
Scheduling with target start times

J.A. Hoogeveen
Department of Mathematics and Computing Science

Eindhoven University of Technology
E-mail: slam@win.tue.nl

S.L. van de Velde
Department of Mechanical Engineering

University of Twente
E-mail: s.l.vandevelde@wb.utwente.nl

Abstract

We address the single-machine problem of scheduling n independent jobs subject to
target start times. Target start times are essentially release times that may be violated
at a certain cost. The goal is to minimize an objective function that is composed of
total completion time and maximum promptness, which measures the observance of
these target start times. We show that in case of a linear objective function the problem
is solvable in 0(n4) time if preemption is allowed or if total completion time outweighs
maximum promptness.

1 Introduction

A production company has to deal with the traditional conflict between internal and external
efficiency of the production. Internal efficiency is the efficient use of the scarce resources. It
results in a cost reduction and hence in possibly more competitive prices or higher profits.
External efficiency is achieved by meeting the conditions superimposed by external relations.
Clients, for instance, insist on product quality, short delivery times, and in-time delivery,
among other things. Compromising product quality is playing with fire, but many a com
pany tries to get away with late deliveries. After all, a good due-date performance may be
achieved only in case of putting work out, overwork, frequent setups, or high setup costs.
Unfortunately, many companies do not realize that a better planning may accomplish the
same. This type of external efficiency, between the company and its clients, is actually
downstream; it is the extent by which the company successfully copes with the requirements
on the demand side.

We also distinguish upstream external efficiency. This is the extent by which the company
successfully copes with the conditions on the supply side. A company, for instance, negotiates
on the prices and delivery times of raw material. In order to achieve a higher internal
efficiency, but especially a better due date performance, it may be worthwhile to pay a
higher price to get the raw material sooner.

There exist several single-machine scheduling models of the trade-off between internal
and downstream external efficiency. Van Wassenhove and Gelders (1980), for instance,

45

consider a model for making the trade-off between work-in-process inventories and due date
performance; see also Hoogeveen and Van de Velde (1995). Schutten, Van de Velde, and
Zijm (1996) consider a batching problem for balancing out utilizing machine capacity against
due date performance. Single-machine problems seem to be oversimplified models, but the
study of these models makes sense, if we think of a company as a single-machine shop, or if
there is a single bottleneck. What is more, single-machine models serve as building-blocks
for solving complex scheduling problems.

In this paper, we study a single-machine scheduling model for striking a rational balance
between internal and upstream external efficiency. Our model specification is as follows.
A set of n independent jobs has to be scheduled on a single machine that is continuously
available from time zero onwards and that can process at most one job at a time. Each
job Ji (j = 1, ... , n) requires processing during a positive time Pi and has a target start
time Sj. Without loss of generality, we assume that the processing times and target start
times are integral. A schedule u specifies for each job when it is executed while observing
the machine availability constraints; hence, a schedule u defines for each job Ji its start
time Sj(u) and its completion time Cj(u). The promptness Pj(u) of job Ji is defined as
Pi(u) = Sj - Si(u), and the maximum promptness is defined as Pmax(u) = max1<i<n Pi(u).
We note that the maximum promptness Pmax(u) equals the maximum earliness 'E:,.x(u) =
max15j5n(di - Ci(u)) if each lj has a due date di for which Sj = dj - Pi and if interruption
of job processing is not allowed.

The problem we consider is to schedule the jobs so as to minimize total completion time
2:j=1 Ci and maximum promptness Pmax simultaneously. Total completion time 2:j=1 Ci is
a measure of the work-in-process inventories as well as the average leadtime. Hence, it is a
performance measure for internal efficiency as well as downstream external efficiency.

Maximum promptness measures the observance of target start times. If it is positive,
then it signals an inefficiency: at least one job is scheduled to start before its target start
time. Generally, this is possible only if we are willing to pay a penalty. In case the target
start times are derived from the delivery times of raw material, then this penalty is actually
the price of a speedier delivery. In case the target start times are derived from the completion
times of the parts in the preceding production stage, then this penalty may be an overwork
bonus to expedite the production. If the maximum promptness is negative, then it signals
a slack, which implies that we may increase the deadlines that are used in the preceding
production stage.

It is important to realize that the target start times are actually release times that may
be violated at a certain cost. In this sense, our problem comes close to the well-studied
single-machine problem of minimizing total completion time subject to release times; see for
instance Lenstra, Rinnooy Kan, and Brucker (1977) and .Ahmadi and Bagchi (1990).

We now give a formal specification of our objective function. We associate with each
schedule u a point (2:j=1 Cj(u) , Pmax(u)) in lR2 and a value F(2:j=1 Cj(u),Pma.x(u)). The
function F : n -> R, where n denotes the set of all feasible schedules, is a given composite
objective function that is nondecreasing in either of its arguments; this implies that for any
two schedules u and 7r with 2:j=1 Cj(O') :S 2:j=1 Cj(7r) and Pmax(u) :S Pmax(7r) we have that
F(2::j=1 Ci(u), Pmax(u)) :S F(2:'J=1 Cj(7r), Pmax(7r)). Our problem is then formulated as

n

min{F(L; Cilu) , Pmax(u)) IO' En} .
i=l

Extending the three-field notation scheme of Graham, Lawler, Lenstra, and Rinnooy Kan
(1979), we denote this problem by 1llF(2:j=1 Ci> Pmax)· The special case in which the func
t ion Fis linear is denoted by llla1 2:j=1 Ci+ a2Pmax. where a1 2'. 0 and a2 2'. 0.

46

In comparison to single-criterion problems, there are few papers on multicriteria schedul
ing problems. We refer to Dileepan and Sen (1988) and Hoogeveen (1992) for an overview
of problems, polynomial algorithms, and complexity results.

This paper is organized as follows. In Section 2, we make some general observations
and outline a generic strategy for solving the l I JFCL.i=i Ci> P max) problem. We also point
out that 1llF(2:;j=1 Cj, Pmax) as well as its preemptive version llpmtnlF(2:;j=1 Ci> Pmax), in
which jobs may be interrupted and resumed later on, are .NP-hard in the strong sense. In
Section 3, we consider the linear variant llpmtnla1 2::j=1 Ci+ a2Pmax· Our main results are
that l lpmtnla1 2::j=1 C; + a2P max and, in the case that a1 ~ a2, also l I la1 Lf=l C; + a2P max
are solvable in O(n4) time.

2 General observations

The fundamental question is whether the 1 I IF(2:;j=1 C;, P max) problem is solvable in poly
nomial time for any given function F that is nondecreasing in its arguments. The first
observation we make is that this is so, if we can identify all the so-called Pareto optimal
schedules in polynomial time.

Definition 1 A schedule a E !1 is Pareto optimal with respect to the objective functions
(2::j=1 C;, P max) if there exists no feasible schedule 11' with either Lf=I C; (11') S Lf=l C; (a)
and Pmax(11') < Pmax(a), or 2:;j=l C1(11') < Lf=l C;(a) and Pmax(11') S Pmax(a).

Once the Pareto optimal set, that is , the set of all schedules that are Pareto optimal with
respect to the functions (2::j=1 Cj, Pmax), has been determined, the 1llF(2:;j=1 C;, Pmax) prob
lem can be solved for any function F by computing the cost of each Pareto optimal point
and taking the minimum. Hence, if each Pareto optimal schedule can be found in polynomial
time and the number of Pareto optimal schedules is polynomially bounded, then the problem
is solvable in polynomial time.

We start with analyzing the two single-criterion problems that are embedded within
lllF(I::j=l C;,Pmax) , that is, lllPmax and lll Lf=l C;. The lllPmax problem is clearly mean
ingless, since we can improve upon each solution by inserting extra idle time at the beginning
of the schedule. Hence, we impose the restriction that machine ·idle time before the process
ing of any job is prohibited, that is, all jobs are to be scheduled in the interval [O, Lf=I p;].
It is easily checked that in case of a given overall deadline D > 2::j=1 P; the optimal schedule
is obtained by inserting D - Lf=I Pi units of idle time before the start of the first job. In the
three-field notation scheme, the no machine idle time constraint is denoted by the acronym
nmit in the second field. The llnmitlPmax problem is solved by sequencing the jobs in order
of non-decreasing target start times s;. The 1 I I Lf=I C; problem is solved by sequencing the
jobs in order of non-decreasing processing times P; (Smith, 1956). Let now MT ST be an
optimal schedule for the llnmitlPmax problem in which ties are settled to minimize total
completion time; MT ST is the abbreviation of minimum target start time. In addition, let
SPT be an optimal schedule for the lll Lf=I C; problem, in which ties are settled to minimize
maximum promptness; SPT is the abbreviation of shortest processing time. It then follows
that P;;.ax s Pmax(a) s Pmax(SPT) and 2::j=1 CJ s 2::j=1 C;(a) s 2::j=1 C;(MTST) for any
Pareto optimal schedule a, where Pmax and Lf=l CJ denote the outcome of the respective
single-criterion problems.

Consider any Pareto optimal schedule a; let (Pmax(a), 2::j=1 C1(a)) be the corresponding
Pareto optimal point. By definition, a solves the problems llPmax s Pmax(a)I 2::j=1 C1 and

47

112::j=1 C1 :<; 2::j=1 C1(u)IPmax; the notation Pmax :<; Pmax(u) in the second field means
that we impose Pmax :<; Pmax(u) as an extra constraint that each feasible schedule has to
satisfy. Hence, if we know some Pmax value P that may correspond to a Pareto optimal
point, then we can determine the corresponding schedule O" and 2::j=1 C1 value by solving
llPmax :<; Pl 2::j=1 Cj. Since any given value Pmax induces for each job 11 a release date
r1 = max{O,s1 - Pmax} , we have to solve a problem of the form ljr112::j=1 C1. A generic
strategy for solving the bicriteria problem is then to solve this type of problem for all Pmax
values that may correspond to a Pareto optimal point and evaluate the function F for all
the resulting combinations (Pmaxi 2::j= 1 C1)· Lenstra, Rinnooy Kan, and Brucker (1977),
however, show that the llr1I LJ=• C1 problem is NP-hard in the strong sense.

We therefore make the additional assumption that preemption of jobs is allowed, that is,
the execution of any job may be interrupted and resumed later on. This assumption implies a
crucial relaxation of the original problem; it has both positive and negative aspects. To start
with the positive part: we can apply the generic approach now, since the l lpmtn, r1 I 2::j=1 C1
problem is solvable in O(nlogn) time by Baker's algorithm (Baker, 1974): always keep the
machine assigned to the available job with minimum remaining processing time. Note that
this algorithm always generates a schedule without machine idle time if Pmax 2 P;;,,. •. The
disadvantage is that we lose the equivalence that existed between the maximum promptness
criterion and the maximum earliness criterion in case Sj = d1 - Pi· This is so, since a given
value Emax induces an earliest completion time for each job, not a release date.

Another crucial issue with respect to the applicability of the generic approach concerns
the number of Pareto optimal points. Unfortunately, this number can grow arbitrarily large
in general, since each value Pmax :<; Pmax(SPT) corresponds to a Pareto optimal point, as we
are allowed to preempt at any point in time, not just at the integral points. Seemingly, this
is another disadvantage of allowing preemption, but this problem complicates the nonpre
emptive version as well, since idle time can be inserted in any amount. The above implies
that we can obtain a series of 2n consecutive Pareto optimal points with Pmax values that
are multiples of 2-n. Using the result by Schrijver (see Hoogeveen, 1996) that the prob
lem of minimizing an arbitrary function F(x,y) that is nondecreasing in both arguments
over 2n consecutive integral y values is NP-hard in the strong sense, we conclude that
llpmtnlF(Ej=1 Cj, Pmax) and lllF(l:j=1 Cj, Pmax) are NP-hard in the strong sense.

To deal with this infinite number of Pareto optimal points, we assume from now on that the
composite objective function is linear; we can then limit ourselves to the subset of the set of
Pareto optimal schedules that contains an optimal solution to the l lpmtnja1 LJ=I Cj+a2 Pmax
problem for any a 1 2 0 and a 2 2 0. We define this set as the set of extreme schedules.

Definition 2 A schedule O" E l1 is extreme with respect to (Lj=1 Cj, Pmax) if it corresponds
to a vertex of the lower envelope of the Pareto optimal set for (LJ=l C1, P max).

If the extreme set can be found in polynomial time and if its cardinality is polynomially
bounded, then the llla1 2::j=1 C1 + a 2 Pmax problem is solved in polynomial time by computing
the cost of each extreme point and taking the minimum.

We start by analyzing the special case in which machine idle time before the processing
of any job is prohibited; we later show that any instance of the general problem can be dealt
with by reformulating it as an instance of the problem with no machine idle time allowed.

48

3.1 No machine idle time allowed

Recall that if machine idle time is not allowed, then all jobs are processed in the interval
[O, I:j=1 Pil· Hence, we only have to consider Pmax values in the interval [P:..U, Pmax(SPT)],
and for each Pmax value P in this interval, Baker's algorithm provides an optimal schedule
for the corresponding 1 lri, pmtn\ L:j=1 Ci problem that does not contain idle time; let a(P)
denote this schedule and let (P, L:j=1 C;(a(P))) denote the point in ~2 corresponding to it.

The problem is of course to distinguish between an extreme schedule and an ordinary
Pareto optimal schedule. By definition, the schedule a(Pmax) is extreme if increasing Pmax
by some € > 0 yields a smaller decrease in I:j=1 C; than a decrease of Prrut.x by the same
amount E would cost.

To illustrate the impact of an increase of Proa., consider the following two-job example
with p1 = 10, p2 = 5, s1 = 0, and s2 = 10. We have that P:..U = 0 and the corresponding
L:'J= 1 C; value amounts to 25. If we increase Pma., nothing happens until it becomes advan
tageous to preempt job l; this is the case for P=x = 5. Then, until PJrulX = 10, we gain Eon
I:j=1 C; by increasing Pmax bye; the value Pmax = 10 allows the SPT schedule.

From this example, we conclude that a schedule can only be extreme if a complete inter
change has occurred in a(P) , where an interchange is defined to be a complete interchange
if there are two jobs J; and J; such that J; is started before J; in a(P - E), whereas J; is
started before J; in a(P).

Lemma 1 If P > P;,.,.., then the point (P, LJ=l C;(a(P))) can be extreme only if a complete
interchange has occurred in a(P). D

The next step is to determine the P max values P such that their corresponding points
(P, LJ=t C;(a(P))) satisfy this necessary condition. Given a pair of jobs J; and J; with
Pi > Pi and J; started before J1 in a(P), we have to increase the upper bound on Pmax
such that Jj can start at time S;(a(P)). This will lead to a complete interchange of J,
and J; in a(P1) , unless J; itself is started at an earlier time in the schedule a(P1

), where
P 1 = s; - S;(a(P)) is the value of the upper bound on Pmax that makes J; available at time
S;(a(P)). It is not possible to determine beforehand whether J; gets started earlier when the
upper bound on Pmax is increased from P to P1 J;, except for one situation: J; is executed
between the start and completion time of a preemptive job Jk . In that case, increasing the
upper bound on P max will first lead to a uniform shift forward of J; and J; at the expense of
Jk; the complete interchange of J; and J1 cannot take place before a complete interchange
has taken place between Jk and both J; and J1.

Algorithm I exploits these observations to generate e.ach point (P, LJ=l C;(a(Pmax)) for
which a complete interchange in a(P) may take place. The vnriable a; (j = 1, ... , n) signifies
the increase of the current Pmax value necessary to let a complete interchange involving J;
and some successor take place.

Algorithm I

Step 0. Let P = P;,_ax·
Step 1. Let T +- 0 and a; +-=for j = 1, ... , n; determine a(P) through Baker 's rule.

Step 2. Let Jk be the job that starts at time Tin a(P) . Consider the following two cases:
(a) Jk is a preempted job. Then ak is equal to the length of this portion of Jk· Set T +
Ck(a(P)) .

(b) Jk is not a preempted job. Then ak +-min{ s; -P- Sk(a(P)) I J; E V}, where V denotes

49

the set of jobs Ji for which si - P > Sk(a(P)) and Pi> Pk · Set T <---- Ck(a(P)).

Step 3. If T < "L'J=1 Pi, then go to Step 2.

Step 4. Put P <---- min1:si:Sn ai + P.
Step 5. If P = Pmax(SPT), then stop; otherwise go to Step 1.

Theorem 1 Algorithm I generates all Pmax values P for which a complete interchange has
taken place in the corresponding schedule a(P).

Proof. Suppose that a complete interchange of the jobs J; and Ji with p; > Pi took place
in the schedule a(P), where P was not detected by Algorithm I. Hence, S;(a(Pmax)) must
have been ignored in Step 2, which could have happened only in Step 2(a): J; is started
between the start and completion time of some preempted job Jk· This, however, conflicts
with the earlier observation that the interchange of J; and Ji has to wait until Jk has been
interchanged with both J; and Ji. D

As remarked before, the algorithm may generate too many Pmax values P: in some of the
schedules a(P) not a complete interchange bas taken place. This is due to Step 2b. There we
implicitly assumed that the part of the schedule before Jk, which was defined as the job to be
interchanged, would remain scheduled before Jk, that is, that Jk itself would not be started
earlier. This is not necessarily the case, however, since an increase of the upper bound on Pmax
may cause Jk to move forward at the expense of some job J, with Pl > Pk, where the increase
of the upper bound is not large enough to allow a complete interchange; Jk will preempt J1
then. Nevertheless, we now prove that the number of values Pmax generated by Algorithm I
is polynomially bounded, thereby establishing that llpmtn, nmitla1 "L'J=1 Cj + a 2Pmax 1s
polynomially solvable. We define for a given schedule a the indicator function 8;i(a) as

8;i(a) = { ~'
'

if C;(a) ~Si(a) and p; > pj,
otherwise.

We further define ti.i(a) as "Li:,,1 8;i(a) plus the number of preemptions of Jj, and we let
ti.(a) = "L'J=1 ti.i(a).

Theorem 2 Let P 1 be the Pmax value that is found by Algorithm I when applied to a(P),
where P is any Pmax value determined by Algorithm I. We "then have that ti.(a(P1)) <
ti.(a(P)).

Proof. As explained above, one of the following three things has happened in a(P 1
) m

comparison to a(P):

(i) a preemption has been removed (Step 2a);

(ii) two jobs not in SPT-order have been interchanged (successful Step 2b);

(iii) a new preemption has been created (unsuccessful Step 2b).

All three cases have a negative effect on the value of ti., as is easily checked (in the third case
we do create an extra preemption (effect +l), but this pair of jobs is no longer in the wrong
order (effect -2)). Hence, we only have to show that there are no moves possible that have
an overall positive effect on the value of ti.. The candidates for such a move are a switch of
two jobs from SPT order to LPT order and the addition of an extra preemption. We first
investigate the effect of the 'wrong' switch.

Suppose that there are two jobs J; and Ji with p; > Pi such that J; succeeds Ji in a(P),
whereas the order is reversed in a(P1). Since Baker 's algorithm prefers Ji to J; if both

50

a(P) k j

k J k

Figure 1: 'WRONG' SWITCH

jobs are available, J; starts earlier in a(P1
) than J; in a(P), which means that the execution

of (a part of) some job Jk is postponed until J; is completed. See Figure I for an illustration.

It is easily checked that we have tl(a(P)) = 4 and .tl(a(P1)) = 3. All we have to do is to show
is that the situation depicted in Figure 1 is worst possible for this configuration. It is sufficient
to prove that J; is available at time Ci(a(P 1

)), that is, s;- P 1 S C;(a(P 1)) = s; -P1 + p;; if
so, Baker's algorithm will prefer it to Jk, since the remainder of Jk has length at least equal
top;. Hence, we have to show that s; :S Si+ Pi· As Ji did not preempt Jk in a(P), we must
haves; - P +Pi 2: Ck(a(P)) 2: s; - P , where the last inequality follows from the availability
of J; at time Ck(a(P)). Since the smaller job is available as soon as the larger job involved
in the wrong switch is completed, the increase of 8i; is compensated for by the decrease of
fiki· Moreover, job Jk cannot trigger a set of nested wrong switches, where we mean with a
set of nested wrong switches that a(P) and a(P1

) contain the subschedules Jk, Ji> Ji, Jh and
Jh, J;, J;, Jk with P; <Pi <Ph <Pk·

Now consider the situation that the number of preemptions of a job Jk increases. Hence,
there must be a job J; with Pi <Pk that succeeds Jk in a(P) but not in a(P1

), which move
decreases the fl function by one. D

Corollary 1 If preemption is allowed, then the number of extreme schedules with respect to
(PIDAx> L:j=1 C;) is bounded by n(n -1) +I.

Proof. We have that L'l(a) S n(n - 1) for any schedule a. Application of Theorem 2 yields
the desired result. · D

It is easy to construct an instance for which Algorithm I determines O(n2) different Pmax
values. We have not found an example with O(n2) extreme points yet.

Corollary 2 The llpmtn, nmitJa1 L:j=1 C; + o:2Pmax problem is solvable in O(n4
) time. D

Theorem 3 If a 1 = 0:2, then there exists a nonpreemptive optimal schedule for the
llpmtn, nmitlo:1 L:j=1 C; + 0:2Pmax problem. If 0:1 > 0:2, then any optimal schedule for the
1Jpmtn, nmitJa1 L:j=1 C; + o:2 Pmax problem is nonpreemptive.

Proof. Suppose that the optimal schedule contains a preempted job. Start at time 0 and
find the first preempted job Ji immediately scheduled before some nonpreempted job J;.
Consider the schedule obtained by interchanging job J; and this portion of job J;. If the
length of the portion of job J; is t, then P; is increased by t, while C; is decreased by E.

As o:1 = a 2 , the interchange does not increase the objective value. The argument can be
repeated until a non preemptive schedule remains. In case a 1 > o:2 such an interchange would
decrease the objective value, contradicting the optimality of the initial schedule. D

51

3.2 The general case

We now drop the no machine idle time constraint. Obviously, if total completion time out
weighs maximum promptness, then the insertion of machine idle time before the processing
of any job makes no sense. Hence, we have the following.

Corollary 3 If a1 2: a2, then l I la1 L,'J=1 C1 + a2P max is solvable in 0(n4
) time. D

If a 1 < a 2 , then the insertion of idle time may decrease the value of the objective func
tion. We now show that we can solve the ljpmtnla1 L,'J=1 Ci+ a2Pmax problem by using
Algorithm I, which was initially designed for solving ljnmit ,pmtnla1 L:j=1 Ci+ a2Pmax·

Suppose that a 1 and a 2 are given. Define q = a 2/a1. If q > n, then it is always
advantageous to decrease Pmax, which implies that the execution of the first job will be
delayed for ever and ever. To prevent unbounded solutions, we therefore assume that q :"::'. n.
A straightforward computation then shows that in any optimal schedule at least L n - q + 1 J
jobs are scheduled before the first incidence of idle time. The smallest value Pmax(q) for
maximum promptness that leads to such a schedule is readily obtained. Moreover, no optimal
schedule with Prru.x 2: P;..x contains idle time. Therefore, we need to consider the case
Pmax(q) :"::'. Pmax :"::'. p;._x only.

Consider any instance I of llpmtnla1 L,j=1 Ci+ a 2Prru.xi let o-{Pmax) denote any optimal
schedule for I of ljriipmtnj L, Ci for any Pmax with Pmax(q) :"::'. Pmax :"::'. P~ and ri =
max{O,si - Pmax} .

We create a very large job J0 that is available from time 0 onwards to saturate o-(Pmax)
by filling in J0 in the periods of idle time. In fact, J0 is so large that Baker's rule prefers each
job in I to it; the choices So = Proax{q) and Po= P~ - Pmax(q) + maxl:5i:5nPj + 1 ensure
such a saturation for any Pmax(q) :"::'. Pmax :"::'. P:W.x· Let I' denote the instance I to which Jo
is added. Due to the choice of p0 and s0 , we have that no optimal schedule for the instance I'
of llnmit,pmtnla1 L,j=1 +a2Pmax contains machine idle time, and moreover, that by simply
removing J0 and leaving the rest of the schedule intact we obtain an optimal schedule for the
original instance I of llpmtnla1 L:'J=1 +a2Pmax· After all, we have that C0 = L:'J=oP1 and
that Po< Prru.x for any value of Pmax· Hence, instead of solving llpmtnla1 L:'J=1 Ci +a2Pmax
for I , we solve llnmit ,pmtnia1 L:j=o C1 + a 2Pmax for I'. This approach provides us with the
extreme points for (L:j=1 Cj, Pmax) with Pmax(q) :"::'. Pmax :"::'. P;..,. If q is unknown, then we
obtain all bounded extreme points by running the above procedure with q = n; this choice
of q corresponds to the smallest value Pmax(q) that may correspond to a bounded extreme
point .

As the number of extreme points is at most equal to n(n+l)+l (we have n+l jobs now),
and as each P r=x value that corresponds to an extreme point is determined by Algorithm I,
the llpmtnla1 L,'J=1 C1 + a 2Pmax problem is solved in O(n4 j time.

Finally, we wish to mention two important special cases of our problem. These are the
case that promptness is assumed to be nonnegative, that is, Pi= max{s1 - S1,0}, and the
case that there is a given externally determined upper bound on Pmax · Either case can be
dealt with by simply adjusting the objective function, and our algorithm can be used to
solve the problem after the boundary points have been determined .

References

[l] R. Ahmadi, U. Bagchi (1990). Lower bounds for single-machine scheduling problems.
Naval Res. Log. Quart. 37, 967-979.

52

[2] K.R. BAKER (1974). Introduction to Sequencing and Scheduling, Wiley, New York.

[3] P. DILEEPA'.\ A!-iD T. SEN (1988). Bicriterion static scheduling research for a single
machine. Omega 16. 53-.59.

[.f] :\LR. GAREY A:'iD D.S. JOHNSON (1979). Computers and Intractability: a Guide to
the Theory of NP-Completeness. Freeman, San Francisco.

[.5] R.1. GRAHA~I. E.L. LAWLER. J.K. LENSTRA, AND A.H.G. RINNOOY KAN

(1979). Optimization and approximation in deterministic sequencing and schedul
ing: a survey. Annals of Discrete 1\tlathematics 5, 287-326.

[6] J.A. HOOGEVEEN (1992). Single-machine bicriteria scheduling, PhD Thesis, CWI,
Amsterdam.

[7] J .A. HOOGEVEEN (1996). :V1inimizing maximum promptness and maximum lateness
on a single machine. Mathematics of Operations Research 21, 100-114.

[8] J.A. HOOGEVEEN A:'iD S.L. VAN DE VELDE (1995). Minimizing total completion
and maximum cost simultaneously is solvable in polynomial time, Operations Research
Letters 17, 205-208.

[9] J.K. LENSTRA, A.H.G. RINNOOY KAN, AND P. BRUCKER (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

[10] M. SCHUTTEN, S.L. VAN DE VELDE, AND W.H.M. ZIJM (1996). Single-machine
scheduling with release dates, due date, and family setup times, Management Science
42, 1165-1174.

[11] W.E. SMITH (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly 1, 59-66.

[12] L.N. VANWASSENHOVE AND F. GELDERS (1980). Solving a bicriterion scheduling
problem. European Journal of Operational Research 4, 42-48.

53

