Pk· Second, consider the case 
C/ =dj. This implies dj> Cj, since dj;;;;.. Ck-pk+p1 > Cj-pk+p1 > Cj. 
Hence, expression ( 4) is equivalent to 

aCk + ,B(dj-Cj);;;;.. a(pk-pj+dj) + ,Bmax{O,dk-pk+pj Cj}· 

Supposemax{O,dk-fk+pj-Cj} = dk-pk+pj Cj. Wemustthenverifythat 

aCk + ,Bdj;;;;.. a( dj -pj+Pk) + ,B(dk -Pk +pj)· 

As Ck ;;;:.. db we only need to prove that 

0;;;;.. (a-f3)[(dj-pj)-(dk-Pk)]; 

this expression is true since ,8 >a and d1-p1 ;;;:.. dk -Pk· Conversely, suppose 
max{O,dk-fk+pj-Cj} = 0. Since aCk + ,8(d1-Cj);;;:.. a(Ck +dj Cj);;;:.. 
a(pk +dj)> a(pk -p1 +dj), expression (4) is also true for this case. 0 

CoROLLARY 4. There is an optima! schedule in which Jj is scheduled last if pj ;;;;.. Pk 
anddj-pj;;;;..dk-PkforeachJk E~. 0 

4. LOWER BOUNDS 

In this section, we present five lower bound procedures. It seems to be impossible 
to develop a lower bound procedure that copes satisfactorily with all conceivable 
due date patterns. For example, imagine an instanee with due dates small with 
respect to the sum of the processing times; little idle time needs then to be 
inserted. In contrast, consider an instanee with dk » "2.j = 1 pj for each J k; the 
machine will then be idle forsome time before processing the first job. Numerous 
variations and combinations of both patterns are possible. 

Each of the lower bound methods is effective for a specific class of instances. 
Nonetheless, weusethem supplementary rather than complementary. We parti
tion the job set~ into subsets, apply each lower bound method to each subset, and 
aggregate the best lower bounds. In this way, we hope to obtain a lower bound 
that is stronger than the separate lower bounds obtained for the entire set ~- The 
success of this strategy depends on the partitioning strategy. The jobs in a subset 
should be conflicting, that is, they should overlap when completed at their due 
date. If they are not, then we get the weak lower bound a"'2.J = 1 dj. In this sense, we 
prefer subsets such that the executions of the jobs in the samesubset interfere 
with each other, but not with the execution of the jobs in the other subsets. We 
propose two partitioning strategies that pursue this effect. 
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The first strategy is motivated by the structure of any optima) schedule. The 
jobs that are consecutively processed between two periods of idle time interfere 
with each other, but not with the other jobs. Such a partitioning is hard to obtain. 
To mimic such a partitioning, we identify clusters. A cluster is a set of jobs such 
that for each job J1 in the cluster there is another job J k in the cluster such that the 
intervals [d1 -p1, d1J and [dk -ph dk] overlap; hence, for each job in the cluster 
there exists a conflict with at least one other job in the cluster. However, clusters 
may interfere with each other in any optimal schedule. 

The secoud strategy is the following. Given a partial schedule 'IT, we try to iden
tify the jobs not in 'lT that will be early in any optimal complete schedule of the 
form a'!T. We call these jobs surely early. The idea is to derive an upper bound Ton 
the completion times of the unscheduled jobs; accordingly, J1 E ~-'IT is surely 
early if d1 > T. For instance, let g be the primitive directional derivative for defer
ring thefirstjob in 'lT by one unit. Suppose that I ~-'IT I ({J-a)~ g. Thecurrent set 
of completion times for the jobs in 'lT is then optimal for any schedule a'IT; an upper 
bound T is then the start time of the first job in 'IT. Other upper bounds are derived 
from the dominanee rules. Suppose J1 and h are adjacent in 'lT with p1 > Pk and J1 
precedingJk. (It is not necessary that Ck = c1 +pk.) Thefirst condition of Corol
lary 3 indicates that 'lT is dominated if ck ~ dk +p;; hence, an upper bound is 
given by dk+p1-I ~,, E'lf,c,,;;;;,c,Pt· From the other criteria in Corollary 3 and 
from Theorem 7, similar upper bounds are derived. They can also be derived from 
Theorem 4, but this requires an intricate procedure. Finally, we set T equal to the 
minimum of all upper bounds. If no upper bound is specified, then we let T = oo. 

4.1. First method: relax the objective function 
Let t9 denote the set of surely early jobs; let ~ be the set of remaining jobs. 
Observe that 

mincEO/(a)~mincEO* ~ aC; + mincEO, ~ (aC; +/JE;], 
J1 E% J1 E$ 

where ~% and ~lf denote the set of feasible schedules for the jobs in cjt and &. The 
problem of minimizing ~,1 Elf [ aC1 + {JE1 J is solvable in polynomial time; we have 
E1 = d1- c1 for each J1 E &, and hence, the scheduling cost reduces to 
~,1 Es [(a-{J)C1 + {Jd1]. Applying an analogon of Smith's rule (Smith, 1956), we 
minimize this cost component by scheduling the jobs in t9 in the interval 
[T-p(&),T] in order of non-increasing processing times; the correctnessof this 
ruleis easily verified by an interchange argument. The other subproblem is solved 
by Smith's rule: simply schedule the jobs in cjt in non-decreasing order of their 
processing times in the interval [O,p (ljt)]. In the example, t9 0, and the lower 
bound is 2la. 

A slight impravement of the lower bound is possible. Let E max * be the 
minimum maximum earliness for the jobs in cjt if they are processed in the interval 
[O,p(~)]. We compute Emax * from the minimum-slack-time sequence, that is, the 
sequence in which the jobs appear in order of non-decreasing values d1-p1. 
A voiding E max * requires at least E max * units of machine idle time. The lower 
bound can therefore be improved by aEmax *. If we have stared the shortest-
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processing-time sequence and the minimum-slack-time sequence, then we com
pute this lower bound in 0 (n) time per node. In the example, we have E max * = 4; 
hence, the lower bound is 25a. This lower bound approach can only he applied in 
conjunction with Theorem 2 if $ = 0. 

Since all jobs in liit are scheduled in the interval [O,p (liil)], and since only one 
early job in liit is taken into account, this lower bound is only effective if the due 
dates are small relative to the sum of the processing times. 

4.2. Second method: relax the machine capacity 
Reeall that we write the objective function alternatively as 
j(a) = (/3-a)'ï:.j 1 Ej+a'Zj 1 Tj + a'ï:.J= 1 dj for each a E 0. Since the job ear
linesses and tardinesses are non-negative by definition, we have that 
f (a);;:. a'ï:.J = 1 dj for each a E 0. 

We gain more insight if we derive this bound in the following way. Suppose that 
the machine can process an infinite number of jobs at the same time; this is a 
relaxation of the limited capacity of the machine. As a < /1, the optimal schedule 
has Cj =dj for each Jj; this gives rise to the lower bound a'ZJ= 1 dj. If no jobs 
overlap in their execution, then this schedule is feasible and hence optimal for the 
original problem. Por the example, this relaxation gives the lower bound 35a. The 
corresponding schedule is not feasible: J 2 and J 3 overlapintheir execution (see 
Pigure2). 

0 2 4 6 8 10 12 14 16 18 

PIGURE 2. Gantt chart for machine with infinite capacity. 

This conflict can he settled by executingJ 3 beforeJ 2, or, conversely, J 2 before 
J 3• If we intend to schedule J 2 after J 3 , then we have basically two options: we 
retain either the completion time of J 3 or the completion time of J 2 • Por the first 
option, the additional cost is 3a; for the second option, the additional cost is 
3(/1- a). Executing J 2 af ter J 3 costs therefore at least 3y extra, where 
y =min{ a, /1-a }. Similarly, we find that executing J 3 after J 2 costs 6y extra. 
Hence, the minimum additional cost required to settie the overlap is 
min{3y, 6y} 3y. Accordingly, an improved lower bound is 38a. 

We now describe a general procedure to improve the lower bound a'ï:.j 1 dj by 
taking the overlap between jobs into consideration. Overlap of Jj and J k (Jf=f=h) 
occurs if the intervals [dj-pj,dj] and [dk-Pk•dk] overlap. Let 
cjk = y max { 0, dj- ( dk - Pk)} denote the additional cost to ex ecu te J1 immediately 
before h; let a( i) = j denote that J1 occupies the ith position in the sequence a. 
Por any optima! schedule a, we have thatf (a);;:. a'ZJ 1 d1 + 'ZJ =l co(i)o(j +I); the 
last term is the lengthof the Harniltonian path a(l) · · · a(n). The following pro
cedure shows that the Hamiltonian path problem is solvable in O(nlogn) time. 
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Partition the set of jobs into a set of clusters Q 1, •.• , Qm as described above. 
Let HP1 be the shortest Hamiltonian path for Q~> and let c(HP1) denote its length. 
We have c(HP1) = y(p(Q1) maxJ

1
,J,E Q,,J,#

1 
c1d, for each I (l = 1, ... ,m). We 

have also IJ-~ c 'ff(j)'u(j +I) ~ '2-i 1 c (HP1) for any sequence 'lf, as can be easily ver
ified. The individual Hamiltonian paths can be combined into one Harniltonian 
pathof lengthno more than the sum of the lengths of the separate paths. 

4.3. Third method: relax the due dates 

4.3.1. The common due date problem 
Suppose the due dates have been replaced by a due date d common to all jobs. 
Consider the following common due date problem: for a given d, deterrnine a 
schedule that minituizes 

n n n 

(J3-a)~E1 +a~ T1 +and-p~max{O,d-d1 }. (CD) 
j=l j=l j=J 

For any d, the optima! solution value is a lower bound for the original problem, 
since 

n n 
j(a) =a~ Cj + p~ max{O,dj-Cj} 

j=! j=l 
n n n 

f ~a~ Cj + P~ max{O,d- C1}- p~ max{O,d- dj} 
j I j=l j=l 

n n n 

= (J3-a) ~ E1 +a~ 1j + and- P ~ max{O,d-dj}· 
j=l j=J j=l 

There are two issues involved: (i) how to solve problem (CD)?, and (ii) how to 
find the value d maxiruizing the lower bound? 

Problem (CD) consistsof two parts. The first part is the problem of minimizing 
(P-a )'2-J 1 Ej + a'2.J = 1 Tj. If the machine is only available from time 0 onwards 
and if dis given, then this problem is 'X<S'-hard (Hall, Kubiak, and Sethi, 1991; 
Hoogeveen and Van de Velde, 1991). However, a strong lower bound L(d) is 
derived by applying Lagrangian relaxation (see Hoogeveen, Oosterhout, and Van 
de Velde, 1990). The second part is the problem of maximizing the function 
G: d ---'1>and P'2-J= 1 max{O,d -dj}; this problem is selvabie in polynornial 
time. Rather than solving problem (CD) to optimality and finding the best d, we 
maximizethe lower bouhd L ( d) + G ( d) over d. 

First, we derive the best Lagrangian lower bound L(d) for a given d. The 
denvation proceeds without details; we refer to Hoogeveen, Oosterhout, and van 
de Velde (1990) for an elaborate treatment. Let t!i denote thesetof jobs that are 
not tardy. Since the machine is only available from time 0 onwards, we have the 
condition thatp(t!i)..;;; d. We dualize this condition by use of the Lagrangian mul
tiplier À~ 0. Fora given À~ 0, the Lagrangian problem is then to find L(d,À), 
which is the minimum of 
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The Lagrangian problem is solvable in polynomial time by Emmons's matching 
algorithm (Emmons, 1987), which proceeds by the concept of positional weights. 
Straightforward arguments show that there exists an optimal schedule with some 
job completed exactly on its due date. The weights for the early positions are then 
À, À+(/3-a), À+2(/3-a), ... ,À+(n -1)(/3-a); the smallest weight is for the 
first position in the schedule. The weights for the tardy positions are 
a, 2a, ... , na; the smallest weight is for the last position in the schedule. 
Emmons's matching algorithm assigns the job with the jth largest processing time 
to the position with the jth smallest weight, for j l, ... ,n. Ties are settled to 
minimize the amount of work before d. Let uÀ be the optimal schedule for the 
Lagrangian problem, and let W ( o\) be the amount of work before d in uÀ. 

The best Lagrangian lower bound L (d) is found as 

L(d) = max{ L(d,À) I À;;;. 0 }. 

Due to the integrality of a and /3, the optimization over À ;;;. 0 may be reduced to 
the optimization over ÀEI\!0• The optimal choice for À can be shown to be such 
that W (u À_ J) > d ;;;. W (u À); this choice gives us the Lagrangian lower bound 
L(d). 

We are now able to characterize the function L: d -?>L(d). The function Lis 
continuons and piecewise linear; the value L(d) depends on d only through the 
choice for À. Hence, there are at most min{ n2 , na} breakpoints: they correspond 
to the values d = W(uÀ), for À = 0, 1, ... , na. The derivative of the trade-off 
curve between two consecutive breakpoints, the first corresponding to W(uÀ), is 
equal to -À. 

Thefunction G: d-?> and- /3'2-J 1 max{O,d-dj} is also continuousand piece
wise linear; the breakpoints correspond to the values d = di, for j = 1, ... , n. The 
lower bound L(d)+G(d) is therefore also continuons and piecewise linear in d; 
the value d maximizing this lower bound is found at a breakpoint. 

Por any given d, L(d) is determined in O(nlogn) time. The function L has 
O(min{n 2,na}) breakpoints; the conesponding values are computed in O(n 2

) 

time. (Every new breakpoint is derived from the previous one by interchanging 
some jobs, which requires only constant time, and only O(n 2

) interchanges are 
needed to find all breakpoints.) The function G has O(n) breakpoints. Hence, 
maximizing L ( d) + G ( d) overdis achieved in 0 ( n 2) time. 

In our 3-job example, we have d 10. Por the positions after d, the weights are 
1,2, and 3; for the positions before d, the weights are 0, 3, and 6. An optimal 
schedule is depicted in Pigure 3. lts objective value is 39a; this happens to be the 
optima} solution value for the original problem. 

FIGURE 3. Optimal schedule for the common due date problem. 
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In a node of the search tree, there are two ways to implement this lower bound 
procedure. Let '1T '171 '172 be the partial schedule associated with the node. Disre
garding '17, we get the lower bound f('1T) + c(~-17), where c(~-17) denotes the 
optimal solution value for the common due date problem for the jobs in ~-'17. 
However, if '171 and the optimal schedule for the common due date problem over
lap intheir execution, then it makes sense to take 71'1 into regard. We do this in the 
following way. First of all, we require that dis common toeach J1 lél7T2• Subse
quently, we solve the common due date problem under the condition that the jobs 
in 71'1 retain their positions. Given thesetof positions, it is easy to construct an 
optima! schedule: assign the jobs in 71' 1 to the last I 71'1 I positions, and assign the 
other jobs to the remaining positions according to Emmons's algorithm. Lemma 1 
states that we may use the sameset of positions as for the case 71'1 = 0. 

LEMMA 1. The optima! schedule for the common due date problem with the last I '171 I 
jobs fixed occupies the n positions with least positional weights, where n = n - 171'2 I . 

PRooF. Suppose to the contrary that the optima! schedule a for the jobs J1 f/:.71'2 

does not occupy the n positions with least positional weights. Let n 1 jobs in a be 
early or just-in-time and let n 2 = n-n 1 jobs in a he tardy. Suppose the set of 
optimal weights corresponds to n 1 positions before d, and to n 2 = n-n 1 posi
tions after d. Suppose n 1 < n 1• We then transfer the job occupying the n 2 th tardy 
position in G ( the first tardy job) to the (n 1 + 1 )th early position. The latter posi
tion is in the optima! set; the former is not. Hence, this transfer reduces the objec
tive value, thereby contradicting the optimality of a. If n 1 > n 1, then a similar 
argument applies. 0 

The common due date lower bound can only be used in conjunction with 
Theorem 2 if the lower bound is independent from the partial sequence j7T. It is 
effective if the due dates are closetoeach other. 

4.3.2. The common slack time problem 
Consider the special case of the 11 I a-:i.C1 + {J-:i.E1 problem where all jobs have 
equal slack times; i.e., d1 - p1 = s for each J1 (j = 1, ... , n ). This problem has the 
same features as the common due date problem. The best Lagrangian lower 
bound is also computed in O(nmin{ a,n}) time; there are the same options to 
imptement the lower bound. The common slack time lower bound is effective if all 
slack times are close toeach other. 

4.4. Fourth method: relax the processing times 
Again, we consider a special case of the I I I a-:i.C1 + {J-:i.E1 problem. Assume that 
all processing times are equal. Theorem 3 indicates that the earliest-due-date 
sequence (i.e., the sequence with the jobs in order of non-decreasing due dates) is 
optimal. This special case is solved in O(n 2) time, which is needed to compute the 
optimal schedule for a given sequence. 

Let us return to our original problem. Define Pmin min1.;;1 ";;;nPJ· The 
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optimal solution value of the relaxed problem llpj = p min I a-:i:.ej + fj-:i:.Ej pro
vides a lower bound for the original problem: each set of job completion times 
that is feasible for the original problem is also feasible for the relaxed problem 
and has equal cost. 

Given a partial schedule w, let o be the earliest-due-date sequence for the jobs in 
~-w, and let g(o) be the optimal solution value for the relaxed problem. Disre
garding w, we get the lower bound f(w) + g(o). We can marginally improve on 
this lower bound. Suppose we have reindexed the jobs in order of non-decreasing 
due dates. Corollary 4 indicates that J n is also scheduled last if we put its process
ing time equal to min(pn,Pmin +dn -dn-l }. An improved lower bound is there
fore given by f (w)+ g(o)+ a [min{pn,Pmin + dn- dn 1}-Pmin1· 

lf the execution of jobs in o overlap with the execution of jobs in w, then it pays 
to take w into account. The lower bound is then equal to the cost for the sequence 
(J'lT with the jobs in w still having their original processing times. 

Both bounds are computed in O(n 2) time and dominate the lower bound 
a-:i:.J 1 dj. Only the first version can be used in conjunction with Theorem 2. The 
common processing time lower bounds are only effective if the processing times 
are close to each other. 

In our 3-job example, we have Pmin 3, d 1 15, and d2 = d3 = 10. An 
optima] schedule for the common processing time problem is depicted in Figure 
4. lts objective value is 39a; this is equal to the optima! solution value for the ori
ginal problem. 

0 10 13 16 

FIGURE 4. Optimal schedule for the common processing time problem. 

4.5. Fifth method: Lagrangian relaxation 
The problem of minimizing total inventory cost, referred to as problem (P), can be 
formulated as follows. Determine values ej and Ej (j 1, ... , n) that minimize 

subjectto 

n n 

a2.ei+{J'L,Ei 
i=l i=l 

Ei;;;.o, 

Ei ;;;.di-ei, 

forj I, ... ,n, 
forj =I, ... ,n, 

(P) 

(5) 

(6) 

ei;;;;:;. ek +Pi or ek;;;;:;. ei+ Pk,forj, k =I, ... ,n,j=/=k, (7) 

ei-pj;;;.o, forj l, ... ,n. (8) 

The conditions (5) and (6) reflect the definition of job earliness, while the condi
tions (7) ensure that the machine executes at most one job at a time. The condi
tions (8) express that the machine is available only from time 0 onwards. 
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We introduce a non-negative vector À= (Àt. ... ,Àn) of Lagrangian multipliers 
in order to dualize the conditions (5). For a given vector À~ 0, the Lagrangian 
problem is todetermine the value L (À), which is the minimum of 

n n 

a 2: c1 + 2: ({3-À1)E1 
j I j=l 

subject to the conditions (6), (7), and (8). We know that for any given À~ 0 the 
value L(À) provides a lower bound to problem (P). If {3-~ < 0 for someJ1, we 
get E1 = oo, which disqualifies the lower bound. We therefore assume that 

ÀJ ~ {3, forj = 1, ... ,n. (9) 

This, in turn, implies that, for any solution to the Lagrangian problem, conditions 
( 6) hold with equality: E1 d1 - C1 for each j (j I, ... , n ). Hence, the Lagran
gian problem, referred to as problem (LÀ), transfarms into the problem of minim
izing 

n n 

2: (a- ,8+~)C1 + 2: (,8-À1)d1 
j=l j=l 

subject to 

C1 ~Ck+p1 or Ck~C1 +Pk,forj,k=l, ... ,n,j=fok, (7) 

j cj-pj~o. forj=l, ... ,n. (8) 

If a-,8+À1 < 0 for someJ1, we get c1 oo, whichmakes the lowerbound rather 
weak. However, as demunstrated at the beginning of Section 4, we can determine 
an upper bound Ton the job completion times, which implies that 

forj = 1, ... ,n. (10) 

Although the conditions (10) are redundant for the prima! problem (P), they are 
essential to admit values ~ < {3-a. For solving problem (LÀ) under these addi
tional conditions, we first determine the sets of jobs ~ + = { J1 I ÀJ > {3- a}, 

= {J1 I ÀJ < ,8-a }, and ;t-0 = {J1 I ÀJ = {3-a }. The following theorem stipu
lates that problem (LÀ) is solved by a simple extension of Smith's rule (Smith, 
1956) for solving the 11 I ~w1c1 problem; the proof proceeds by an elementary 
interchange argument. 

THEOREM 9. Problem (LÀ) with the additional conditions (10) is solved by scheduling 
the jobs in :t+ in non-increasing order of ratios (a- {3 + ÀJ) I p1 in the interval 
[O,p(~+)1 and scheduling the jobs in ~- in non-increasing order of rattos 
(a- {3 + ÀJ) I p1 in the interval [T-p (;t-- ), T]. The remainingjobs can be scheduled in 
alo/ order in the interval [p (~ + ), T-p (~-) ]. 0 

We are interested in determining the vector À* = (À 1 *, ... , Àn *) of Lagrangian 
multipliers that induces the best Lagrangian lower bound. The vector À* sterns 
from solving the Lagrangfan dual problem, referred to as problem (D): maximize 
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L(À} (D} 

subject to 

0 ~ ÀJ E;;; {3, for j = 1, ... , n. 

Problem (D) is solvable to optimality in polynomial time by use of the ellipsoid 
method; see Van de Velde ( 1991 ). Since the ellipsoid metbod is very slow in prac
tice, we take our resort to an approximation algorithm for problem (D). 

First, we identify the primitive directional derivatives. In the salution to the 
Lagrangian problem (Lx), the position of 11 depends on the ratio (a- f3 + ÀJ) I p1; 
we call this ratio the relative weight of 11. The larger this relative weight, the 
smaller the completion time of 11. If other jobs have precisely the same relative 
weight as 11, then the exact position of 11 is determined by setding ties. Let now 
Cf (À) denote the earliest possible completion time of 11 in an optima! schedule 
for problem (Lx); let (À) denote the latest possible completion time of 11 in an 
optima} schedule for problem (Lx). If we increase Àj bye > 0, then we can choose 
t: small enough to make sure that at least one optima! schedule for problem (Lx) 
remains optimal; fora proof, see Van de Velde (1991). In fact, all such optima! 
schedules must have 11 completedon time Cf (À). If we increase ÀJ by such a suf
ficiently small e > 0, then the Lagrangian objective value is affected by 
t:( Cf (À) - dj). The primitive directional derivative for increasing À1, as denoted 
by lf (À), is therefore simply 

lf (À) = Cf (À) d1, for j = 1, ... , n. 

Hence, if lf (À) > 0, then increasing ÀJ is an aseent direction: we get an improved 
lower bound by moving some scalar step size along this direction. In a similar 
fashion, we derive that the primitive directional derivative for decreasing À1, 
denoted by 11- (À), is 

Ç(À) = d1 -CT(À), for j = 1, ... ,n. 

If IT (À)> 0, then decreasing ÀJ is an aseent direction. Note that directional 
derivatives may not exist at the boundaries of the feasible region of À; for 
instance, Ç (À) is undefined for À (0, ... , 0), for any i = I, ... , m. 

Second, wedetermine an appropriate step size a > 0 to move by along a chosen 
aseent direction. We compute the step size that takesus to the first point where 
the corresponding primitive directional derivative is no longer positive. If no such 
point exists, then we choose the step size as large as possible while maintaining 
feasibility. 

Suppose lf (À) > 0: 11 is tardy in any optimal schedule for problem (Lx). 
Increasing À1, thereby puttingJ1 earlier in the schedule, is an aseent direction. We 
distinguish the cases p1- d1 > 0, p1- d1 = 0, and p1- d1 < 0. Consider the case 
p1 -d1 > 0. Hence, 11 is unavoidably tardy, and lf (À)> 0 for all À;:;;:,: 0 with 
ÀJ < {3. Therefore, we take the step size a= {3-À1. Accordingly, we must also 
have that ÀJ * = /3; otherwise, increasing ÀJ * would be an aseent direction. If 

d1, then there exists an optima! solution to problem (D) with Àj* = /3. Find 
{11 ip1;;;:,:d1}. We haveproven thefollowingresult. 
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THEOREM 10. There exists an optima/ solutionfor the Lagrangian dual problem (D) 
with ÀJ * = /3 for each Jj E '3: 0 

Suppose now Pj < dj. The step size Ll must satisfy Àj + a ~ /3. We identify the 
first job in the schedule, say, Jk> for which Ck - Pk + Pj ~dj. Since pj <dj, such 
ah always exists. If Jj is scheduled in h's position, thenJj is not tardy. Hence, if 
there were no upper bound on À, then increasing Àj would he an aseent direction 
up to the point where the relative weight of J1 becomes equal to the relative weight 
of h· Hence, the maximum step size along this aseent direction is the largest value 
A such that 

(a-{3+Àj + A)lpj ~ (a-{3+Àk)!pk, and 

Àj +A ~/3. 
- -

Let now À = (À1, ••• , Àj + a, ... , Àn). Suppose Àj + A < {11. Since the relative 
weights for all jobs but Jj have remairred the same, optimal solutions for the prob
Ierus (L~) and (LÀ) exist with the samejobs scheduled befare Jk· Now J1 and h 
have equal relative weights: in any optimal salution to problem (L,D, Jj can he 
scheduled beforeJk or after h· IfJj is scheduled beforeh, thenJj is no_! tardy; if 
J1 is ~cheduled af ter J k> then Jj is nat early. Hence, we have that C/ (À) ~ dj ~ 
CT (À); the step size Ll has taken us to the first point wgere the primitive direc
tional derivative for increasing ÀJ is no Jonger positive. If ÀJ /3, then the step size 
has been chosen as large as possible. 

Suppose now Ç (À) < 0: Jj is earlyin any optimal schedule for problem (Ll-.)· 
Decreasing ÀJ, thereby deferring Jj, is an aseent direction. We distinguish the 
cases dj > T, dj = T, and dj < T. Consider the case dj > T; hence, Jj is unavoid
ably early, and Ç (À) > 0 for all À with Àj > 0. Therefore, we choose the step size 
as large as possible: a Àj. Accordingly, we also must have that À/ = 0; other
wise, decreasing Àj* would he an aseent direction. If dj T, then there exists an 
optimal schedule to problem (D) with À/ = 0. Identify t9 {J1 I dj;,;;. T}. We 
have proven the following result. 

THEOREM 11. There exists an optima/ solution for the Lagrangian dual problem (D) 
with À/ = 0 for each Jj E &. 0 

Consider now the case d1 < T. The procedure to compute the appropriate step 
size A praeeedsin a similar fashion as above. We identify some J k as the first job 
in the schedule with Ck;,;;. dj. If Jj is scheduled in h's position, then Jj is nat 
early. Hence, if there were no lower bound on À, then decreasing ÀJ would he an 
aseent direction up to the point where the relative weight of J1 beoomes equal to 
the relative weight of J k. Hence, the maximum step size along this aseent direction 
is the largest value A for which 

(a-{j+Àj A)lp1 ;,;;. (a-{j+Àk)lpk> and 

À1-A;.;;.o. 
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Let i\ (i\1, ..• , i\j a, ... , i\11 ). Suppose i\j > 0. Since the relative weights for all 
jobs but Jj have remained the same, optimal solutions for the problems (Ln and 
(L,..) exist with the samejobs scheduled after Jk. SinceJj and Jk have now equal 
weights, Jj can be scheduled after h or before h in any optimal schedule for 
problem (L;>;:). If Jj is scheduled after J b then Jj is not ear!J; if J1 is sche~uled 
Èefore h, then Jj is not tardy. Hence, we find that Cf (i\)~ dj ~ CT (À). If 
i\j 0, then the step was taken as large as possible. _ 

Termination of the aseent direction procedure occurs at some À where all exist
ing primitive directional ~erivatives are non-positive. If all primitive directional 
derivatives exist at such a À, we have 

Cf(À) ~dj~ CT(À), forj = 1, ... ,n. 

These termination conditions also apply to À*, since they are necessary for 
optimality. They a~, however, not sufficient for optimality; hence, termination 
may occur having À i\*, i.e., before finding the optimal vector of Lagrangian 
multipliers. Before implcmenting the aseent direction algorithm, we make use of 
this fact to decompose the Lagrangian dual problem (D) into two subproblems. 
This decomposition is achieved by partitioning ~ into four subsets, including the 
sets 'J and & we already identified. 

Consider some job J1 E ~-& with dj > p (~-&). If ÀJ > fJ- a, then J1 will be 
early in any optimal solution to problem (Li\)· This means that Ç (i\)> 0, and 
hence we must have that 0 ~À/ ~{J-a. The set§" of jobs that share this pro
perty is determined by the following procedure. 

PARTITIONING ALGORITHM 1 
Step 0. §"~ 0, and reindex the jobs in ;}-& according to non-increasing due 
dates. Let k~l. 
Step 1. If k > n I & I orif dk <p(;}-f9-1J), thenstop. Else§"~<Fu {h}. 
Step 2. Set k~k + 1; go to Step 1. 

Suppose some job Jj E <F exists with dj> T-p(&). If we let Àj {J-a, then 
CT (À)< dj; hence, decreasing i\j is an aseent direction. Decreasing i\j gives 
(a- {J+Àj)lpj < 0, as aresult ofwhich the execution of Jj interferes with the exe
cution of the jobs in &. We now partition the set <F into subsets '3'1 and §"2 
('3' = '3'1 U '3'2) such that dj ~ T-p (& U '3'2 ) for each Jj E <5), and such that 
dj > T-p (& U '3'2) for each J1 E §"2 . To achieve this, we use the following parti
tioning procedure; it is similar to the first one. 

P ARTITIONING ALGORITHM 2 
Step 0. Put '52 ~ 0, let P ~ T-p (&), and reindex the jobs in §" according to non
increasing due dates. Let k ~ 1. 
Step 1. If k > I , then stop. If dk..:;;; P, then let <F1 ~ {h, ... ,J I'JI}, and stop. 
Otherwise, U {h}, and setP ~P-fk. 
Step 2. Setk~k + 1; go to Step 1. 
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TIIEOREM 12. For each J1 E <if" we have that À/ = /3- a. 

PROOF. Si nee we have p (~U c3t) ~ d1 ~ T - p (& U <!f2), the result follows. 0 

At this stage, we can decompose the Lagrangian dual problem (D) into two sub
problems. Since (a- /3 +~*)I p1 = 0 for each J1 E <if1, the jobs in <if1 do not inter
fere with the execution of the other jobs. However, ~ and c3t interfere with each 
other, and & and '?f2 interfere with each other. On the one hand, we have the dual 
problem restricted to the sets ~ and c3t; on the other hand, we have the dual prob
lem restricted tothesets <!f2 and $.In each optima! schedule for problem (D), the 
jobs in~ and c3t are scheduled in the interval [O,p (~U c3t)], and the jobs in ?f and 0 
are scheduled in the interval [T -p(0U<!f2), T]. We give step-wise descriptions of 
the aseent direction aigorithms for these two subproblems. Both are based upon 
the primitive directional derivatives and the step sizes we discussed earlier. The 
jobs in <!f1 are scheduled somewhere in the interval [p(~Uc3t),T-p(0U<if2)]; they 
areleftout of consideration. We introducesome new notation. Let (L~u~l) and 
(L~u'!f,) denote the Lagran~an problem restricted to the set c3tU~ and to the set 
0U<!f2 ; let L<j\,u'!f(À) andL s '1l;(À) denote their optima} solution values. 

ASCENT DIRECTION ALGORITHM FOR THE SET ~U c3{, 

St~ 0. For each J1 E ~ set ÀJ ~À/ = /3; for each J1 E 0t, set ÀJ ~ /3. Solve 
(LÀ u'!f), settling ties arbitrarily; compute the job completion times. 
Step 1. F or each 11 E 0t, do the following: 
(a) If CT (À)< dj, identify h as the first job in the schedule with ck;;;;;. dj. Com
pute the 1argest value Ll such that 

(a-/3+À1-fl)!p1 ;;;;;. (a-/3+Àk)lpk> and (11) 

~-a;;;;;. /3-a. (12) 

Decrease ÀJ by !:J., reposition J1 according to its new relative weight, and update 
the job completion times. 
(b) If Cf (À)> d1, identify J k that is the first job in the schedule with 
Ck -Pk +Pi ..:;; d1. Compute the largest value fora such that 

(a-f3+~+fl)lp1 = (a-/3+Àk)lpk, and 

Àj + a~f3. 
Increase ÀJ by fl, reposition J1 according to its new relative weight, and update the 
job completion times. 
Step 2. If no multiplier adjustment has taken place, then compute L 6j\,U 5(À) and 
stop. Otherwise, go to Step 1. 

TIIEOREM 13. The f/q_cedure described above generates a series of monotonically 
increasing values L U':l(À). 
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PROOF. First, consider some Jj E 0t with CT (À)< dj: decreasing Àj is an aseent 
direction. For brevity, we let P.j:::: a-{3+Àj for eachj (i=== 1, ... , l0tU'5"'j). We 
reindex the jobs in order of non-increasing values P.j I p1, setding all ties arbitrarily 
except for Jj: we give Jj the largest index possible. Accordingl.l, we obtain the 
sequence (J h ... ,J l'!itU~I ), which is optimal for problem (Lru ), with job com
pletion times CI, ... , C l'!itu'B"I· We note that C1 :::: Cj (À). Let a be the step size 
~mputed as prescribed in the aseent direction algorithm, and let 
À= (ÀI> ... ,Àj-al> ... ,ÀI'!îLU'B"I ). 

We distinguish the case that condition (11) holds with equality from the case 
that condition (12) holds with equality. Consider the first case; accordingly let Jk 
be the job specified in the aseent direction procedure. In more detail, the sequence 
under considerationis (J I> •.• ,Jj I>Jj,Jj+I> ... ,h -1 ,Jk>Jk +~> ... ,J I<3LU'5j ); an 
optimal sequence for problem (L~0'5) is then (J 1, ••• , Jj 1 ,J1 + 1, ••• , J k>Jj, 
h +I> ..• ,J 1 <3LU'3"1 ). The job completion times for the latter sequence can con
veniently be expressed in terrus of C I, ... , C 1 <3Lu '3"l . We now prove that 
L'!itu<:J(À) > L<3Lu'3"(À). We have 

j-I k 
2:;p.;C;+(p.j-a)(Cj(À)+ 2:; p;)+ 
i=l i=j+l 

k 10\.U '51 10\.U '5j 
2:; p.;(C;-pj)+ 2:; p.;C;+ 2:; ({3-À;)d;+M1 

i=j+l i=k+l i=l 
k k k 

:::: L'!itU"J(À)-p1 2:; P.t + P.j 2:; p;-a(Cj(À) + 2:; p;-dj) 
i=j I i=j+I i=j+I 

k I k I k-1 
= L(À)-pj 2:; P.t + P.j 2:; p;-a(Cj(À) + 2:; p;-d1) + 

i=j+l i=j+I i=j+! 

Note that (p.j-a)tpj = P.klpk; hence, we have (p.j-a)Pk- PjJLk = 0. This 
implies that 

L(À)~L(À)+pj k~l ~;(P.jlpj p.;lp;)] a(Cj("A)+ k~
1

p;-dj). 
i=j+! i=j+l 

Since dj>Cj(À)+"2.~;;}+tPu.P.1 tp1 >p.;lp; for each i (i===j+I, ... ,k 1), 
and a> 0, we have that L 0\.U':J(À) > L 0\.U"J(À). 

Now assume that the condition (12) holds with equality and the condition (11) 
does not: a=== a-{3+X..1. This implies thatJj willnowbeplaced aftersome jobJh, 
with j ";;;;: h < k. For this case, the second sequence is 
(Jh···,JJ-1-'J+1····,Jh,JJ,Jh+I>····h, ... ,Ji0l.u"Jj). We performa similar 
analysis as above to obtain 

- h h h 
L'!itU"J(À) = L0l.U"J(À)-pj 2:: JL; + P.j 2:: p;-a(Cj(À) + 2:: p;-dj) = 

i=j+1 i=j+l i=j+! 

=== L'!îLu"J(À) + p
11

_=2:;
1
h+t ~;(P.jlp1 - p.;lp;)] a(Cj(À) + ± p;-dj)· 

i=j+! 
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At tl_!!.s point, similar arguments as before apply to show that 
L ~u5(À) > L ~u5(À). 

Second, consider the case that Cf (À) > d1 for some J1 E <at: increasing À; is an 
aseent direction. Let a be the desired step size, computed as described in the 
aseent direction algorithm. The proof to show that 
L gw 5(ÀJ, ... , À;+ a, ... , À I ~U'JI) > L ~u5(Àj, ... , À;, ... , ÀI ~U~l) follows the 
same lines as above. 0 

AseENT DIRECTION ALGORITHM FOR THE SET <!f2 U 5J 
St~ 0. Set À;+- /3-a for each J1 E <!f2, and À; +-À;* = 0 for each 11 ES. Solve 
(LÀ '11,), settling ties arbitrarily; compute the job completion times. 
Step 1. For each J1 E <!f2, do the following: 
(a) If CT (À)< d;, identîfy Jk as the first job in the schedule wîth ck;;;:. d;. Com
pute the largest value a such that 

(a-{J+À1-a)!p1 ;;;:. (a-/3+À~c)lpb and 

a ,..;;Àt 

Deercase À; by a, reposition 11 according to its new relative weight, and update 
the job completion times. 
(b) If Cf (À)> d1, identify h that is the first job in the schedule with 
Ck ,..;; d; + Pk-PJ· Compute the largest value fora such that 

(a-f3+À1+a)!p1 = (a-f3+Àk)lph and 

1\;+t::.:s;;.{J-a. 

Increase À; by IJ., repositionJ1 according to its new relative weight, and update the 
job completion times. 
Step 2. If no multiplier adjustment has taken place, then compute L~u5(À) and 
stop. Otherwise, go to Step 1. 

THEOREM 14. The procf!_dure described above generales a series of monotonically 
increasingvalues L ~u':J"(À). 

PROOF. The proof proceeds along the same lines as the proof of Theorem 13. 0 

For eachJ1 E ~-<!f1 , let c1 and À; denote the completion time and the Lagrangian 
multiplier_upon termînation of t!!e appropriate aseent direction ~Igorithm. We 
note that À; = /3; for each J1 E '3", À; = /3- a for each J1 E <!fb and À; 0 for each 
J1 E S. Hence, the overall Lagrangian lower bound is gîven by 

L(À)= l':
67

aC1 + l': ad1 + l': [(a-f3)C1 +/3d;] + 
l;EJ J1E';J, J 1ES 

+ l': [(a-/3+À)C1-({3-À1)d1] 
J,E~U'8'2 
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5. COMPUTATIONAL RESULTS 
The algorithm was coded in the computer language C; the experiments were con
ducted on a Compaq-386/20 Personal Computer. The algorithm was tested on 
instances with 8, 10, 12, 15, and 25 jobs. The processing times were generated 
from the uniform distribution [10,100]. The due dates were generated from the 
uniform distribution [P(l-T-R/2), P(l- T + R/2)], where P = "'2.}=IPJ and 
where Rand T are parameters. For bath parameters, we considered the values 0.2, 
0.4, 0.6, 0.8, and l.O. This procedure to generate due dates parallels the procedure 
described by Potts and Van Wassenhave (1985) for the weighted tardiness prob
lem. For each combination of T, P, and n, we generated 5 instances. Each instanee 
was considered with 01 = 1 and with f3 running from 2 to 5. 

The general impression was that instances become difficult with smallervalues 
of T, with smaller values of R, and with smaller values of /3. A small value of T 
induces relative large due dates, implying that the machine will be idle for some 
time befare processing the first job. A small value of R induces due dates that are 
close to each other; it is then harder to partition the jobs. A large value of f3 
implies that earliness is severely penalized; most jobs will therefore be tardy. 
Accordingly, the instances with T = 0.2, R = 0.2, and /3 = 5 are the hardest; the 
instances with T = 1.0, R = 1.0, and /3 = 2 are the easiest. 

Table 2 exhibits a summary of our computational results; we only report the 
results fortheinstances with Tand R equal. It shows that instances withup to 10 
jobs are easy. For n = 12, the instances with T =R =0.2 require already consider
able effort. F or n = 20, only the choice T = R = 1.0 in duces instances that are 
salvabie within reasanabie time limits. It is likely, however, that the performance 
of the algorithm is considerably enhanced by fine-tuning the algorithm to specific 
instances. Currently, all lower bounds are computed in each node of the tree; 
Lagrangian relaxation, for instance, is useless for instances with T = R = 0.2. 

6. CONCLUSIONS 
Although machine idle time is a practical instrument to reduce inventory cast, a 
considerable lack of theoretica! analysis of related machine scheduling problems 
exists. Within this context, we have addressed the 11 I 01"'2.C1 + /3"'2.E1 problem for 
the case that 01 < /3. It is a very difficult problem from a practical point of view. 
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12 
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Samenvatting 

Dit proefschrift is gebaseerd op onderzoek dat is verricht op het gebied van 
machinevolgordeproblemen. Het onderzoek op dit gebied heeft zich lange tijd 
beperkt tot problemen waarbij slechts één beslissingscriterium een rol speelt. 
Aangezien bij de beoordeling van een productieschema niet alleen de produc
tiekosten maar ook de wensen van de klanten een rol spelen, groeit het besef dat 
praktijkproblemen niet adequaat worden beschreven door een één-criterium 
machinevolgordeprobleem; vandaar dat het onderzoeksgebied van de bicriteria
machinevolgordeproblemen zich in een groeiende populariteit mag verheugen. 

De door mij bestudeerde bicriteria-machinevolgordeproblemen kunnen als 
volgt worden beschreven. Een verzameling van taken moet worden verwerkt 
door een machine. Deze machine is beschikbaar vanaf tijdstip 0 en kan ten 
hoogste één taak tegelijkertijd uitvoeren. De verwerkingsduur voor iedere taak is 
gegeven. Een schedule definieert voor iedere taak een voltooiingstijd zodanig dat 
aan de beschikbaarheidsrestricties van de machine is voldaan. Een schedule 
wordt beoordeeld aan de hand van twee verschillende criteria; de doelstel
lingsfunctie van het probleem is een combinatie van beide criteria. 

De doelstellingsfunctie van een machinevolgordeprobleem met als criteriafen 
g wordt gevormd door een functie F(j,g); het doel is een schedule te vinden dat 
tot een minimale waarde van de doelstellingsfunctie leidt. Afhankelijk van de 
vorm van F kunnen drie verschillende problemen worden onderscheiden. Het 
eerste behelst hiërarchisch minimaliseren. Hierbij wordt aangenomen dat cri
terium /belangrijker is dan g; het probleem is nu om een schedule te vinden dat 
g minimaliseert onder voorwaarde dat het optimaal is met betrekking tot f Het 
tweede probleem betreft het algemene geval. Om het probleem op te lossen moet 
nu de verzameling van niet-gedomineerde schedules worden bepaald; een 
schedule heet niet-gedomineerd als er geen schedule bestaat dat het beter doet op 
ten minste één criterium en niet slechter op het andere. Het derde probleem 
betreft het geval waarbij Flineair wordt verondersteld. 

Het proefschrift bestaat uit drie delen. Het eerste deel bestaat uit een inleiding op 
het gebied van één-machine scheduling met verschillende criteria en, voor een 
aantal praktische beslissingscriteria, een overzicht van de complexiteit van de 
machinevolgordeproblemen met een doelstellingsfunctie die is samengesteld uit 
twee van deze criteria. De resultaten betreffen polynomiale 
optimaliseringsalgoritmen of q](,GJ-lastigheidsbewijzen; q]{,GJ-lastigheid van een pro
bleem ontkent met een grote mate van waarschijnlijkheid het bestaan van een 
polynomiaal algoritme. 
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Het tweede deel bestaat uit zeven artikelen op het gebied van bicriteria
machinevolgordeproblemen. 

In het eerste artikel worden de problemen geanalyseerd waarbij de doelstel
lingsfunctie een combinatie is van de criteria maximaal verschil tussen de 
gewenste starttijd en de feitelijke starttijd en maximaal verschil tussen de gewenste 
voltooiingstijd en de feitelijke voltooiingstijd. 

In het tweede artikel komen de problemen aan de orde met als doelstel
lingsfunctie een combinatie van het criterium som van de voltooiingstijd met één 
van de volgende criteria: maximaal verschil tussen de gewenste voltooiingstijd en de 
feitelijke voltooiingstijd, maximale kosten ten gevolge van de voltooiing van een 
taak, en maximaal verschil tussen de gewenste starttijd en de feitelijke starttijd 

In het derde artikel worden de problemen behandeld met als doelstel
lingsfunctie een combinatie van verschillende maximale kosten criteria. 

In het vierde artikel wordt een ondergrensstrategie gepresenteerd die kan wor
den gebruikt om ondergrenzen, benodigd voor een branch-and-bound algoritme, 
af te leiden voor machinevolgordeproblemen met een lineaire samengestelde 
doelstellingsfunctie. Aangetoond wordt dat deze strategie de in de literatuur 
bekende ondergrensstrategieën domineert. 

In het vijfde en zesde artikel worden problemen geanalyseerd waarbij alle 
taken dezelfde gewenste aflevertijd hebben. In het eerste van de twee wordt het 
probleem geanalyseerd met als doelstellingsfunctie de gewogen som van de 
afwijkinren van de gewenste voltooiingstijden van de feitelijke voltooiingstijden. Van 
dit prolteem wordt bewezen dat het ~<8>-lastig is, zelfs als alle gewichten gelijk 
zijn, als de gewenste voltooüngstijd klein is ten opzichte van de totale ver
werkingsduur van de taken; een pseudo-polynomiaal algoritme wordt gepresen
teerd om het probleem op te lossen. In het andere artikel wordt het probleem van 
het minimaliseren van de som van de afwijkingen van de feitelijke vol
tooüngstijden van de gewenste voltooüngstijd, die klein is verondersteld ten 
opzichte van de totale verwerkingsduur, aangepakt met behulp van een branch
and-bound algoritme. De benodigde onder- en bovengrenzen worden afgeleid 
met behulp van Lagrangiaanse relaxatie; voor willekeurig gegeneerde problemen 
blijken deze grenzen bijna altijd samen te vallen als het aantal taken meer dan 
vijftig bedraagt. ~ 

In het laatste artikel wordt onderzoek gedaan naar een machinevolgordepro
bleem dat voortkomt uit de zogenaamde net-op-tijd (NOP) benadering, waarbij 
iedere taak geacht wordt precies op het gewenste tijdstip voltooid te worden. De 
doelstellingsfunctie die gebruikt wordt om deze benadering te weerspiegelen is 
gedefinieerd als een lineaire combinatie van de som van de voltooüngstijden en 
de som van de positieve afwijkingen van de gewenste starttijden en de feitelijke 
starttijden. Hierbij wordt het gewicht van het tweede criterium groter veron
dersteld dan het gewicht van het eerste criterium; dit heeft tot gevolg dat in een 
optimaal schedule de machine stil kan staan terwijl er nog werk te doen is. V oor 
dit probleem is nog geen bruikbaar oplossingsalgoritme ontworpen: hoewel we 
niet minder dan vijf verschillende ondergrensstrategieën afleiden, zijn we niet in 
staat om problemen met meer dan twintigjobs in een redelijke tijd op te lossen. 

Het derde deel bestaat uit een samenvatting. 



STELLINGEN 

behorende bij het proefschrift van 

JOHANNES ADZER HOOGEVEEN 

SINGLE-MACHINE BICRITERIA SCHEDULING 



Beschouw het volgende probleem. Gegeven zijn een graaf G = ( V,E), twee pun
ten u,v E V, en een lengte voor iedere kant in E; bepaal een pad dat ieder punt 
ten minste één maal bevat, u en v als eindpunten heeft, en een minimale lengte 
heeft. Voor dit probleem kan met behulp van een Christofides-achtige algoritme 
een oplossing worden gevonden die niet langer is dan 5/3 maal het optimum. 

J.A. HooGEVEEN ( 1991 ). Analysis of Christofides' heuristic: some paths are more 
difficult than cycles. Operation.~ Research Letters JO, 291-295. 

D.S. JOHNSON. C.H. PAPADIMITRIOU (1985). Performance guarantees for heu
ristics. E.L. LAWU:R, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS 
(eds.). The Travefing Salesman Problem: a Guided Tour of Combinatorial 
Optimization. Wiley, Chichester, 145-180. 

II 

Het criterium van Hässelharth is een noodzakelijke en voldoende voorwaarde 
voor het grafisch zijn van een getallenreeks. 

G. SIIRKSMA AND JA. HooGEVEEN ( 1991 ). Seven criteria for integer sequences 
being graphic. Joumal of'Graph Theory 15, 223-231. 

111 

Beschouw het volgende probleem. Een verzameling van n opdrachten met gege
ven geheeltallige hewerkingstijden p1 en aflevertijden d1 moet worden bewerkt 
door één machine die hesehikhaar is vanaf tijdstip 0 en ten hoogste één opdracht 
tegelijkertijd kan uitvoeren: bepaal een bewerkingsvolgorde zodanig dat 
~,I C1 d1 j wordt geminimaliseerd. Dit probleem is oplosbaar in 0(n 2 ) tijd als 
iedere aflevertijd groter is dan de som van de bewerkingsduren en als ieder 
tweetal tijdsintervallen ld, p, .d, l en [d1 - p1 .d1] elkaar overlapt. 

.I. A. HooGtVIl N ANI> S. L VAN m: Vam: ( /99!). Scheduling around an a/most 
common duc date. Unpuhlished manuscript. 
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Het probleem van het minimaliseren van de maximale voltooiingstijd in een flow 
shop bestaande uit twee fasen met twee identieke machines in de eerste fase en 
één machine in de tweede is ~1\::P-Iastig in de sterke zin, zelfs als onderbreking van 
de taken is toegestaan. 

J.A. HOOGEVEEN, J.K. LENSTRA, AND 8. VELTMAN ( 1992). Minimizing makespan 
in a multiprocessor flowshop is strong~J' ~ry"(_<:P-hard. Unpublished manuscript. 

V 

Het probleem van het minimaliseren van de som van de voltooiingstijden in een 
twee-machine flow shop is 0l<:P-Iastig in de sterke zin, zelfs als de bewer
kingstijden van alle taken op de eerste machine gelijk zijn. Het probleem is 
oplosbaar in 0(n4

) tijd indien voor alle taken de bewerkingstijd op de eerste 
machine niet groter is dan de bewerkingstijd op de tweede machine. 

T. KAWAGUCHJ (1987). Bounds on permutation schedules forthetwo-processor 
mean finishing time flowshop problem. Unpublished manuscript. 

VI 

Beschouw het volgende probleem. Een verzameling van n opdrachten moet wor
den verwerkt door drie machines die beschikbaar zUn vanaf tijdstip 0 en ten 
hoogste één opdracht tegelijkertijd kunnen bewerken, waarhij gegeven is door 
welke machines een opdracht moet worden uitgevoerd: hepaal een rooster zoda
nig dat de maximale voltooiingstijd wordt geminimaliseerd. Dit probleem is 
:'Y!.'!i'-lastig in de sterke zin indien sommige taken twee machines tegelijkertijd 
nodig hebben. 

J.A. HoOGEVEEN, S.L. VAN DE VELDE. AND 8. VELTMAN (1992). Comp/exi~}' of 
scheduling multiprO(·essor tasks with prespec!fied processor al/ocation.s. 
Unpublished manuscript. 

VII 

Onrechtmatig verkregen bewijs is ook bewijs. 



VIII 

De wijze waarop geld wordt ingezameld bij de kinderpostzegelactie is 
onrechtmatig, aangezien zij is gebaseerd op het maffia-principe geld voor bescher
ming: alleen door postzegels te kopen kan men zich beschermen tegen de overlast 
van op verkoop beluste kinderen. 

IX 

Bij het bridgen dient op de systeemkaart te worden vermeld of er een voorkeur 
bestaat voor actief of passief starten. 

x 

Het voetbal als kijkspel kan aantrekkelijker worden gemaakt door de volgende 
veranderingen in te voeren. 

(a) Het simuleren van een overtreding dient te worden bestraft met rood, ook 
indien de overtreding na afloop op grond van videobeelden wordt geconsta
teerd. Het op onrechtmatige wijze verhinderen van een doelrijpe kans buiten 
het strafschopgebied moet worden bestraft met een zogenaamd penaltyshot, 
zoals in de Amerikaanse voetbalcompetitie. 

(b) De uitspelende ploeg moet meer betrokken raken bij het amusementsniveau 
van de wedstrijd. Dit kan worden bereikt door de tegenstander een deel te 
geven van de recette behaald uit de losse verkoop. 

(c) Het moet minder rendabel worden gemaakt met tien man voor het doel te 
hangen. Dit kan worden bereikt door een bonuspunt toe te kennen voor vier 
thuis- of drie uitgescoorde doelpunten. 

(d) Om in de Europa-cup bij de thuisclub de verlammende angst voor een 
dubbeltellend tegendoelpunt weg te nemen moet het grootste aantal thuisges
coorde doelpunten de doorslag geven bij een gelijke eindstand na twee 
wedstrijden. 


