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Abstract 

We address the single-machine problem of scheduling n independent jobs subject to 
target start times. Target start times are essentially release times that may be violated 
at a certain cost. The goal is to minimize an objective function that is composed of 
total completion time and maximum promptness, which measures the observance of 
these target start times. We show that in case of a linear objective function the problem 
is solvable in 0( n4 ) time if preemption is allowed or if total completion time outweighs 
maximum promptness. 

1 Introduction 

A production company has to deal with the traditional conflict between internal and external 
efficiency of the production. Internal efficiency is the efficient use of the scarce resources. It 
results in a cost reduction and hence in possibly more competitive prices or higher profits. 
External efficiency is achieved by meeting the conditions superimposed by external relations. 
Clients, for instance, insist on product quality, short delivery times, and in-time delivery, 
among other things. Compromising product quality is playing with fire, but many a com
pany tries to get away with late deliveries. After all, a good due-date performance may be 
achieved only in case of putting work out, overwork, frequent setups, or high setup costs. 
Unfortunately, many companies do not realize that a better planning may accomplish the 
same. This type of external efficiency, between the company and its clients, is actually 
downstream; it is the extent by which the company successfully copes with the requirements 
on the demand side. 

We also distinguish upstream external efficiency. This is the extent by which the company 
successfully copes with the conditions on the supply side. A company, for instance, negotiates 
on the prices and delivery times of raw material. In order to achieve a higher internal 
efficiency, but especially a better due date performance, it may be worthwhile to pay a 
higher price to get the raw material sooner. 

There exist several single-machine scheduling models of the trade-off between internal 
and downstream external efficiency. Van Wassenhove and Gelders (1980), for instance, 
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consider a model for making the trade-off between work-in-process inventories and due date 
performance; see also Hoogeveen and Van de Velde (1995). Schutten, Van de Velde, and 
Zijm (1996) consider a batching problem for balancing out utilizing machine capacity against 
due date performance. Single-machine problems seem to be oversimplified models, but the 
study of these models makes sense, if we think of a company as a single-machine shop, or if 
there is a single bottleneck. What is more, single-machine models serve as building-blocks 
for solving complex scheduling problems. 

In this paper, we study a single-machine scheduling model for striking a rational balance 
between internal and upstream external efficiency. Our model specification is as follows. 
A set of n independent jobs has to be scheduled on a single machine that is continuously 
available from time zero onwards and that can process at most one job at a time. Each 
job Ji (j = 1, ... , n) requires processing during a positive time Pi and has a target start 
time Sj. Without loss of generality, we assume that the processing times and target start 
times are integral. A schedule u specifies for each job when it is executed while observing 
the machine availability constraints; hence, a schedule u defines for each job Ji its start 
time Sj(u) and its completion time Cj(u). The promptness Pj(u) of job Ji is defined as 
Pi(u) = Sj - Si(u), and the maximum promptness is defined as Pmax(u) = max1<i<n Pi(u). 
We note that the maximum promptness Pmax(u) equals the maximum earliness 'E:,.x(u) = 
max15j5n(di - Ci(u)) if each lj has a due date di for which Sj = dj - Pi and if interruption 
of job processing is not allowed. 

The problem we consider is to schedule the jobs so as to minimize total completion time 
2:j=1 Ci and maximum promptness Pmax simultaneously. Total completion time 2:j=1 Ci is 
a measure of the work-in-process inventories as well as the average leadtime. Hence, it is a 
performance measure for internal efficiency as well as downstream external efficiency. 

Maximum promptness measures the observance of target start times. If it is positive, 
then it signals an inefficiency: at least one job is scheduled to start before its target start 
time. Generally, this is possible only if we are willing to pay a penalty. In case the target 
start times are derived from the delivery times of raw material, then this penalty is actually 
the price of a speedier delivery. In case the target start times are derived from the completion 
times of the parts in the preceding production stage, then this penalty may be an overwork 
bonus to expedite the production. If the maximum promptness is negative, then it signals 
a slack, which implies that we may increase the deadlines that are used in the preceding 
production stage. 

It is important to realize that the target start times are actually release times that may 
be violated at a certain cost. In this sense, our problem comes close to the well-studied 
single-machine problem of minimizing total completion time subject to release times; see for 
instance Lenstra, Rinnooy Kan, and Brucker (1977) and .Ahmadi and Bagchi (1990). 

We now give a formal specification of our objective function. We associate with each 
schedule u a point (2:j=1 Cj(u) , Pmax(u)) in lR2 and a value F(2:j=1 Cj(u),Pma.x(u)). The 
function F : n -> R, where n denotes the set of all feasible schedules, is a given composite 
objective function that is nondecreasing in either of its arguments; this implies that for any 
two schedules u and 7r with 2:j=1 Cj(O') :S 2:j=1 Cj(7r) and Pmax(u) :S Pmax(7r) we have that 
F(2::j=1 Ci(u), Pmax(u)) :S F(2:'J=1 Cj(7r), Pmax(7r)). Our problem is then formulated as 

n 

min{F(L; Cilu) , Pmax(u)) IO' En} . 
i=l 

Extending the three-field notation scheme of Graham, Lawler, Lenstra, and Rinnooy Kan 
(1979), we denote this problem by 1llF(2:j=1 Ci> Pmax)· The special case in which the func
t ion Fis linear is denoted by llla1 2:j=1 Ci+ a2Pmax. where a1 2'. 0 and a2 2'. 0. 
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In comparison to single-criterion problems, there are few papers on multicriteria schedul
ing problems. We refer to Dileepan and Sen (1988) and Hoogeveen (1992) for an overview 
of problems, polynomial algorithms, and complexity results. 

This paper is organized as follows. In Section 2, we make some general observations 
and outline a generic strategy for solving the l I JFCL.i=i Ci> P max) problem. We also point 
out that 1llF(2:;j=1 Cj, Pmax) as well as its preemptive version llpmtnlF(2:;j=1 Ci> Pmax), in 
which jobs may be interrupted and resumed later on, are .NP-hard in the strong sense. In 
Section 3, we consider the linear variant llpmtnla1 2::j=1 Ci+ a2Pmax· Our main results are 
that l lpmtnla1 2::j=1 C; + a2P max and, in the case that a1 ~ a2, also l I la1 Lf=l C; + a2P max 
are solvable in O(n4 ) time. 

2 General observations 

The fundamental question is whether the 1 I IF(2:;j=1 C;, P max) problem is solvable in poly
nomial time for any given function F that is nondecreasing in its arguments. The first 
observation we make is that this is so, if we can identify all the so-called Pareto optimal 
schedules in polynomial time. 

Definition 1 A schedule a E !1 is Pareto optimal with respect to the objective functions 
(2::j=1 C;, P max) if there exists no feasible schedule 11' with either Lf=I C; ( 11') S Lf=l C; (a) 
and Pmax(11') < Pmax(a), or 2:;j=l C1(11') < Lf=l C;(a) and Pmax(11') S Pmax(a). 

Once the Pareto optimal set, that is , the set of all schedules that are Pareto optimal with 
respect to the functions (2::j=1 Cj, Pmax), has been determined, the 1llF(2:;j=1 C;, Pmax) prob
lem can be solved for any function F by computing the cost of each Pareto optimal point 
and taking the minimum. Hence, if each Pareto optimal schedule can be found in polynomial 
time and the number of Pareto optimal schedules is polynomially bounded, then the problem 
is solvable in polynomial time. 

We start with analyzing the two single-criterion problems that are embedded within 
lllF(I::j=l C;,Pmax) , that is, lllPmax and lll Lf=l C;. The lllPmax problem is clearly mean
ingless, since we can improve upon each solution by inserting extra idle time at the beginning 
of the schedule. Hence, we impose the restriction that machine ·idle time before the process
ing of any job is prohibited, that is, all jobs are to be scheduled in the interval [O, Lf=I p;]. 
It is easily checked that in case of a given overall deadline D > 2::j=1 P; the optimal schedule 
is obtained by inserting D - Lf=I Pi units of idle time before the start of the first job. In the 
three-field notation scheme, the no machine idle time constraint is denoted by the acronym 
nmit in the second field. The llnmitlPmax problem is solved by sequencing the jobs in order 
of non-decreasing target start times s;. The 1 I I Lf=I C; problem is solved by sequencing the 
jobs in order of non-decreasing processing times P; (Smith, 1956). Let now MT ST be an 
optimal schedule for the llnmitlPmax problem in which ties are settled to minimize total 
completion time; MT ST is the abbreviation of minimum target start time. In addition, let 
SPT be an optimal schedule for the lll Lf=I C; problem, in which ties are settled to minimize 
maximum promptness; SPT is the abbreviation of shortest processing time. It then follows 
that P;;.ax s Pmax(a) s Pmax(SPT) and 2::j=1 CJ s 2::j=1 C;(a) s 2::j=1 C;(MTST) for any 
Pareto optimal schedule a, where Pmax and Lf=l CJ denote the outcome of the respective 
single-criterion problems. 

Consider any Pareto optimal schedule a; let (Pmax(a), 2::j=1 C1(a)) be the corresponding 
Pareto optimal point. By definition, a solves the problems llPmax s Pmax(a)I 2::j=1 C1 and 
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112::j=1 C1 :<; 2::j=1 C1(u)IPmax; the notation Pmax :<; Pmax(u) in the second field means 
that we impose Pmax :<; Pmax(u) as an extra constraint that each feasible schedule has to 
satisfy. Hence, if we know some Pmax value P that may correspond to a Pareto optimal 
point, then we can determine the corresponding schedule O" and 2::j=1 C1 value by solving 
llPmax :<; Pl 2::j=1 Cj. Since any given value Pmax induces for each job 11 a release date 
r1 = max{O,s1 - Pmax} , we have to solve a problem of the form ljr112::j=1 C1. A generic 
strategy for solving the bicriteria problem is then to solve this type of problem for all Pmax 
values that may correspond to a Pareto optimal point and evaluate the function F for all 
the resulting combinations (Pmaxi 2::j= 1 C1)· Lenstra, Rinnooy Kan, and Brucker (1977), 
however, show that the llr1I LJ=• C1 problem is NP-hard in the strong sense. 

We therefore make the additional assumption that preemption of jobs is allowed, that is, 
the execution of any job may be interrupted and resumed later on. This assumption implies a 
crucial relaxation of the original problem; it has both positive and negative aspects. To start 
with the positive part: we can apply the generic approach now, since the l lpmtn, r1 I 2::j=1 C1 
problem is solvable in O(nlogn) time by Baker's algorithm (Baker, 1974): always keep the 
machine assigned to the available job with minimum remaining processing time. Note that 
this algorithm always generates a schedule without machine idle time if Pmax 2 P;;,,. •. The 
disadvantage is that we lose the equivalence that existed between the maximum promptness 
criterion and the maximum earliness criterion in case Sj = d1 - Pi· This is so, since a given 
value Emax induces an earliest completion time for each job, not a release date. 

Another crucial issue with respect to the applicability of the generic approach concerns 
the number of Pareto optimal points. Unfortunately, this number can grow arbitrarily large 
in general, since each value Pmax :<; Pmax(SPT) corresponds to a Pareto optimal point, as we 
are allowed to preempt at any point in time, not just at the integral points. Seemingly, this 
is another disadvantage of allowing preemption, but this problem complicates the nonpre
emptive version as well, since idle time can be inserted in any amount. The above implies 
that we can obtain a series of 2n consecutive Pareto optimal points with Pmax values that 
are multiples of 2-n. Using the result by Schrijver (see Hoogeveen, 1996) that the prob
lem of minimizing an arbitrary function F(x,y) that is nondecreasing in both arguments 
over 2n consecutive integral y values is NP-hard in the strong sense, we conclude that 
llpmtnlF(Ej=1 Cj, Pmax) and lllF(l:j=1 Cj, Pmax) are NP-hard in the strong sense. 

To deal with this infinite number of Pareto optimal points, we assume from now on that the 
composite objective function is linear; we can then limit ourselves to the subset of the set of 
Pareto optimal schedules that contains an optimal solution to the l lpmtnja1 LJ=I Cj+a2 Pmax 
problem for any a 1 2 0 and a 2 2 0. We define this set as the set of extreme schedules. 

Definition 2 A schedule O" E l1 is extreme with respect to (Lj=1 Cj, Pmax) if it corresponds 
to a vertex of the lower envelope of the Pareto optimal set for (LJ=l C1, P max). 

If the extreme set can be found in polynomial time and if its cardinality is polynomially 
bounded, then the llla1 2::j=1 C1 + a 2 Pmax problem is solved in polynomial time by computing 
the cost of each extreme point and taking the minimum. 

We start by analyzing the special case in which machine idle time before the processing 
of any job is prohibited; we later show that any instance of the general problem can be dealt 
with by reformulating it as an instance of the problem with no machine idle time allowed. 
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3.1 No machine idle time allowed 

Recall that if machine idle time is not allowed, then all jobs are processed in the interval 
[O, I:j=1 Pil· Hence, we only have to consider Pmax values in the interval [P:..U, Pmax(SPT)], 
and for each Pmax value P in this interval, Baker's algorithm provides an optimal schedule 
for the corresponding 1 lri, pmtn\ L:j=1 Ci problem that does not contain idle time; let a( P) 
denote this schedule and let (P, L:j=1 C;(a(P))) denote the point in ~2 corresponding to it. 

The problem is of course to distinguish between an extreme schedule and an ordinary 
Pareto optimal schedule. By definition, the schedule a(Pmax) is extreme if increasing Pmax 
by some € > 0 yields a smaller decrease in I:j=1 C; than a decrease of Prrut.x by the same 
amount E would cost. 

To illustrate the impact of an increase of Proa., consider the following two-job example 
with p1 = 10, p2 = 5, s1 = 0, and s2 = 10. We have that P:..U = 0 and the corresponding 
L:'J= 1 C; value amounts to 25. If we increase Pma., nothing happens until it becomes advan
tageous to preempt job l; this is the case for P=x = 5. Then, until PJrulX = 10, we gain Eon 
I:j=1 C; by increasing Pmax bye; the value Pmax = 10 allows the SPT schedule. 

From this example, we conclude that a schedule can only be extreme if a complete inter
change has occurred in a(P) , where an interchange is defined to be a complete interchange 
if there are two jobs J; and J; such that J; is started before J; in a(P - E), whereas J; is 
started before J; in a(P). 

Lemma 1 If P > P;,.,.., then the point (P, LJ=l C;(a(P))) can be extreme only if a complete 
interchange has occurred in a(P). D 

The next step is to determine the P max values P such that their corresponding points 
(P, LJ=t C;(a(P))) satisfy this necessary condition. Given a pair of jobs J; and J; with 
Pi > Pi and J; started before J1 in a(P), we have to increase the upper bound on Pmax 
such that Jj can start at time S;(a(P)). This will lead to a complete interchange of J, 
and J; in a(P1 ) , unless J; itself is started at an earlier time in the schedule a(P1

), where 
P 1 = s; - S;(a(P)) is the value of the upper bound on Pmax that makes J; available at time 
S;(a(P)). It is not possible to determine beforehand whether J; gets started earlier when the 
upper bound on Pmax is increased from P to P1 J;, except for one situation: J; is executed 
between the start and completion time of a preemptive job Jk . In that case, increasing the 
upper bound on P max will first lead to a uniform shift forward of J; and J; at the expense of 
Jk; the complete interchange of J; and J1 cannot take place before a complete interchange 
has taken place between Jk and both J; and J1. 

Algorithm I exploits these observations to generate e.ach point (P, LJ=l C;(a(Pmax)) for 
which a complete interchange in a(P) may take place. The vnriable a; (j = 1, ... , n) signifies 
the increase of the current Pmax value necessary to let a complete interchange involving J; 
and some successor take place. 

Algorithm I 

Step 0. Let P = P;,_ax· 
Step 1. Let T +- 0 and a; +-=for j = 1, ... , n; determine a(P) through Baker 's rule. 

Step 2. Let Jk be the job that starts at time Tin a(P) . Consider the following two cases: 
(a) Jk is a preempted job. Then ak is equal to the length of this portion of Jk· Set T +
Ck(a(P)) . 

(b) Jk is not a preempted job. Then ak +-min{ s; -P- Sk(a(P)) I J; E V}, where V denotes 
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the set of jobs Ji for which si - P > Sk(a(P)) and Pi> Pk · Set T <---- Ck(a(P)). 

Step 3. If T < "L'J=1 Pi, then go to Step 2. 

Step 4. Put P <---- min1:si:Sn ai + P. 
Step 5. If P = Pmax(SPT), then stop; otherwise go to Step 1. 

Theorem 1 Algorithm I generates all Pmax values P for which a complete interchange has 
taken place in the corresponding schedule a(P). 

Proof. Suppose that a complete interchange of the jobs J; and Ji with p; > Pi took place 
in the schedule a(P), where P was not detected by Algorithm I. Hence, S;(a(Pmax)) must 
have been ignored in Step 2, which could have happened only in Step 2(a): J; is started 
between the start and completion time of some preempted job Jk· This, however, conflicts 
with the earlier observation that the interchange of J; and Ji has to wait until Jk has been 
interchanged with both J; and Ji. D 

As remarked before, the algorithm may generate too many Pmax values P: in some of the 
schedules a(P) not a complete interchange bas taken place. This is due to Step 2b. There we 
implicitly assumed that the part of the schedule before Jk, which was defined as the job to be 
interchanged, would remain scheduled before Jk, that is, that Jk itself would not be started 
earlier. This is not necessarily the case, however, since an increase of the upper bound on Pmax 
may cause Jk to move forward at the expense of some job J, with Pl > Pk, where the increase 
of the upper bound is not large enough to allow a complete interchange; Jk will preempt J1 
then. Nevertheless, we now prove that the number of values Pmax generated by Algorithm I 
is polynomially bounded, thereby establishing that llpmtn, nmitla1 "L'J=1 Cj + a 2Pmax 1s 
polynomially solvable. We define for a given schedule a the indicator function 8;i(a) as 

8;i(a) = { ~' 
' 

if C;(a) ~Si( a) and p; > pj, 
otherwise. 

We further define ti.i(a) as "Li:,,1 8;i(a) plus the number of preemptions of Jj, and we let 
ti.(a) = "L'J=1 ti.i(a). 

Theorem 2 Let P 1 be the Pmax value that is found by Algorithm I when applied to a(P), 
where P is any Pmax value determined by Algorithm I. We "then have that ti.(a(P1)) < 
ti.(a(P)). 

Proof. As explained above, one of the following three things has happened in a( P 1
) m 

comparison to a(P): 

(i) a preemption has been removed (Step 2a); 

(ii) two jobs not in SPT-order have been interchanged (successful Step 2b ); 

(iii) a new preemption has been created (unsuccessful Step 2b ). 

All three cases have a negative effect on the value of ti., as is easily checked (in the third case 
we do create an extra preemption (effect +l), but this pair of jobs is no longer in the wrong 
order (effect -2)). Hence, we only have to show that there are no moves possible that have 
an overall positive effect on the value of ti.. The candidates for such a move are a switch of 
two jobs from SPT order to LPT order and the addition of an extra preemption. We first 
investigate the effect of the 'wrong' switch. 

Suppose that there are two jobs J; and Ji with p; > Pi such that J; succeeds Ji in a(P), 
whereas the order is reversed in a(P1 ). Since Baker 's algorithm prefers Ji to J; if both 
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a(P) k j 

k J k 

Figure 1: 'WRONG' SWITCH 

jobs are available, J; starts earlier in a(P1
) than J; in a(P), which means that the execution 

of (a part of) some job Jk is postponed until J; is completed. See Figure I for an illustration. 

It is easily checked that we have tl(a(P)) = 4 and .tl(a(P1 )) = 3. All we have to do is to show 
is that the situation depicted in Figure 1 is worst possible for this configuration. It is sufficient 
to prove that J; is available at time Ci(a(P 1 

)), that is, s;- P 1 S C;(a(P 1 )) = s; -P1 + p;; if 
so, Baker's algorithm will prefer it to Jk, since the remainder of Jk has length at least equal 
top;. Hence, we have to show that s; :S Si+ Pi· As Ji did not preempt Jk in a(P), we must 
haves; - P +Pi 2: Ck(a(P)) 2: s; - P , where the last inequality follows from the availability 
of J; at time Ck(a(P)). Since the smaller job is available as soon as the larger job involved 
in the wrong switch is completed, the increase of 8i; is compensated for by the decrease of 
fiki· Moreover, job Jk cannot trigger a set of nested wrong switches, where we mean with a 
set of nested wrong switches that a(P) and a(P1

) contain the subschedules Jk, Ji> Ji, Jh and 
Jh, J;, J;, Jk with P; <Pi <Ph <Pk· 

Now consider the situation that the number of preemptions of a job Jk increases. Hence, 
there must be a job J; with Pi <Pk that succeeds Jk in a(P) but not in a(P1 

), which move 
decreases the fl function by one. D 

Corollary 1 If preemption is allowed, then the number of extreme schedules with respect to 
(PIDAx> L:j=1 C;) is bounded by n(n -1) +I. 

Proof. We have that L'l(a) S n(n - 1) for any schedule a. Application of Theorem 2 yields 
the desired result. · D 

It is easy to construct an instance for which Algorithm I determines O(n2) different Pmax 
values. We have not found an example with O(n2) extreme points yet. 

Corollary 2 The llpmtn, nmitJa1 L:j=1 C; + o:2Pmax problem is solvable in O(n4
) time. D 

Theorem 3 If a 1 = 0:2, then there exists a nonpreemptive optimal schedule for the 
llpmtn, nmitlo:1 L:j=1 C; + 0:2Pmax problem. If 0:1 > 0:2, then any optimal schedule for the 
1Jpmtn, nmitJa1 L:j=1 C; + o:2 Pmax problem is nonpreemptive. 

Proof. Suppose that the optimal schedule contains a preempted job. Start at time 0 and 
find the first preempted job Ji immediately scheduled before some nonpreempted job J;. 
Consider the schedule obtained by interchanging job J; and this portion of job J;. If the 
length of the portion of job J; is t, then P; is increased by t, while C; is decreased by E. 

As o:1 = a 2 , the interchange does not increase the objective value. The argument can be 
repeated until a non preemptive schedule remains. In case a 1 > o:2 such an interchange would 
decrease the objective value, contradicting the optimality of the initial schedule. D 
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3.2 The general case 

We now drop the no machine idle time constraint. Obviously, if total completion time out
weighs maximum promptness, then the insertion of machine idle time before the processing 
of any job makes no sense. Hence, we have the following. 

Corollary 3 If a1 2: a2, then l I la1 L,'J=1 C1 + a2P max is solvable in 0( n4
) time. D 

If a 1 < a 2 , then the insertion of idle time may decrease the value of the objective func
tion. We now show that we can solve the ljpmtnla1 L,'J=1 Ci+ a2Pmax problem by using 
Algorithm I, which was initially designed for solving ljnmit ,pmtnla1 L:j=1 Ci+ a2Pmax· 

Suppose that a 1 and a 2 are given. Define q = a 2/a1. If q > n, then it is always 
advantageous to decrease Pmax, which implies that the execution of the first job will be 
delayed for ever and ever. To prevent unbounded solutions, we therefore assume that q :"::'. n. 
A straightforward computation then shows that in any optimal schedule at least L n - q + 1 J 
jobs are scheduled before the first incidence of idle time. The smallest value Pmax(q) for 
maximum promptness that leads to such a schedule is readily obtained. Moreover, no optimal 
schedule with Prru.x 2: P;..x contains idle time. Therefore, we need to consider the case 
Pmax(q) :"::'. Pmax :"::'. p;._x only. 

Consider any instance I of llpmtnla1 L,j=1 Ci+ a 2Prru.xi let o-{Pmax) denote any optimal 
schedule for I of ljriipmtnj L, Ci for any Pmax with Pmax(q) :"::'. Pmax :"::'. P~ and ri = 
max{O,si - Pmax} . 

We create a very large job J0 that is available from time 0 onwards to saturate o-(Pmax) 
by filling in J0 in the periods of idle time. In fact, J0 is so large that Baker's rule prefers each 
job in I to it; the choices So = Proax{q) and Po= P~ - Pmax(q) + maxl:5i:5nPj + 1 ensure 
such a saturation for any Pmax(q) :"::'. Pmax :"::'. P:W.x· Let I' denote the instance I to which Jo 
is added. Due to the choice of p0 and s0 , we have that no optimal schedule for the instance I' 
of llnmit,pmtnla1 L,j=1 +a2Pmax contains machine idle time, and moreover, that by simply 
removing J0 and leaving the rest of the schedule intact we obtain an optimal schedule for the 
original instance I of llpmtnla1 L:'J=1 +a2Pmax· After all, we have that C0 = L:'J=oP1 and 
that Po< Prru.x for any value of Pmax· Hence, instead of solving llpmtnla1 L:'J=1 Ci +a2Pmax 
for I , we solve llnmit ,pmtnia1 L:j=o C1 + a 2Pmax for I'. This approach provides us with the 
extreme points for (L:j=1 Cj, Pmax) with Pmax(q) :"::'. Pmax :"::'. P;..,. If q is unknown, then we 
obtain all bounded extreme points by running the above procedure with q = n; this choice 
of q corresponds to the smallest value Pmax(q) that may correspond to a bounded extreme 
point . 

As the number of extreme points is at most equal to n(n+l)+l (we have n+l jobs now), 
and as each P r=x value that corresponds to an extreme point is determined by Algorithm I, 
the llpmtnla1 L,'J=1 C1 + a 2Pmax problem is solved in O(n4 j time. 

Finally, we wish to mention two important special cases of our problem. These are the 
case that promptness is assumed to be nonnegative, that is, Pi= max{s1 - S1,0}, and the 
case that there is a given externally determined upper bound on Pmax · Either case can be 
dealt with by simply adjusting the objective function, and our algorithm can be used to 
solve the problem after the boundary points have been determined . 
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