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Abstract: A set of n jobs has to be scheduled on a single machine which can handle only one job at a time. 
Each job requires a given positive uninterrupted processing time and has a positive weight. The problem is 
to find a schedule that minimizes the sum of weighted deviations of the job completion times from a given 
common due date d, which is smaller than the sum of the processing times. We prove that this problem is 
NP-hard even if all job weights are equal. In addition, we present a pseudopolynomial algorithm that 
requires O(n2d) time and O(nd) space. 
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I. Introduction 

Recently, we have seen a growing interest in 
just-in-time manufacturing. This concept decrees 
that products should be completed as close to 
their due dates as possible in order to avoid both 
storage costs as a result of early completions and 
penalty costs inflicted on account of late de- 
liveries. This might induce the following types of 
problems for the single-machine job shop. 

A set of n independent jobs has to be sched- 
uled on a single machine, which can handle only 
one job at a time. The machine is assumed to be 
continuously available from time 0 onwards. Job 
Ji (i = 1 . . . . .  n) has a given positive uninterrupted 
processing time Pi and should ideally be com- 
pleted at a given due date d~. Without loss of 
generality, we assume that the processing times 
and the due dates are integral. A schedule defines 
for each job ~ a completion time G such that the 
jobs do not overlap in their execution. Given a 
schedule S, the earliness and tardiness of job Ji 
are defined as  E i = max ( d i - C i, 0} and T i = 

max {C i -  di, 0}, respectively. The just-in-time 
philosophy is reflected in the objective function 

f ( S )  = ~ (a iE  ~ + fliT,). 
~=1 

For a review on problems with this type of objec- 
tive function, see Baker and Scudder (1990). 

An important subclass contains the set of prob- 
lems that deal with a common due date d for all 
jobs. The common due date is either specified as 
part of the problem instance, or is a decision 
variable that has to be optimized with the job 
sequence simultaneously. As the first job may 
start later than time 0, the optimal schedule is 
identical for both problems unless the common 
due date d is restrictively small (d < ~Pi). There- 
fore, the first variant is referred to as the restricted 
problem and the second variant as the unrestricted 
problem. 

We will call the earliness and tardiness penalty 
weights symmetric if a~ = fli for each i = 1 . . . . .  n. 
For the case of nonsymmetric weights, only one 
problem type has been investigated, namely the 
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case in which all a i are equal and all fl~ are equal. 
Bagchi, Chang and Sullivan (1987) and Emmons 
(1987) present an O(n log n) algorithm for the 
unrestricted variant, while Bagchi et al. (1987) 
propose a branch-and-bound algorithm for the 
restricted problem. 

If the earliness and tardiness penalty weights 
are symmetric, then the problem reduces to find- 
ing a schedule S that minimizes the weighted sum 
of the deviations of the completion times from the 
common due date: 

f ( S )  = ~ w e l f , - d l .  
i=1 

There are two notable results for the case that 
d >/EPv Kanet (1981) gives and O(n log n) time 
algorithm to find an optimal schedule, if all weights 
are equal. Hall and Posner (1989) show that the 
problem with symmetric weights is NP-hard. 

In contrast, we focus our attention on the case 
that d < Epv In Section 2 we prove some proper- 
ties of an optimal schedule. In Section 3 we estab- 
lish NP-hardness of the problem, even for the case 
that all job weights are equal. We note that Hall, 
Kubiak and Sethi (1989) independently obtained 
this result by a slightly more complicated proof. 
This result justifies the development of enumera- 
tive algorithms by Bagchi, Sullivan and Chang 
(1986) and by Szwarc (1989) for minimizing 
E" i=~ IC~- d l subject to a common due date d < 
Ep~. In contrast, we present a pseudopolynomial 
algorithm in Section 4 for 1 IIEw~ I C~- d I, which 
requires O(n2d) time and O(nd)  space. Our al- 
gorithm is applicable to a more general problem 
type than the pseudopolynomial algorithm of Hall 
et al. (1989), which can only handle equal job 
weights. In Section 5 we present some well-solva- 
ble cases. 

2. Basic  concepts  

It is straightforward to verify that no optimal 
solution has any idle time between the execution 
of jobs. In case there were idle time, the schedul- 
ing cost could be reduced by closing the gap. The 
next two theorems further characterize any opti- 
mal solution. 

T h e o r e m  1. In any optimal schedule S, the jobs J~ 
that are completed before or at the common due date 

d are scheduled in order of nondecreasing values of 
wi /pi ,  and the jobs that are started at or after d are 
scheduled in order of  nonincreasing values of w i /p i .  

Proof. This follows immediately from Smith's ratio 
rule (Smith, 1956). [] 

Theorem 2. In each optimal schedule S, either the 
first job starts at time 0 or the due date d coincides 
with the start time or completion time of the job with 
the largest ratio wi/Pi.  

Proof. For  a given schedule S, let B ( S )  denote the 
set of jobs that are completed before or at the 
common due date and A ( S )  the set of jobs com- 
pleted after the due date. Define A = E j, ~ s(s)Wi - 
5~j, ~ ms)W, We consider the cases in which A < 0 
and A >t 0 separately. 

Suppose first A < 0. If S starts at time T > 0, 
determine t = rain ( T, rninj, ~ A(s)C~ - d }. If the 
entire schedule is put t time units earlier, then the 
reduction in cost equals - t A  > 0. In the new 
situation either schedule S starts at time T = 0 or 
one job has moved from A ( S )  to B(S) .  If still 
T > 0 and A < 0, we repeat the procedure until we 
arrive at a situation in which T = 0 or A >/0, and 
no further improvement is possible. The latter 
case implies that the due date coincides with the 
completion time of one job and the start time of 
another. Because of Theorem 1, one of these jobs 
must be the job with the largest ratio w J p ,  

On the other hand, in the case of A >/0, reverse 
arguments can be applied to show that the due 
date coincides with the completion or start time of 
the job with the largest ratio w y p v  [] 

Note that Theorem 1 does not impose any restric- 
tions on a job that is started before and completed 
after the due date. Consider the following instance 
with n = 3 ,  p ] = 8 ,  p 2 =  10, p 3 = 4 ,  w 1 =5 ,  w2= 
7, w 3 = 3, and d =  15. The optimal solution is 
shown in Figure 1 and demonstrates that such a 
job can exist, and that it can even have the smal- 
lest ratio wi/pi. 

I 
0 d = 1 5  

Figure I 
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3. Scheduling around a small common due date is 
NP-hard 

In this section we prove  that  this p rob lem is 
NP-ha rd  even if w~ = 1 for each job  J,, by showing 
that  the corresponding decision p rob lem is NP-  
complete.  The reduction is f rom E v e n - O d d  part i-  
tion. 

Even-Odd partition (Garey,  Tar jan  and Wilfong, 
1988): Given  a set of 2n positive integers B = 
(b  1 . . . . .  b2, ) such that  bi>bi+ 1 for each i =  
1 . . . . .  2 n -  1, is there a par t i t ion of B into two 
subsets B 1 and B 2 such that  Y~bi~ B,b, = Eb,~ B2b, 
= A and such that  B 1 contains exactly one of 
(b2, 1, b2i} for e a c h i = l  . . . . .  n? 

We start  by describing a reduct ion f rom the 
Even-Odd par t i t ion p rob lem to the small c o m m o n  
due date p rob lem with w~ = 1 for all J,. Let B = 
( b  I . . . . .  b2n } be an arbi t rary  instance of the Even- 
Odd  part i t ion problem,  with A = ~.bJ2. Con-  
struct the following set of jobs:  2n ' pa r t i t ion '  jobs,  
Ji with processing times p~ = bi + nA for each i = 
1 . . . . .  2n, an addit ional  job  J0 with p0 = 3 ( n 2 +  
1)A, weights wi= 1 for i = 0  . . . . .  2n, and a com- 
m o n  due date d = (n 2 + 1)A. In  addition, we de- 
fine a threshold value Y0 = Y~7=l[( i + 1)(P2i- i  + 
P2,)] + d on the scheduling cost. 

Consider  a part i t ioning of the set of par t i t ion 
jobs  (J1 . . . . .  J2~) into the sets B1 = {Jl l ,  
J21 . . . . .  J~l } and B 2 ----- ( . / 1 2 ,  "]22 . . . . .  Jn2 }, where 
( J,1, Ji2 } = ( J2i- 1, J2i } for each i = 1 . . . . .  n. 

Lemma 1. I f  the partitioning into the se ts  B 1 and B 2 
corresponds to a solution of the Even-Odd partition 
problem, then the cost of schedule S O constructed as 
shown in Figure 2 equals the threshold value Yo. 

Proof.  No te  that  the jobs  in B 1 and B 2 a r e  sched- 
uled as indicated in Theorem 1. The  verification 
then only requires s t raightforward computa t ions .  
[] 

r I t [ 
0 d 

F i g u r e  2. S c h e d u l e  S O 

We now prove  that,  conversely,  any schedule S 
with f (S)<~ Yo must  have the same structure as 
So, and that  the subsets B 1 and B e must  corre- 
spond  to a solution of the Even-Odd  Part i t ion 
problem.  

Proposition 1. Suppose S is a schedule with schedul- 
ing cost f lS) <<. Yo. Then S has the following proper- 
ties." 

(1) At  most n jobs can be completed before the 
due date d. 

(2) The first job must start at time O. 
(3) The additional job Jo is scheduled last. 
(4) At  least n - 1 jobs must be completed before 

the due date d. 

Proof .  (1) This  is due to the choice of  the 
processing times. 

(2) This follows immedia te ly  f rom the first 
p roper ty  and the p roof  of  Theo rem 2. 

(3) Suppose  J0 is not  scheduled last. Then, 
because of Theo rem 1, J0 must  start  before  the 
c o m m o n  due date d. Since at most  n jobs  can be 
scheduled before  j ob  Jo, for  at least n + 1 jobs  in 
S we have C i - d >/P0 - d = 2d. This implies that  
f ( S )  >1 2(n + 1)d>~ (n + 4)d. However ,  as each of 
the multipliers of  Pl . . . . .  Pn in Y0 is at most  
½(n + 3), while ZT=l(i + 1) = ½n(n + 3), we have 
the following inequality:  

t/ 

Yo = E [ ( i + l ) ( p 2 ,  I + P 2 , ) ]  + d  
i = 1  

2 n  

< ½(n+ 3) ~'~p~+d 
i = 1  

= ( n + a ) d < ~ f ( S ) ,  

which contradicts  the assumpt ion .  
(4) This follows immedia te ly  f rom the first three 

proper t ies  and the choice of  the processing times. 
[] 

Lemma 2. Suppose S & an optimal schedule with 
f(S) <~ Yo. Then the due date d must coincide with the 
completion time of the n-th job in the schedule S, the 
schedule S must have the same structure as the 
schedule So, and provide an affirmative answer to 
the Even-Odd partition problem. 

Proof .  Assume  that  s( i )  denotes  the index of the 
job  that  is scheduled on posi t ion i in schedule S. 
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We compute the scheduling cost relative to the 
imaginary due date k=p~(1 ) + .-- +p~(,). Then 
we have 

2 n  

~ IC,.-kl 
i=O 

/I 

= Y'. [ ( i -  1)p~(i)] 
i=1 

2n 

+ E [ ( 2 n +  2- i )ps( i )  ] + 3d 
i = n + l  

= ~ [(i + l)p,(i) ] 
i=l 

2n 

+ y" [ ( 2 n + 2 - i ) p , ( i ) ] + 3 d - 2 k  
i = n + l  

: ~ [ ( i + I ) P , ( o  l 
i=1  

+ ~ [ ( i +  1)p,(2,+l_i) ] + 3 d - 2 k  
i = l  

>~ ~ [ ( i +  1)(p2i_ 1+p2i)] 
i=1 

+ 3 d -  2 k =  Y0 + 2 d -  2k. 

The true scheduling cost f ( S )  can be written as 

2n 

f ( S ) =  ~ I G - d l  
i = 0  

2n 

= ~_, I G - k l + ( d - k )  
i=O 

× (card(B(S))  - card(A (S) ) )  

where card denotes the cardinality function. Be- 
cause of Proposition 1, we have only three cases to 
consider: 

- if d =  k, then f ( S )  >~Yo, 
- if d >  k, then card(B(S)) = n, and therefore 

f(S)>~ yo + d - k >  yo, 
- if d < k, then card(B(S)) = n - 1, and hence 

f ( S ) ~  yo + k - d >  yo. 
This implies that if f (  S)) <~Yo, then Cs(/1 ) = d, 

that is, the completion time of the n-th job in S 
must coincide with the due date. Furthermore, 
f ( S )  <~Yo implies ( J s ( i ) ,  J s ( 2 n - l + i ) }  = (J2i-1, 

J2,} for i = 1 . . . . .  n. Therefore, the schedule S 
has the same structure as the schedule S O depicted 
in Figure 2. This means that the original Even- 

Odd partition problem has an affirmative answer. 
[] 

T h e o r e m  3. Given a set of jobs and a nonnegative 
integer y, the problem of deciding whether there 
exists a schedule S O with f(So) <~ y is NP-complete. 

Proof. The decision problem is clearly in NP. For 
any given instance of the Even-Odd Partition 
problem, we construct a set of jobs as described 
above and set y =Y0- This reduction requires 
polynomial time. Theorem 3 now follows from 
Lemmas 1 and 2. [] 

4.  A d y n a m i c  p r o g r a m m i n g  a l g o r i t h m  

Theorem 3 implies that, unless P = NP, no 
polynomial algorithm exists for solving the small 
common due date problem. We present a pseudo- 
polynomial algorithm that requires O(n2d) time 
and O(nd) space, for which Theorems 1 and 2 
provide the basis. According to Theorem 2 we 
must consider two cases: one in which the job 
with the largest weight to processing time ratio is 
scheduled such that either its completion or its 
start time coincides with the due date, and one in 
which all the jobs are scheduled in the interval 
[0, EPA. 

For the first option, we renumber the jobs 
according to nonincreasing weight to processing 
time ratios. Let ~ ( t )  denote the optimal objective 
value for the first j jobs subject to the condition 
that the interval [ d - t ,  d+Y~{=lp i - t  ] is oc- 
cupied by the first j jobs. Then the initialization 
is 

F: ( t )  = ( 0  f o r t = 0 ,  j = 0  
oo otherwise, 

and the recursion for j = 1 . . . . .  n is given by 

Fj( t ) = rnJn{ Fj_l( t -  pj ) + wj( t - pj), Fj_I( t ) 

+ wj p~ - t for 0 ~< t ~< d. 
i 

In the second case, all jobs are scheduled in the 
interval [0, Y'.Pi]. In such a situation it might occur 
that one of the jobs is started before and yet 
completed after the due date (see Figure 1). To 
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allow for this possibility, we leave one job out of 
the recursion, and repeat the recursion n times, 
once for each job. Since the cost of the schedule 
can now only be computed relative to the end- 
points of the interval, it is assumed that the jobs 
have been renumbered according to nondereasing 
values of wi/p~. Consequently, we know that the 
first job either starts at time 0 or finishes at time 

EPi. 
Assume that Jh is the job that will be scheduled 

around the due date. Let Gh(t) denote the optimal 
cost for the first j jobs subject to the condition 
that the intervals [0, t] and [En=j+lPi  + t, Ep~] are 
occupied by the first j jobs. The initialization is 

{ 0  for t = O ,  j = O  
G~(t) = otherwise, 

and the recursion for j = 1 . . . . .  n, is 

Theorem 4. The dynamic programming algorithm 
solves the problem in O(n2d) time and O(nd) space. 

Note that the dynamic programming algorithm 
can be modified to cope with any common due 
date problem with nonsymmetric earliness and 
tardiness penalty weights that allow for a pre- 
specified processing order of the jobs that are 
completed before or started after the common due 
date. This includes the problem with all a~ equal 
and all /3, equal, for which Bagchi et al. (1987) 
presented a branch-and-bound algorithm. In ad- 
dition, the weighted tardiness problem with a 
common due data possesses this property. 

5. Polynomially solvable cases 

c ; ( t )  = 

G~_l(t ) i f j = h ,  

if d-pj<~t<~d,  

Gf , ( t - p j ) + % ( d - t )  

if Y" pi < d -  t, 
j + l  

n 

a? ÷ w,(d- t)} 
otherwise. 

The recursion leaves the interval [t, t + Ph] idle, 
and it is here that we insert the job Jh and 
compute the resulting cost as 

{ G.h(t) + Wh(t + Ph -- d)  
Gh(t )  = i f d -ph<~t<~d  , 

o¢ otherwise. 

The optimal solution is then found as 

min0_<,_< d < ( t ) } ,  

by which we have established the following result. 

5.1. Identical jobs 

If the jobs are identical, we have Pi = P  for 
each job J Since the processing times and due 
date are assumed to be integral, this situation is 
more general than the one in which pi = 1 for all 
Pi. Suppose the jobs have been renumbered 
according to nonincreasing weights. 

If d>~p[½n], then it is easy to show that Em- 
mons' matching approach (Emmons, 1987) gener- 
ates an optimal schedule S by partitioning the 
jobs into sets A ( S ) = ( J z ,  l i = I  . . . . .  [½n]} and 
B(S)  = (J2 i - l l i  = 1 . . . . .  [½n]}, where the first job 
in B(S)  starts at time t = d - E j , ~ B ( s ) p ~ = d  - 
p[½n l. In this notation, [½nl denotes the largest 
integer smaller than or equal to ½n and [½n] 
denotes the smallest integer greater than or equal 
to ½n. 

Conversely, if d<p[½n], then there are two 
options: either the first job starts at time 0 or the 
last job in B(S)  is completed at time d. It is easy 
to see that in both cases Emmons' matching ap- 
proach generates optimal schedules, and the prob- 
lem is solved by choosing the better one. 

5.2. Jobs with equal weight to processing time ratios 

Theorem 5. In the event that p, = w~ for each job J~, 
there is an optimal schedule for any value of d in 
which the jobs are scheduled according to nonin- 
creasing processing times. 
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Proof. Consider two adjacent jobs that are not 
scheduled according to the indicated order. If 
both jobs are completed before or started after the 
common due date, then these jobs can be inter- 
changed without affecting the cost of the schedule 
S, unless the due date lies in the interval between 
the start time of the first and the completion time 
of the other job. We prove that even in that case, 
an interchange of these two jobs does not increase 
the scheduling cost. 

Without loss of generality, let J1 and J2 be the 
two jobs that have to be interchanged, with p~ >/ 
P2, and let J2 start at time t. We have to investi- 
gate the following three situations: 

(1) t ~< d ~< t + P2. Then the interchange leads to 
a schedule with the same cost. 

(2) t +p2 < d ~< t +p l .  Then the interchange 
lowers the cost by 2 p 2 ( d - p 2  ) >10. 

(3) t + p l  < d ~< t + p l  +p2. Then the inter- 
change decreases the cost by 2dp2 - 2dpl + 2p~ - 
2P 2 = 2(Pl +P2 - d ) (p l  - P 2 )  >/0. [] 

Assume that the jobs have been renumbered in 
order of nonincreasing processing times. Suppose 
r is the smallest index for which Y.r=lp ~ >/ 
ET=r+1P~" Theorem 5 then implies that, if d>~ 
5"r=lPi, the problem is solved by putting B ( S ) =  
(J, I i = l  . . . . .  r} and A ( S ) = ( J ,  l i = r +  
1 . . . . .  n }. If d < Er=ap,  the first job needs to start 
at time 0, and the jobs are processed in order of 
nondecreasing processing times. 
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