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A set of n jobs has to be scheduled on a single machine which can handle only one job at a time. 
Each job requires a given positive uninterrupted processing time and has a positive weight. The 
problem is to find a schedule that minimizes the sum of weighted deviations of the job completion 
times from a given common due date d, which is smaller than the sum of the processing times. We 
prove that this problem is ~'!P-hard even if all job weights are equal. In addition, we present a pseu
dopolynomial algorithm that requires O(n2 d) time and O(nd) space. 
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Suppose n independent jobs have to be scheduled on a single machine which can handle only 
one job at a time. The machine is assumed to be continuously available from time 0 onwards. 
Job J; (i = l, ... ,n) has a given positive uninterrupted processing time p; and a weight w;, and 
should ideally be completed at a given due date d, which is common to all jobs. Without loss of 
generality, we assume that the processing times and the due date are integral. A schedule 
defines for each job J; a completion time C; such that the jobs do not overlap in their execu
tion. We consider the problem of finding a schedule S, that minimizes the weighted sum of the 
deviations of the completion times from the common due date: 

/(S)= ~:=i w;IC;-dl. 

There are two notable results in cased~ ~p;. If w; = 1 for all J;, Kanet (1981) has given an 
O(nlogn) time algorithm to find the optimal schedule. Hall and Posner (1989) have shown 
that the problem with arbitrary weigh.is is ~'?J>-hard. 

In contrast, we focus our attention to the cased< ~p;. In Section 2 we prove some proper
ties of an optimal schedule. In Section 3 we establish ~48>-hardness of this problem, even in case 
w; = l for each J;. We present a pseudopolynomial algorithm in Section 4, which requires 
O(n 2d) time and O(nd) space. In Section 5 we present some well-solvable cases. 

We note that the ~'?J>-hardness result was independently obtained by Hall, Kubiak and Sethi 
(1989); their proof is slightly more complicated. They also give a pseudopolynomial algorithm 
for the case of equal job weights. 
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2. BASIC CONCEPTS 

It is straightforward to verify that no optimal solution has any idle time between the execution 
of jobs. In case there were idle time, the scheduling cost could be reduced by closing the gap. 
The next two theorems further characterize any optimal solution. 

THEOREM 1. In any optimal schedule S, the jobs J; that are completed before or at the common due 
date d are scheduled in order of nondecreasing values of w; Ip;, and the jobs that are started at or 
after dare scheduled in order of nonincreasing values of w; Ip;. 

PRooF. This follows immediately from Smith's ratio rule (Smith, 1956). D 

THEOREM 2. In each optimal schedule S, either the first job starts at time 0 or the due date d coin
cides with the start time or completion time of the job with the largest ratio w; Ip;. 

PROOF. For a given schedule S, let B(S) denote the set of jobs that are completed before or at 
the common due date and A (S) the set of jobs completed after the due date. Define 
!::i. = "2.J; E B(S) w; - "2.J; EA (s)w;. We consider the cases in which !::i. < 0 and !::i. ;;;;;;:: 0 separately. 

Suppose first !::i. < 0. If S starts at time T > 0, determine t = min { T, minJ; EA (S) C; -d}. If 
the entire schedule is putt time units earlier, then the reduction in cost equals -t!::i. > 0. In the 
new situation either schedule S starts at time T = 0 or one job has moved from A (S) to B (S). 
If still T > 0 and !::i. < 0, ~we repeat the procedure until we arrive at a situation in which T = 0 
or ll ;;;;;;:: 0, and no further improvement is possible. The latter case implies that the due date 
coincides with the completion time of one job and the start time of another. Because of 
Theorem 1, one of these jobs must be the job with the largest ratio w; Ip;. 

On the other hand, in the case of !::i. ;;;;;;:: 0, reverse arguments can be applied to show that the 
due date coincides with the completion or start time of the job with the largest ratio w; Ip;. D 

Note that Theorem l does not impose any restrictions on a job that is started before and com
pleted after the due date. Consider the following instance with n =3,p 1 =8,p 2 =10,p 3 = 4, 
w 1 = 5, w2 = 7, w3 = 3, and d = 15. The optimal solution is shown in Figure l and demon
strates that such a job can exist, and that it can even have the smallest ratio w; Ip;. 

0 d=15 

FIGURE l 

3. SCHEDULING AROUND A SMALL COMMON DUE DATE IS ~0>-HARD 
In this section we prove that this problem is ~0>-hard even if w; = 1 for each job J;, by showing 
that the corresponding decision problem is ~0>-complete. The reduction is from Even-Odd 
Partition. 
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EVEN-ODD PARTITION (Garey et al., 1988): Given a set of 2n pos1uve integers 
B ={bi. ... ,b2n} such that b; > h;+I for each i = l, ... ,2n -1, is there a partition of B into 
two subsets B 1 and B 2 such that "2. b; EB 1 b; = "2. b; eB2 b; = A and such that B 1 contains exactly 
one of {b2;-I>b2;} for each i = l, ... ,n? 

We start by describing a reduction from the Even-Odd Partition problem to the small common 
due date problem with w; = 1 for all J;. Let B = { b 1, .•• , b 2n} be an arbitrary instance of the 
Even-Odd Partition problem, with A = "2.b;/2. Construct the following set of jobs: 2n 'parti
tion' jobs J; with processing times p; = b; + nA for each i = 1, ... , 2n, an additional job J 0 with 
p 0 = 3(n 2 + l)A, weights w; = 1 for i = 0, ... ,2n, and a common due date d = (n 2 + l)A. In 
addition, we define a threshold value y 0 ="2.7= 1[(i+1)(p 2;-I + p 2;)] +don the scheduling 
cost. 

Consider a partitioning of the set of partition jobs {J 1, ..• ,J 2n} into the sets 
B 1 = {Jn, J 21' ... , Jn i} and B 2 = { J 12, J 22, ... , J 11 2}, where {Jn, Ji2} = {J 2; -1' J 2;} for 
each i = 1,. .. ,n. 

LEMMA I. If the partitioning into the sets B 1 and B 2 corresponds to a solution of the Even-Odd 
Partition problem, then the cost of schedule S 0 constructed as shown in Figure 2 equals the thres
hold value Yo· 

d 

FIGURE 2: Sc:mmurn S 0 

PROOF. Note that the jobs in B 1 and B 2 are scheduled as indicated in Theorem l. The verifica
tion then only requires straightforward computations. D 

We now prove that, conversely, any schedule S with/ (S) ~Yo must be isomorphic to S 0 , and 
that the subsets B 1 and B 2 must correspond to a solution of the Even-Odd Partition problem. 

PROPOSITION 1. Suppose S is a schedule with scheduling cost f ( S) ~ y 0. Then S has the following 
properties. 
( 1) At most n jobs can be completed before the due date d. 
(2) The first job must start at time 0. 
(3) The additional job J 0 is scheduled last. 
( 4) At least n - 1 jobs must be completed before the due date d. 

PROOF. 

(1) This is due to the choice of the processing times. 
(2) This follows immediately from the first property and the proof of Theorem 2. 
(3) Suppose J 0 is not scheduled last. Then, because of Theorem 1, J 0 must start before the 
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common due date d. Since at most n jobs can be scheduled before job J 0 , for at least n + 1 jobs 
in S we have C;-d ;;i. p 0 -d = 2d. This implies f (S) ;;i. 2(n + l)d ;;i. (n +4)d. However, 

Yo= ~7= 1 [(i + l)(p2;-1 + P2;)] + d < +(n +3)~:: 1p; + d = (n + 4)d :i;;;;.J(S), 

which contradicts the assumption. 
( 4) This follows immediately from the first three properties and the choice of the processing 
times. D 

LEMMA 2. Suppose Sis an optimal schedule with f (S) :i;;;;.y 0 . Then the due dated must coincide 
with the completion time of the n-th job in the schedule S, the schedule S must be isomorphic to the 
schedule S 0, and provide an affirmative answer to the Even-Odd Partition problem. 

PROOF. Assume that s (i) denotes the index of the job that is scheduled on position i in schedule 
S. We compute the scheduling cost relative to the imaginary due date k = Ps(l) + ... +ps(n)· 
Then we have 

~::0 I ci-k I= ~= 1 [(i-l)Ps(i)l + ~::n+ 1 [(2n +2-i)Pscil + 3d = 

~7 =l [(i + l)Ps(i)J + ~::n + 1 [(2n +2-i)Ps(i)] + 3d - 2k = 

~ ~7= 1 [(i + l)Ps(i)] + ~7= 1 [(i + l)Ps(2n+I-i)] + 3d - 2k ;;=. 

~ 7 = 1 [ (i + 1)(p2; - 1 + p 2;)] + 3d - 2k =Yo + 2d - 2k. 

The true scheduling cost f (S) can be written as 

f(S)=~::o IC;-dl =~::o IC;-kl +(d-k)(card(B(S))-card(A(S))), 

where card denotes the cardinality function. Because of Proposition 1, we have only three cases 
to consider: 
- if d = k, then/ (S) ;;i. yo, 
- if d >k, then card(B(S)) = n, and therefore f (S) ;;i. Yo+ d-k >yo, 
- if d < k, then card(B(S)) = n -1, and hencef(S) ;;i. Yo+ k - d >Yo· 
This implies that if f ( S) :r;;;;. Yo, then Cs (n) = d, that is, the completion time of the n-th job in S 
must coincide with the due date. Furthermore, f (S) :i;;;;.y 0 implies 
{Js(i)•Js(2n+I-i)} = {J2;-1,J2;} for{= l, ... ,n. Therefore, the schedule Sis isomorphic to the 
schedule S 0 depicted in Figure 2. This means that the original Even-Odd Partition problem 
has an affirmative answer. D 

THEOREM 3. Given a set of jobs and a nonnegative integer y, the problem of deciding whether there 
exists a schedule S with f (S) :r;;;;. y is C!J(,6J-complete. 

PROOF. The decision problem is clearly in C!J(,qf. For any given instance of the Even-Odd Parti
tion problem, we construct a set of jobs as described above and set y = y 0 . This reduction 
requires polynomial time. Theorem 3 now follows from Lemmas 1 and 2. D 
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4. A DYNAMIC PROGRAMMING ALGORITHM 

Theorem 3 implies that, unless ~='JUP, no polynomial algorithm exists for solving the small 
common due date problem. We present a pseudopolynomial algorithm that requires O(n 2d) 

time and O(nd) space, for which Theorems l and 2 provide the basis. According to Theorem 2 

we must consider two cases: one in which the job with the largest weight to processing time 
ratio is scheduled such that either its completion or its start time coincides with the due date, 
and one in which all the jobs are scheduled in the interval [O, "2.p; ]. 

For the first option, we renumber the jobs according to nonincreasing weight to processing 
time ratios. Let Fj(t) denote the optimal objective value for the first j jobs subject to the condi
tion that the interval [d - t, d + "2.{ = 1 Pi - t] is occupied by the first j jobs. Then the initializa
tion is 

{
o for t = 0, j = 0, 

Fj( t) = oo otherwise, 

and the recursion for j = l, ... ,n is given by 

Fj(t) = min{Fj-1(t-pj) + wj(t-pj), Fj_ 1(t) + w/~{= 1 p;-t)} for 0 ~ t ~d. 

In the second case, all jobs are scheduled in the interval [O, "2.p;]. In such a situation it might 
occur that one of the jobs is started before and yet completed after the due date (see Figure 1). 
To allow for this possibiliJy, we leave one job out of the recursion, and repeat the recursion n 

times, once for each job. Since the cost of the schedule can now only be computed relative to 
the endpoints of the interval, it is assumed that the jobs have been renumbered according to 
nondecreasing values of w; I Pi· Consequently, we know that the first job either starts at time 0 
or finishes at time "2.p;. 

Assume that Jh is the job that will be scheduled around the due date. Let Gj(t) denote the 
optimal cost for the first j jobs subject to the condition that the intervals [O, t] and 

["2.f = j +Ip;+ t, "2.p;] are occupied by the first j jobs. The initialization is 

h _ {o for t = o, j = o, 
Gj(t) - oo otherwise , 

and the recursion for j = l, ... , n is 

if j = h, 

Gj-1(t)+w/~7=jp;+t-d) if d-pj~t~d, 

GJ-1 (t -pi)+ wj(d-t) if "2.j+1P; < d-t, 

min{Gj-1 (t) + w/~7=jp; +t -d),Gj- 1 (t -pj) + wj(d-t)} otherwise. 

The recursion leaves the interval [t,t + Phl idle, and it is here that we insert the job Jh and com
pute the resulting cost as 

{
G:(t) + wh(t +ph-d) if d-ph ~ t ~ d, 

Gh(t) -
n - oo otherwise. 
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The optimal solution is then found as 

f (S) = min{min1 =s;;h ..;;nmind-ph .,., =s;;d G~(t), nllno..;;1..;;dFn(t)}, 

by which we have established the following result. 

THEOREM 4. The dynamic programming algorithm solves the problem in 0 (n 2 d) time and 0 (nd) 
space. 

5. POLYNOMIALLY SOLVABLE CASES 

5.1 Identical jobs 
If the jobs are identical, we have p; = p for each job l;. Since the processing times and due date 
are assumed to be integral, this situation is more general than the one in which all p; = 1. Sup
pose the jobs have been renumbered according to nonincreasing weights. 

If d ;;;;:. p r n I 21, then it is easy to show that Emmons' matching approach (Emmons, 1987) 
generates an optimal schedule S by partitioning the jobs into sets 
A (S) = {J 2i Ii= 1, ... , Ln/2 rr and B(S) = {J 2i-l Ii= 1, ... , rn/21}, where the first job in B(S) 
starts at time t = d - ~Ji E B(S)Pi = d -p r n I 21. In this notation, L n I 2 J denotes the largest 
integer smaller than. or equal to n I 2, and f n I 21 denotes the smallest integer greater than or 
equal to n I 2. 

Conversely, if d < p f n 7 21, then there are two options: either the first job starts at time 0 or 
the last job in B (S) is completed at time d. It is easy to see that in both cases Emmons' match
ing approach generates optimal schedules, and the problem is solved by choosing the better 
one. 

5.2 The jobs have equal weight to processing time ratios 

THEOREM 5. In the event that p; = w; for each job J;, there is an optimal schedule for any value of 
din which the jobs are scheduled according to nonincreasing processing times. 

PROOF. Consider two adjacent jobs that are not scheduled according to the indicated order. If 
both jobs are completed before or started after the common due date, then these jobs can be 
interchanged without affecting the cost of the schedule S. If the due date lies in the interval 
between the start time of the first and the completion time of the other job, then straightfor
ward computations show that the interchange of these two jobs does not increase the cost of 
the schedule. 0 

Assume that the jobs have been renumbered according to nonincreasing processing times. Sup
pose r is the smallest index for which ~i=iP;;;;;:. '2..f =r+IPi· Theorem 5 then implies that, if 
d;;;;:. }:,f =1p;, the problem is solved by putting B(S) = {J; Ii= l, ... ,r} and 
A(S) = {J;ji = r +1, ... ,n}. If d <'2..i=IPi• the first job needs to start at time 0, and the jobs 
are processed in order of nondecreasing processing times. 
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