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Seven criteria for integer sequences being graphic are listed. Being graphic 
means that there is a simple graph with the given integer sequence as de­
gree sequence. One of the criteria leads to a new and constructive proof 
of the well-known criterion of Erdos-Gallai. 

1. INTRODUCTION 

Let (di, ... , dn) be a nonincreasing sequence of positive integers with even 
sum. The sequence (di, ... , dn) is called graphic iff there is a simple graph 
(without loops and multiple edges) that has (di, ... dn) as degree sequence. 
In this paper seven criteria for such an integer sequence being graphic are 
listed; one of these is well known and due to Erdos and Gallai [5]. Proofs 
of the Erdos-Gallai Criterion can be found in Berge [1] and in Harary [10]. 
Harary's proof is rather lengthy and Berge's proof uses flows in networks. 
Recently, Choudum [4] has given a different proof which, in our opinion, is 
not very appealing either. Using the re~ently discovered Hasselbarth Crite­
rion we are able to give a new and elegant proof. 

2. THE SEVEN CRITERIA 

In Theorem 1 it will be shown that the following conditions (A)-(G) are all 
equivalent to "(d1, •• • dn) is graphic." 
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A. The Ryser Criterion. See Bondy and Murty [3] and Ryser [12]. A se­
quence (ai, ... , ap; bi, ... , bn) is called bipartite-graphic iff there is a sim­
ple bipartite graph such that one component has degree sequence (a1, ... zap) 
and the other one has (bi, ... , bn)- Define f = max{i Id; ~ i} and d; = 
d; + 1 if i E {f)(={l, ... ,f}) and d; = d; otherwise. The criterion can be 
stated as follows: 

The integer sequence (di, ... ,dn; di, ... ,dn) is bipartite-graphic. (A) 

B. The Berge Criterion. See, e.g., Berge [1]. Define (di, ... ,dn) as follows: 
For i E (n), d; is the ith column sum of the (0, 1)-matrix, which has for each 
k the dk leading terms in row k equal to 1 except for the (k, k)th term that 
is 0 and also the remaining entries are 0. For example, if di = 3, d2 = 2, 
d3 = 2, d4 = 2, ds = 1, then d1 = 4, d2 = 3, d3 = 2, d4 = 1, ds = 0, and 
the (0, 1)-matrix becomes 

0 1 1 1 0 
1 0 1 0 0 

1 1 0 0 0 

1 1 0 0 0 

1 0 0 0 0 

The criterion is 

k k 

2,d; :S 2,d; for each k E (n) . (B) 
i=l i=l 

C. The Erdos-Gallai Criterion. See, e.g., Bondy and Murty [3]. 

k n 

2, d; :S (k)(k - 1) + 2: min{k,di} for each k E (n). (C) 
i=I J=k+I 

D. The Fulkerson-Hoffman-McAndrew Criterion. See [5] and Griin­
baum [6]. 

k n 

2: d1 :S (k) (n - m - 1) + 2, d; for each k E (n), 
l=l i=n-m+l 

m ~ 0 and k + m :S n. (D) 

E. The Bollobas Criterion. See [2]. 

k n k 

2: d; :S 2: d; + 2: min{d;, k - 1} for each k E {n). (E) 
i=1 i=k+l i=l 
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F. The Griinbaum Criterion. See Griinbaum [7]. 

k n 

2: max{k - 1, d;} :::; (k) (k - 1) + 2: d; for each k E (n). (F) 
i=I i=k+l 

G. The Hasselbarth Criterion. See Hasselbarth [11]. Define (di, ... ,d:) 
as follows: For i E (n), d;* is the ith column sum of the (0, 1)-matrix in 
which the di leading terms in row i are l's, and the remaining entries are 
O's. The criterion is 

k k 

2: d; :5 2: (d;* - 1) for each k E (!) 
i=l i=l 

with!== max{ijd;;::: i}. (G) 

We call (G) the Hasselbarth Criterion because it was first described in Has­
selbarth [11]. However, the form in which it is described in (11] is rather 
hidden, and there is also no proof. We will show that (G) is in fact equiva­
lent to criteria (A)-(F). Hasselbarth's Criterion is concise and clear, and 
gives rise to an elegant proof of the Erdos-Gallai Criterion. 

3. THE MAIN THEOREM 

Theorem 1. Let (di, ... dn) be a positive integer sequence with even sum. 
Then the following holds: 

Each of the criteria (A)-(G) is equivalent to the statement that 
(di, ... dn) is graphic. 

Proof. To prove the theorem we go through the following implications 
cycle: 

(Graphic) ~ (A) ~ (B) ::b (C) ~ (D) :b (E) ~ (F) =b (G) ! (Graphic). 

l. Let G = (V, E) be the simple graph that realizes (di, ... , dn). Starting 
with G, it is possible to construct a bipartite graph B(G) with compo­
nents Vi and Vi where Vi = Vi ( = V), and edge set F defined as fol­
lows: If the edge joining i and j with i, j E Vis in E, the edges joining 
i E Vi andj E Vi as well as the one joiningj E Vi and i E Vi are in F. 
Moreover, the edges joining i E Vi and j E Vi for i E (f) are also 
taken in F. For example, 
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2 3 

G rz: B(G) 

The bipartite graph B(G) has in both components degree sequence 
(d1 + 1, ... , d1 + l,_dt+i. .. :.• d,J. So t1!e Ryser Criterion holds. 

2. Let the sequence (di, ... ,dn; di, ... ,dn), as defined under A, be bi­
partite-graphic. By a well-known theorem of Ryser (see, e.g., Bondy 
and Murty [3], p. 210, and Ryser [12]), it follows that 

k k 

L d; :S L d;* for each k E (n), 
i=l i=l 

where d;* is defined as in (G). Hence d;* = d; + 1 for each i E (f}, 
and d; = d; for each i E (n)\(f). 

Moreover, d; = d; + 1 for each i E {/), and d; = d; for each i E 
(n)\(f). If k :S f, we find 

k k k k 

L(d; + 1) = "Llii s "l:Jt = 'L<J; + 1), 
i=l i=l i=l i=l 

k k -hence I.;=1d; :S I.;=1d;. 
If k ~ f + 1 we find 

k k k k k k 

Ld; + f = "l:J; s "Llit = "L'iL + J, so that °Ld; s "l:'iL. 
i=l i=l i==l i=l i=l i=l 

k k -Therefore, I.;=1 d; :S I.;=1 d; for each k E (n). 
3. Consider the (0,1)-matrix corresponding to (di. ... , dn) as defined in 

(B). Take any k E (n). Then I.f=1 d; is the number of l's in the first k 
columns. In this (0,1)-matrix all diagonal elements are 0, which means 
that in the submatrix consisting of the first k rows and columns at 
most k2 - k entries are 1. On the other hand, each row j has precisely 
min{k, di} l's on the first k positions. Hence, for each k E (n), we find 

k k n 

Ld; :S °Ld; :S (k)(k - 1) + 'L min{k,dil. 
i=l i=l j=k+l 

4. For each k E (n), m ~ 0 and n - m ~ k, it follows that 

k n 

L d; :S (k) (k - 1) + L min{k, di} 
i=l j=k+l 

n-m n 

:S (k) (k - 1) + L min{k, di} + 'L min{k, di} 
j=k+I j=n-m 
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n 

s (k) (k - 1) + (k) (n - m - k) + 2: min{k, dJ 
j=n-m+I 

n 

:S (k)(n - m - 1) + L di. 
j=n-m+I 

5. Take any k E (n). If di, ... , dk s k - 1, then substitute n - m == k, 
and we are done. So, we may assume that d 1, ••• , di ;?: k - 1 and 
d1+i, .•• , dk < k - 1 for some l < k. Then the following holds: 

k I k 

2: d; = 2: + 2: d; s (using (D)) 
i=l i=l i=i+l 

n k 

s (l) (n - m - 1) + L d; + L d; = (using m == n - k) 
i=n-m+I i=l+l 

n k 

= (l) (k - 1) + 2: d; + 2: d; 
i=k+I i=l+l 

n I n 

= 2: d; + 2: (k - 1) + 2: d; 
i=k+1 i=l i=/+l 

n I k 

== L d; + L min{d;,k - 1} + L min{d;,k - 1} 
i=k+I i=l i=i+l 

n k 

= L d; + L min{d;,k - 1}. 
i=k+l i=l 

6. For each k E (n) the following holds: 

k n k 

Ld; $ L d; + L min{d;,k - 1} 
i=l i=k+I i=l 

k k n 

~ 2,d; + L max{-d;,-k + 1} s 2: d; 
i=l i=l i=k+I 

k n 

~ 2: max{O, d; - k + 1} s L d; 
i=l i=k+I 

k n 

~ 2: [max{k - 1, d;} - k + 1] s L d; 
i=l i=k+l 

k n 

~ 2, max{k - l,d;} s (k)(k - 1) + L d;. 
i=l i=k+l 

7. Suppose to the contrary that there is an index k E (!) such that 

k k 

l:d; > 2:(dt - 1). 
i=l i=l 
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Note thatf::; n - 1. Iff = n - 1, then d; = n - 1 for each i E (n) 
and (G) is trivially true. So we may assume that f s n - 2. There 
now exists an index m E {k, ... , n} such that d; ;:::; k for i s m and 
d; < k for i ;;:::: m + 1. 

We then have, 

k k n 

.Z: d; > 2: (d;* - 1) = (k) (m - 1) + .2: d; 2!: (using (G)) 
i=l i=l i=m+l 

m 

2!: (k) (m - 1) - (m) (m - 1) + .2: max{m - 1, d;}. 
i=l 

Hence, 

m k 

.2: max{m - 1, d;} < (m - k) (m - 1) + .2: d; 
i=I i=l 

k m ( m ) = i~ d; + J~.1 (m - 1) with i=~+i (m - 1) defined 0 

k m 

::; 2: max{m - l,d;} + 2: max{m - 1,d;} 
i=l i=k+l 

m 

= L max{m - 1, d;}. 
i=l 

This is a contradiction. So Hiisselbarth's Criterion holds. 
8. Using Hasselbarth's Criterion we finally show that the integer se­

quence (di. ... , dn) is graphic. 
Define for each i E (f) 

a; = d; - i + 1 and b; = d t - i. 

Hasselbarth's Criterion can then be rewritten as follows: 

k k 

2: a; :;; 2: b; for each k E (f). 
i=l i=l 

Our first objective is to transform the (0,1)-matrixA, as defined under 
(G), into a symmetric (0,1)-matrix A" with O's on the main diagonal. 
Obviously, A" corresponds with a simple graph. In general, however, 
this graph does not satisfy the original degree sequence (d1, ... ,dn). 
So we need a transformation that results in a symmetric matrix A* 
with row sum vector the original degree sequence. The first step, in 
obtainingA", is the following algorithm; it results, generally, in a non­
symmetric matrix A'. 
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k := f 
WHILEk > 1 DO 

BEGIN 
IF ak = bk THEN af, = ak 
IF ak < bk THEN 

BEGIN a!.:= ak + L4(bk - ak)J 
IF bk - ak odd THEN ak-1 :·= ak-1 + 1 
END 

IF ak > bk THEN 
BEGIN a!.:= bk and ak-1 := ak-1 + ak - bk 
END 

k := k - 1 
END 
al := a1 + !(b1 - a1) 
Define bf = af for i E (!) 

The above algorithm needs the following remarks: 

(1) This step can be visualized as follows 

1 1 • • • • 1 1 1 • • • • 1 ITJ 
1 1 • • • 1 1 1 • • • 1[IJJ 

• • • • 
• • ____,. . • 
• • • • 
• 1 ·~ 1 

1 

1 

1 

(2) In this step ak - bk l's from row k are lifted to row k - l. 

(1) 

(2) 

(3) 

(3) The fact that b1 - a1 (with a1 the number of l's in row 1 after apply­
ing the f - 1 steps of the algorithm!) is nonnegative and even, is the 
key of the algorithm. The proof is as follows. 

Suppose, there is a maximal index a ;z: 2 such that b; ::;:; a; for each 
i = 2, ... , a. Hence, for the rows a, a - 1, ... , 2 only loop (2) of the al­
gorithm is used. Row a receives at most one 1 from column a + 1, namely 



230 JOURNAL OF GRAPH THEORY 

in case ba+i - aa+i is odd. Therefore, aa := aa(+ 1). The final step, when 
executing loop (2), implies that 

a " 

a 1 : = 'La; - 2: b;( + 1), 
i=l i=2 

whereas the a/s in the right-hand side of this expression are the original a;'s 
of the matrix A. 

The Hasselbarth Criterion implies that this new ai is :s b1. This can be 
seen as follows. 

In case ba+i - aa+l is even, we do not have the extra + 1, hence, a1 :s b1 
is nothing more than the Hasselbarth Criterion for k = a. In case 
ba+i - aa+i is odd, we have to show that 1 + 2.f=1a; - 2.f=2b; :s b1. Sup­
pose, to the contrary, that 1 + 2.f=1a; - 2.i=2b; > bi. As, on the other 
hand, 2.f=1a; - 2.f=zb; :s bi, it follows that b1 = 2.f=1a; - 2.i=2b;. But this 
implies that 1 + [2.f=i a; - 2.f=2b;] + b1 is not even, which contradicts the 
facts that the total number of l's is even and that a 2 = b 2, ... , a j = b j. 
Hence, a1 :s bi. 

If there does not exist such a smallest a, then b2 ~ az (with az after ap­
plying! - 2 times of the algorithm) and hence, a1 :s b1 (with a1 after ap­
plying! - 1 steps of the algorithm) according to the Hasselbarth Criterion. 

Needless to say that b1 - a 1 (with a1 after applying[ - 1 steps of the al­
gorithm) is even, so that a; is well defined. 

For a[ > 0, A' has a[ + i + 1 l's in the first af + i - 1 positions of 
row i (i E (f)), bf + j l's in the first bf + j positions in columnj (j E (f)), 
and zeros elsewhere. 

The (0,1)-matrix A" results now as follows: A number 1 on the main di­
agonal in row i is replaced by the number 0 and the 0 following the 1 in 
position a[ + i - 1 in row i is replaced by the number l; i E (f). 

The so-formed matrix A" = {a ij} is symmetric and has zeros on its main 
diagonal. Let the row sum vector of A" be (d;, ... , d~). 

The matrix A* is now formed in the following way: 
If (di, ... ,d~) ;e (d1, ... ,dn), then consider the sequence d] - di, 

... ,d~ - dn. 
As loops (1) and (2) of the algorithm "lift" l's to rows with lower indices, 

there is a greatest index s and a smallest index t, such that 

d; ~ ds + 1, d; :S d 1 - 1, and s < t. 

As d; ;;:::::: ds + 1 ~ d, + 1 ;:::: d; + 2, there is an index k with s ;e k ;e t and 

aki=a;k=O. 

The matrix A" is now changed into the matrix {a;f} satisfying a;f = aij for 
each i and j, except that 

a:k =al= 0 and a{i = a1t = 1; 
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i.e., 

s k t s k t 

s 1 s 0 
kl o~ko 1 
t 0 l 

or for the corresponding graph, 

s \ t 

'/ 
k 

This procedure is repeated until the row sums of the resulting matrix A* 
are di. ... , dn. Note that the number of steps in this procedure is equal to 
the number of l's "lifted" by the algorithm that transforms A into A'. The 
graph corresponding toA* is a realization of the sequence (di, ... ,dn). This 
completes the proof. 
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