

Combining column generation and Lagrangean relaxation : an
application to a single-machine common due date scheduling
problem
Citation for published version (APA):
Akker, van den, J. M., Hoogeveen, J. A., & Velde, van de, S. L. (1998). Combining column generation and
Lagrangean relaxation : an application to a single-machine common due date scheduling problem.
(Memorandum COSOR; Vol. 9818). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/67a84782-1815-42ff-a0f2-878fc9841b79

tlB
Eindhoven University
of Technology

Department of Mathematics
and Computing Sciences

Memorandum COSOR 98-18

Combining column generation
and Lagrangean relaxation
An application to a single-machine
common due date scheduling problem

M. van den Akker
J.A. Hoogeveen
S. van de Velde

Eindhoven, August 1998
The Netherlands

COMBINING COLUMN GENERATION
AND LAGRANGEAN RELAXATION

AN APPLICATION TO A SINGLE-MACHINE
COMMON DUE DATE SCHEDULING PROBLEM

Marjan van den Akker
National Aerospace Laboratory NLR

P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
email address:vdakker@nlr.nl

Han Hoogeveen
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

email address:slam@win.tue.nl

Steef van de Velde
Rotterdam School of Management

Erasmus University
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

email address:s.velde@fac.fbk.eur.nl

29 June 1998

ABSTRACT

Column generation has proved to be an effective technique for solving the linear
programming relaxation of huge set covering or set partitioning problems, and col
umn generation approaches have led to state-of-the-art so-called branch-and-price
algorithms for various archetypical combinatorial optimization problems. Usually,
if Lagrangean relaxation is embedded at all in a column generation approach,
then the Lagrangean bound serves only as a tool to fathom nodes of the branch
and-price tree. We show that the Lagrangean bound can be exploited in more
sophisticated and effective ways for two purposes: to speed up convergence of the
column generation algorithm and to speed up the pricing algorithm.

Our vehicle to demonstrate the effectiveness of teaming up column genera
tion with Lagrangean relaxation is an archetypical single-machine common due
date scheduling problem. Our comprehensive computational study shows that the
combined algorithm is by far superior to two existing purely column generation
algorithms: it solves instances with up to 125 jobs to optimality, while purely
column generation algorithm can solve instances with up to only 60 jobs.

1980 Mathematics Subject Classification (Revision 1991): 90B35.
Keywords and Phrases: column generation, Lagrangean relaxation, set covering,
linear programming, earliness-tardiness scheduling, common due date.

1 Introduction

For many an NP-hard combinatorial minimization (maximization) problem,
a remarkably strong lower (upper) bound on the optimal solution value can be
computed by formulating the problem as an integer linear program (usually
a set covering or set partitioning problem) with a huge number of variables
and then solving the linear programming relaxation by a column genera
tion method. This approach has led to state-of-the-art branch-and-bound
(also called branch-and-price) algorithms for such archetypical combinato
rial optimization problems as the vehicle routing problem with time win
dows (Desrochers et al., 1992; Desrosiers et al., 1995), the generalized assign
ment problem (Savelsbergh, 1997), the parallel-machine scheduling problem
(Van den Akker et al., 1995; Chen and Powell, 1995) and the graph color
ing problem (Mehrotra and Trick, 1997) as well as for various real-life prob
lems including airline crew scheduling, bus driver scheduling, and production
scheduling (see for a selection of references, Soumis (1997)).

The idea behind column generation is to solve the linear programming
relaxation on only a small subset of all the variables. A so-called pricing
algorithm verifies global optimality of the solution for the linear program
ming relaxation of the minimization (maximization) problem by checking if
there exist one or more variables that were left out of the linear program
with negative (positive) reduced cost. If there is one or more, then some of
them, depending on the design and the implementation of the algorithm, are
added to the linear program, since they may possibly improve the solution
value, and the procedure is repeated. If there is none, then the current so
lution is optimal for the linear programming relaxation. For an introduction
to the ideas and fundamentals behind column generation and branch-and
bound algorithms based on this concept, we refer to Barnhart et al. (1994),
Vanderbeck (1998), and Freling et al. (1998).

In theory, the linear programming bound obtained by column generation
can alternatively be computed by means of Lagrangean relaxation. In fact,
the basic difference between column generation and Lagrangean relaxation,
which are both iterative methods, lies in the way the dual multipliers are
adjusted in every iteration. The usual methods for updating the dual (or
Lagrangean) multipliers, such as the subgradient method and the bundle
method, are relatively easy to implement and require hardly no computer
storage. There are serious practical problems with their convergence behav-

1

ior, however: they are quite slow, with a lot of zig-zagging in the beginning;
what is more, they cannot be guaranteed to converge to the optimal solution.
In general, column generation has much better convergence properties than
Lagrangean relaxation. Now, with the recent availability of efficient simplex
codes with easy to implement column generation capabilities and computers
with sufficient computer memory, it seems as if these properties can finally
be exploited to the max and it looks as if column generation has become the
preferred method.

Although column generation is faster and shows betters convergence prop
erties, one drawback still stands: it does not give a lower (upper) bound on
the optimal solution value till complete convergence. In contrast, Lagrangean
relaxation gives a lower (upper) bound in each iteration.

It is well known that Lagrangean relaxation can complement column gen
eration method very nicely in that it can be used in each iteration of the
column generation method to compute a lower (upper) bound in only little
additional time; see for instance Vanderbeck and Wolsey (1996). The use
of the lower (upper) bound, however, is primarily restricted to comparing
it to an upper (lower) bound on the optimal solution value for one of two
purposes: (i) to see if a node in the branch-and-price tree can be fathomed;
or (ii) to see if the column generation algorithm has converged to the optimal
solution value. For the first purpose, the speedup can be considerable; for
the second, the speedup is usually only modest.

The message of this paper is there are other, more effective ways to ex
ploit Lagrangean relaxation within the framework of a column generation
algorithm. We not only show that there are more ways to alleviate the
so-called tailing-off effect, that is, to speed up convergence of the column
generation method, but also that it can be used to speed up the pricing
algorithms.

Our vehicle to demonstrate the effectiveness of this combination of column
generation and Lagrangean relaxation is a standard single-machine earliness
tardiness problem with asymmetric job weights and a large common due date.
Van den Akker et al. (1996) and Chen and Powell (1997) have presented pure
column generation algorithms for this problem that can solve instances with
up to 60 jobs to optimality. In this paper, we present a combined column
generation and Lagrangean relaxation algorithm that solves instances with
up to 125 jobs to optimality.

The plan of this paper is as follows. In Section 2, we present a formal

2

description of the problem under study, review the relevant literature, and
point out the main characteristics of the two existing column generation al
gorithms. In Section 3, we formulate the earliness-tardiness problem as a set
covering problem with two additional constraints and an exponential num
ber of variables, present the column generation algorithm to solve its linear
programming relaxation (Section 3.1), analyze its Lagrangean problem (Sec
tion 3.2), and point out how column generation and Lagrangean relaxation
can be combined to our computational advantage (Section 3.3). In Section 4,
we present our computational results for four classes of randomly generated
instances. Surprisingly, the column generation method renders an optimal
integral solution for each problem instance. Section 5 concludes the paper
with some remarks on the general applicability of a combination of column
generation and Lagrangean relaxation. We further sketch a branch-and-price
algorithm for the single-machine earliness-tardiness problem under study that
can be used if the column generation algorithm does not terminate with an
integral solution.

2 Problem description

We consider the following single-machine scheduling problem. A set .:J =
{J1 , ••. , I n } of n independent jobs has to be scheduled on a single machine
that is continuously available from time zero onwards. The machine can
handle at most one job at a time. Job Jj (j = 1, ... , n) requires a positive
integral uninterrupted processing time pj and should ideally be completed
exactly on its due date d, which is common to all jobs. We say that this
common due date is large, if d ~ ,£j=l Pj; otherwise, we call it small. In
case of a large common due date, the constraint that the machine is not
available before time zero is redundant. A schedule specifies for each job Jj
a completion time Cj such that the jobs do not overlap in their execution.
The order in which the machine processes the jobs is called the job sequence.
For a given schedule, the earliness of Jj is defined as Ej = maxi0, d - Cj }
and its tardiness as Tj = max{O, Cj - d}. Accordingly, Jj is called early,
just-in-time, or tardy if Cj < d, Cj = d, or Cj > d, respectively. The cost of
a schedule u is the sum of weighted job earliness and tardiness, that is,

n

f(u) = L [ajEj + ,BjTj],
j=l

3

where aj and f3j are given positive weights. The problem is to find a schedule
with minimum cost.

We assume that the common due date is large. We assert that the anal
ysis of the problem with a small common due date and the design of the
algorithms for its solution are pretty much similar to those for the problem
with a large common due date; see also Van den Akker et al. (1996). We
can take advantage of three well-known properties that characterize a class
of optimal solutions (Quaddus, 1987; Baker and Scudder, 1989):

- There is no idle time between the execution of the jobs;

- One of the jobs completes exactly on time d;

- The jobs completed at or before d are in order of nondecreasing Q:j / Pj
ratio, and the jobs started at or after d are in nonincreasing f3j /Pj ratio.

Schedules that possess these three properties are called V-shaped. Note that
any V-shaped schedule consists of two parts: the early schedule, consisting of
the jobs completed before or on time d; and the tardy schedule, consisting of
the jobs completed after time d. We call these two schedules complimentary.
The characterization implies that the problem is a partitioning problem: we
need to select the jobs that are completed at or before d, and the jobs that
are completed after d. Furthermore, due to these three properties, the value
of the common due date is irrelevant, provided that it is large.

The problem is arguably the most vexing earliness-tardiness scheduling
problem remaining; for an overview of such problems, we refer to Baker and
Scudder (1990). The problem is NP-hard in the ordinary sense, but it de
fies the type of pseudopolynomial algorithm that is so common in earliness
tardiness scheduling - it is therefore still an open question whether the
problem is solvable in pseudopolynomial time or NP-hard in the strong sense.
The NP-hardness of the problem follows from the NP-hardness of its sym
metric counterpart where aj = f3j = Wj for each job Jj (j = 1, ... , n) (Hall
and Posner, 1991). Hall and Posner also present an O(n 'Lj=l Pi) time and
space dynamic programming algorithm, thereby establishing the computa
tional complexity of the symmetric problem. This algorithm proceeds by
adding the jobs in order of nondecreasing Wj/Pi ratio; hence, the dynamic
programming algorithm can be applied to the asymmetric case only if the
ratios aj/pi and f3i/pj induce the same job sequence. Furthermore, till col
umn generation algorithms were developed for its solution, the problem was

4

also very hard in practice as well, since it seemed to be impossible to com
pute strong lower bounds (Hall and Sriskandarajah, 1990; De, Ghosh, and
Wells, 1994). De et al. formulate the problem as a quadratic 0-1 integer
programming problem, which they solve by the branch-and-bound algorithm
proposed by Pardalos and Rodgers (1990). Their algorithm solves randomly
generated instances with up to 30 jobs without much effort, but it may take
more than 300 seconds to solve an instance with n = 40 on a VAX 4000-300
machine. De et al. present also a specific randomized local search algorithm,
a so-called GRASP algorithm, which has empirically only a small erroneous
behavior.

Independently, Van den Akker et aI. (1996) and Chen and Powell (1997)
have presented a column generation algorithm for this problem. Although
both algorithms can solve instances with up to 60 jobs to optimality, there are
some differences. Chen and Powell present in fact a column generation algo
rithm for the general m-machine problem (m ~ 2) and use an O(n2 'L/./=l pj)
time pricing algorithm. Focusing on the single-machine case only, Van den
Akker et aI. are able to present a simpler algorithm, which uses a faster
O(n Ej=1 pj) time pricing algorithm. The computational results differ as
well: while Van de Akker et aI. report that the solution to the linear pro
gramming relaxation was integral for all their randomly generated instances,
Chen and Powell report that there is a very small integrality gap and that
on average just a few branch-and-bound nodes were necessary to close the
gap.

3 Lower bound computing

We formulate the large common due date problem as a set covering problem
with an exponential number of binary variables, n covering constraints, and
two additional side-constraints. Our formulation reflects that we search for
an optimal V-shaped schedule.

Let £ and T be the set of all early and tardy schedules, respectively,
where T includes the empty tardy schedule. Each feasible schedule s E £
is characterized by a 0-1 vector as = (als, ... ,an,s), where ajs = 1 if Jj is
included in s (j = 1, ... , n). In a similar fashion, each feasible schedule
sET is characterized by a 0-1 vector as = (aI S"'" an,s), where ajs =
1 if Jj is included in s (j = 1, ... , n). Given any as E T or £, we can

5

recover the corresponding schedule s and its cost, which we denote by Cs , in
a straightforward fashion.

Let now X s be a 0-1 variable that takes the value 1 if schedule s is selected
and the value 0, otherwise. The problem, which we refer to as problem (P),
is then to find the value z*, which is the minimum of

L CsXs + L CsXs
sEe sET

subject to

LajsXs + LajsXs ~ 1, for j = 1, ... ,n,
sEe sET

X s E {0,1}, for each s E £ and sET.

(1)

(2)

(3)

(4)

Conditions (1) enforce that each job is executed at least once. Condi
tions (2) and (3) make sure that no more than one early schedule and one
tardy schedule are selected. Conditions (4) are the integrality conditions. Of
course, there exists an optimal solution in which conditions (1)-(3) will hold
with equality in any optimal solution, since all cost coefficients are positive.

We cannot realistically hope that this problem is solvable in time poly
nomial in n, since the underlying problem is NP-hard. Furthermore, an
explicit formulation of even a modest problem instance is impossible because
of the huge number of schedules involved. We are therefore interested in
computing a strong (mathematical programming) lower bound on the opti
mal solution value. There are two alternative methods available that can
handle an exponential number of variables: column generation, which we
discuss in Section 3.1, and Lagrangean relaxation, which we discuss in Sec
tion 3.2. Column generation solves the linear programming relaxation of the
above formulation, and as we will see, Lagrangean relaxation gives in theory
the same linear programming bound. However, we get the best results if we
combine the two - how this can be done is discussed in Section 3.3.

6

3.1 Column generation

The linear programming relaxation of the integer linear programming prob
lem is obtained by replacing conditions (4) by the conditions

X s ~ 0, for each s E £ and sET, (5)

as conditions (2) and (3) prohibit values greater than l.
In each iteration of the column generation procedure, we take only a

feasible subset of the schedules, say, 8, into consideration, solve the linear
programming relaxation, and add new schedules if needed. We call a subset of
schedules feasible if they contain at least one feasible solution to problem (P).
A feasible subset can easily be generated by some iterative local improvement
heuristic, as we will see in Section 4. From the theory of linear programming,
we know that adding a schedule s with corresponding variable X s can decrease
the value of the linear programming solution only if s has negative reduced
cost. The reduced cost c~ of any s E £ with vector as is defined as

nc: = Cs - L ajsAj + An+t,
j=l

where Aj ~ 0 (j = 1, ... , n) is the value of the dual variable corresponding to
the jth of the constraints (1) and An+t ~ 0 is the value of the dual variable
corresponding to condition (2). For any sET, the reduced cost c~ is defined
as

nc: = Cs - L ajsAj + An+2,
j=l

where An+2 ~ 0 is the value of the dual variable corresponding to condi
tion (3). All these dual variables follow from the linear programming solu
tion.

We want to solve the pricing problem of finding a schedule s with minimal
c~ value; if this minimum is nonnegative, then we know that the value of
the linear programming solution will not decrease by taking the remaining
schedules into consideration, which implies that we have found the optimal
solution of the linear programming relaxation. We solve the pricing problem
by finding the early and tardy schedule with minimum reduced cost among
all early and tardy schedules, respectively. To that end, we use two pricing

7

algorithms: one to find an early schedule with minimum reduced cost; and
one to find a tardy schedule with minimum reduced cost. The latter is
essentially the same as the pricing algorithm that we used for the problem
of minimizing total weighted completion time on a set of identical parallel
machines; see Van den Akker et al. (1995). The pricing algorithm to find an
early schedule with minimum reduced cost is very similar; we work out the
details of this algorithm below.

In case of an early schedule, the pricing problem reduces to minimizing
Cs - Ej=l ajsAj over all binary vectors as; after all, An+1 is a constant for given
A. Suppose that the jobs have been reindexed in order of nonincreasing OJ / Pj

ratios, that is,

01 > ... > an
P1- -Pn'

Then for any job Jj in the early schedule s with vector as, we have that

j-1

E j = d - OJ = L:aisPi.
i=l

As s is an early schedule, we have that Cs = 2:,'1=1 ajajsEj , from which we
obtain that

n j-1 n

c~ - L: ajajs L: aisPi - L: ajsAj + An+!
j=l i=l j=l

- t [OJ~ aisPi - Aj] ajs + An+!.
;=1 t=l

Hence, if Et:: aisPi = t, then including Jj in the early schedule (or putting
ajs = 1) affects ~ by ajt - Aj.

We present a pseudo-polynomial dynamic programming algorithm to solve
the pricing problem. For any given A ~ 0, let F),(j, t) denote the minimum re
duced cost for all early schedules that consist of jobs from the set {J1 , ... , Jj }

in which the first job in the schedule starts at time d - t. The initialization
IS

F (.) {An+b if j =°and t = 0,),], t = h
00, ot erwise.

8

The recursion is then, for j = 1, ... ,n, t = 0, ... ,~1==1Pi

where the first and second term reflect the decision of leaving Jj out of sand
adding Jj to s, respectively. The early schedule with minimum reduced cost
is the one corresponding to

min F>..(n, t),
O~t~P

where P = ~i:1 Pi. Note that any value F>..(n, t) < °corresponds to an
early schedule with negative reduced cost. This raises the issue whether just
the early schedule with minimum negative reduced cost, a small number of
early schedules with most negative reduced cost, or all early schedules with
negative reduced cost should be added to the set S. This implementation
issue is discussed in Section 4.1.

We construct the pricing algorithm for generating tardy schedules in a
similar fashion. Let G>..(j, t) denote the minimum reduced cost for all tardy
schedules that consist of jobs from the set {J1 , ••• , Jj } in which the last job
completes at time t. As our initialization, we have

G>..(" t) = {A n+2' if j = ?and t = 0,
), 00, otherWIse.

The values G>..(j, t) (j = 1, ... , n; t = 0, ... , ~1==1 Pi), are computed through
the recurrence relation

(7)

and we determine

min G>..(n, t),
09~P

to find the tardy schedule with minimum reduced cost from among all tardy
schedules. Again, each value G>..(n, t) < °corresponds to a tardy schedule
with negative reduced cost. The issue of which tardy schedules with negative
reduced cost to add to S is addressed in Section 4.1.

Note that both pricing algorithms run in O(n ~j==1 Pj) time and space.

9

3.2 Lagrangean relaxation

Consider now the Lagrangean problem of problem (P) obtained by dual
izing constraints (1) with a given vector of Lagrangean multipliers P =
(PI, ... , Pn) ~ 0; we refer to this problem as problem (L p). For any given P,
the Lagrangean problem (Lp) is to find the value L(p), which is the minimum
of

n n n
I)cs - LPjajs)xs + L(cs - LPjajs)xs +LPj
sEc j=1 sET j=1 j=1

subject to conditions (2), (3), and (4). From standard Lagrangean theory
(see for instance Fisher (1981)), we know that L(p) is a lower bound on the
optimum solution value for any P 2:: O.

Since Ej=1 pj is a constant, the Lagrangean problem decomposes into
two independent subproblems: one problem of finding an early schedule with
minimum Cs - Ej=1 pjajs; and one problem of finding a tardy schedule with
minimum Cs - Ej=1 pjajs. The key observation is that both these problems
are solved to optimality by using the two pricing algorithms presented in
the previous section; we just use pj instead of Aj for j = 1, ... ,n and put
An+! = 0 and An+2 = O. Accordingly, we have the following result.

Theorem 1 For any P = (PI, ... ,Pn) 2:: 0 and corresponding pi
(PI,' .. , Pn, 0, 0), we have that

o

In fact, we can strengthen the lower bound L(p) in the following way.
Note that we can add to the Lagrangean problem the constraint

n n n
LLajsxs + L Lajsxs = LPj,
sEc j=1 sET j=1 j=1

(8)

which simply stipulates that the length of the early schedule plus the length
of the tardy schedule should be exactly equal to the sum of the process
ing times. Clearly, this constraint is redundant for problem (P). And while

10

remarkably enough it is also redundant for the linear programming relax
ation of (P), it is not redundant for the Lagrangean problem. What is more,
this additional constraint does not complicate the solution algorithm for the
Lagrangean problem. Let L'(p) be the minimum solution value of the La
grangean problem (Lp) with the extra constraint (8). Then we have that

n

L'(p) = min {Fp,(n, t) +Gp,(n, P - tn +L Pj·
°9$P j=1

Of course, we can try and solve the Lagrangean dual problem

max{L'(p) Ip ~ O}

(9)

to find the best possible Lagrangean lower bound, which is equal the to the
linear programming bound in this case. In theory, this problem can be solved
to optimality by the subgradient method or the bundle method, which are
iterative procedures for updating the Lagrangean multipliers.

Accordingly, the basic difference between column generation and La
grangean relaxation lies in the way the dual or Lagrangean multipliers are
adjusted. The advantages of using Lagrangean relaxation to solve the linear
programming relaxation are that (i) it is very easy to implement - there
is no need to use linear programming to compute the next set of multipli
ers; (ii) it gives a lower bound in each iteration, while the column generation
method gives a lower bound only upon convergence; (iii) no solutions need be
stored. However, column generation has much better convergence properties.
The main handicap of the subgradient method is that in practice it works as
a non-polynomial approximation algorithm, since the theoretical conditions
for convergence are so stringent that they cannot be observed in practice.
Furthermore, it is typically impossible to establish whether the subgradient
method has converged to an optimal vector of Lagrangean multipliers. This
handicap is particularly inconvenient in our application, since in our earlier
work on this problem we experienced that the linear programming relax
ation was tight for all our randomly generated instances (Van den Akker
et al., 1996). In this respect, we insist on solving the linear programming
relaxation to optimality.

A much more rewarding venue is to combine column generation and La
grangean relaxation, as we show in the next subsection. In this way, we
can still compute the best lower bound possible, compute lower bounds in

11

each iteration, and use these lower bounds to control the size of the linear
programming problem, to alleviate the tailing-off effect, and to speed up the
pricing algorithms.

3.3 Combining column generation and Lagrangean re
laxation

The main handicap of using column generation is that we have no valid lower
bound on the optimal solution value until convergence, that is, until there are
provably no columns with negative reduced cost any more. For problems with
a severe tailing-off effect and much degeneracy, this is very inconvenient. The
advantage of Lagrangean relaxation, however, is that we have a lower bound
in each step of the column generation algorithm. In this section, we show
how to combine them to both alleviate the tailing-off effect and speed up the
pricing algorithms. We do not try to solve the Lagrangean dual problem;
we simply compute the strengthened Lagrangean lower bound for the linear
programming dual variables Aj (j = 1, ... , n) - we denote this bound by
L'(A). We use the Lagrangean lower bound in four different ways to speed
up the column generation algorithm. We discuss these speedups for the root
node of the branch-and-price algorithm; the speedups for the other nodes
can easily be derived from this discussion. The Lagrangean lower bound is
used to try to

1. Prove optimality of the current solution

Clearly, if we have that L'(A) > UB-1 (recall that the outcome values
are integral) for some A 2: 0, where UB is the solution value of a
feasible solution for the original scheduling problem, then we need no
further bother about convergence of the column generation algorithm
- we have then found a provably optimal solution for the scheduling
problem.

As mentioned earlier, this application of the Lagrangean lower bound
in a colum generation algorithm is known (see for instance Vanderbeck
and Wolsey (1996)), and the effect is only modest in the root node,
since it applies only in the very tail of the convergence process. In the
other nodes, however, this application may be very effective; see for
instance Gademann and Van de Velde (1998).

12

2. Fix variables

From standard linear programming theory, we know that if ~ > UB
L'(~) -1, then X s = 0 in any solution with solution value less than UB,
if such a solution exists. Accordingly, we can remove with impunity all
columns s from the column pool S for which this condition holds.

The value of this type of variable fixing for controlling the growth of
the column pool S is marginal. We could also have used one of the
many rule-of-thumb column management techniques (see for instance
Freling (1997)), such as the one that consistently removes all columns
s for which c~ is larger then some heuristically set positive threshold
value o.
By the same token, we know that if c~ < L'(~) + 1 - UBand X s = 1
in the current solution, then X s = 1 in any solution with solution value
less than UB, if such a solution exists. Accordingly, if this is the case,
then we have identified an optimal solution to the scheduling problem:
column s together with its complimentary schedule then constitutes an
optimal schedule.

Anticipating on our computational results, we found that this type of
variable fixing seldom appeared in practice.

3. Restrict the range of the state variable t in the dynamic programming
recursion for the pricing algorithms

If we have for some t and for some ~ ~ 0 that

n

F>.(n, t) +G>.(n, P - t) +L ~j > UB-1,
j=l

then we may conclude that there is no solution with the length of the
early schedule equal to t (and hence the length of the tardy schedule
equal to P - t) that is better than our best schedule in hand. If we now
can derive that this holds for all t ~ to, for some to as small as possible,
then we can speed up the pricing algorithms by restricting the range of
the state variable t, without loosing any optimal solution to the pricing
problem.

This is a most effective trick to speed up the pricing algorithm. Note
that the speed up can be no more than a factor two.

13

4. Fix jobs to either the early or tardy set.

Fixing jobs is done by the following type of sensitivity analysis. Con
sider any job Jk and let zk(T)* be the optimal solution value for our
earliness-tardiness problem subject to the condition that job Jk is tardy.
For any A 2 0, it is straightforward to compute a lower bound on zk(T)*
by slight adjustments of the two pricing algorithms. If we require that
Jk is tardy, then we compute F>.(k, t) as

k

F>.(k, t) = F>.(k - 1, t), for t = 0, ... , LPi
i=l

and G>.(k, t) as

k

G>.(k, t) = G>.(k - 1, t - Pk) + f3kt - Ak' for t = 0, ... , LPi.
i=l

Hence, if zk(T)* > UB-1, then we know that Jk must be early in any
optimal schedule, if the best schedule found thus far is not optimal.

In a similar fashion, of course, we can test if Jk can be early.

The purpose of this test is twofold: to restrict the size of the column
pool, and more importantly, to speed up the regular pricing algorithm.
To see this, suppose for instance that we have established that some
Jk must be tardy. First of all, we can then remove from the column
pool all early schedules that contain Jk as well as all tardy schedules
do not contain Jk. Furthermore, the consequence for the tardy pricing
algorithm is that the option of scheduling Jk early need no longer be
evaluated. The consequence for the early pricing algorithm is even more
drastic and time-saving: Jk need no longer be part of the recursion at
all.

This type of sensitivity analysis is quite time-consuming; it seems
therefore prudent to perform it for the first time only when the gap
(UB - L'(A) - 1) has become relatively small, and after the first time,
to perform it only once every so many iterations.

14

4 Computational results

In this section, we report on our computational experience with our combined
column generation and Lagrangean relaxation algorithm for randomly gen
erated instances; in the remainder, we refer to it as the combined algorithm.
We first discuss the implementation issues, then give a sketchy description
of our implementation of the combined algorithm, and finally report on and
analyze our computational results.

4.1 Implementation issues

The algorithms were coded in the computer language C, and the experiments
were conducted on an HP9000j710 Unix machine. We used the package
CPLEX (CPLEX Optimization, 1990) to solve the linear programs.

The main implementation issues involved are:

- The design of a heuristic to generate the initial set 8 of early and tardy
schedules;

- The size of the initial set 8, that IS, the number of columns to be
generated by the heuristic;

- The columns to add to the linear program per iteration.

The first implementation issue is the design of a heuristic for generating
initial columns to compute the initial dual variables with which we start the
column generation method. We use a simple iterative improvement proce
dure for this purpose, which works as follows. First, we generate a feasible
solution by deciding randomly whether a job is scheduled early or tardy.
Then, we compute the corresponding V-shaped schedule and we search the
neighborhood of the current schedule for a better V-shaped schedule. The
neighborhood of a V-shaped schedule consists of all V-shaped schedules that
can be obtained by three types of changing operations: moving a tardy job to
the early schedule; moving an early job to the tardy schedule; and swapping
an early and a tardy job. As soon as we find a better schedule in the current
neighborhood, we adopt it as the new schedule. This process is repeated and
terminates when no further improvement can be found.

The second issue is the number of initial solutions to be generated by the
heuristic. Note that multiple initial solutions can be obtained by repetitive

15

use of the heuristic described above. In case of a small number, the initial
dual variables may be a long shot away from the optimal dual variables; in
case of a large number, the size of the linear programs may outweigh the ben
efit of having better initial dual variables. Our computational experiments
indicated that running the heuristic between 20 and 50 times, depending on
the number of jobs in the instance, each time with a different starting solu
tion, was a fairly robust choice. We have not tried to finetune this number
further with respect to size or any other characteristic of an instance.

The third issue is how many and which schedules (or columns) to add
to the set S in each iteration. The dilemma we are facing is that the more
schedules we add per iteration, the fewer linear programs we (probably)
need to solve - which is good; but the more schedules we add per iteration,
the bigger the linear programs become - which is bad. In the previous
section, we noted that each value Fn(t) < 0 and Gn(t) < 0 corresponds to
a column with negative reduced cost. Hence, using the pricing algorithm,
we can determine as many early and tardy schedules with negative reduced
cost as there are values t for which Fn(t) < 0 or Gn(t) < 0, at the expense
of a little extra effort. In our computation results, however, this turned out
to be not worthwhile. Accordingly, per iteration we add no more than one
tardy and one early schedule. There is one exception to this rule, however:
If a schedule with minimum reduced cost together with its complementary
schedule constitute a better primal solution than the incumbent upper bound,
then both schedules are added to S.

This exception also underlines the great importance of the pricing algo
rithms for finding better and better feasible solutions to the original schedul
ing problem. Anticipating on the section with our computational results
for randomly generated instances, the iterative local improvement heuristic
served its purpose by finding reasonable feasible solutions quickly, but the
pricing algorithms always found an optimal solution on the fly.

4.2 The combined algorithm

In this subsection, we give a sketchy description of our implementation of
the combined algorithm - we found this implementation the most robust.

COMBINED ALGORITHM

16

STEP 1. Use the iterative improvement heuristic with between
20 and 50 different starting solutions to generate the initial set S
of early and tardy schedules.

STEP 2. Solve the linear programming relaxation.

STEP 3. Run both pricing algorithms to determine the early
schedule and the tardy schedule with minimum negative reduced
cost.

STEP 4. If neither an early, nor a tardy schedule with negative
reduced cost exists, then go to STEP 8. If such an early sched
ule exists, then determine its complementary tardy schedule. If
together they constitute a better feasible solution than we have
right now, then record the solution and its corresponding solution
value, say UB, and add both the early schedule and its comple
mentary tardy schedule to the set S. If they do not form a better
feasible schedule, then just add the early schedule. The same
procedure applies to the tardy schedule with minimum negative
reduced costs, if it exists.

STEP 5. Compute the Lagrangean lower bound L'(A) and try to
restrict the range of the state variables of the pricing algorithms.

STEP 6. Once every n iterations, do the following: first, perform
a sensitivity analysis to try and fix jobs, if L'(A)jUB > 0.99;
and second, remove each tardy (early) column s with Cs > UB
L'(A) - 1 or with at least one job that should be early (tardy).

STEP 7. Return to STEP 2.

STEP 8. Stop the column generation procedure. We have solved
the linear programming relaxation to optimality. If L'(A) >
UB-1, then we have solved the original schedule problem to
optimality; if not, then we need to use a branch-and-price algo
rithm to solve the scheduling problem to optimality.

Furthermore, note that STEP 4 is also important for finding better feasible
solutions.

17

4.3 Performance of the column generation algorithm

We tested our algorithm on four classes of randomly generated instances:

(i) instances with processing times and weights drawn from the uniform
distribution [1,100]. This concurs with the procedure used by De et al.
(1994) to generate instances, which was also used by Van den Akker et
al. (1996) and Chen and Powell (1997).

(ii) instances with processing times and weights drawn from the uniform
distribution [1,10]. These instances were also considered by Van den
Akker et al. (1996) and Chen and Powell (1997).

(iii) instances where the processing times and the job weights are highly
correlated. The processing times were drawn from the uniform dis
tribution [10,100], and each aj and f3j was drawn from the uniform
distribution [pj - 5,pj +5]. In this way, the ratios aj/pj and f3j/Pj are
all close to 1, which means that the jobs have about the same priority.

(iv) instances where the processing times and jobs weights are almost iden
tical. The processing times and weights were drawn from the uniform
distribution [90,100]. This gives instances where the jobs have about
the same processing requirement and where furthermore the weight to
processing time ratios are all close to 1.

Instance classes (iii) and (iv) contain computationally hard instances, since
all the weight to processing time ratios are close to each other. For in
stance classes (i) and (ii), we tested our algorithm on instances with n =
10,25,50, 75, 100 and 125 jobs; for instance classes (iii) and (iv), we went no
further than instances with 100 jobs, since larger instances took on average
too much time. For each combination of n and instance class we generated
100 instances.

For each value of n and for either instance class, we report on the num
ber of times (out of 100) that the optimal linear programming solution was
integral, the average computation time, the maximum computation time,
the average number of columns generated, the maximum number of columns
generated, the average number of linear programming problems solved, and
the maximum number of linear programming problems solved.

18

Tables 1-4 summarize our computational results with the column genera
tion algorithm for the respective instance classes. The headers of the columns
are:

n

OPT -

ACT
MCT
ACOL -
MCOL -
ALP -
MLP

number of jobs;
number of instances out of 100 for which the linear
programming solution was integral.
average computation time in seconds;
maximum computation time in seconds;
average number of columns generated;
maximum number of columns generated;
average number of linear programs solved;
maximum number of linear programs solved.

n OPT ACT MCT ACOL MCOL ALP MLP
10 100 0.24 0.30 27 53 24 32
25 100 2.57 3.80 146 179 92 124
50 100 21.38 37.94 386 668 207 397
75 100 40.19 62.05 645 899 403 572
100 100 183.01 248.91 1058 1778 669 1591
125 100 467.21 882.87 1575 2168 904 1707

Table 1: Results for the class (i) instances.

n OPT ACT MCT ACOL MCOL ALP MLP
10 100 0.10 0.16 44 41 13 21
25 100 1.72 2.40 113 151 56 74
50 100 10.06 12.41 347 397 223 219
75 100 26.88 46.09 541 725 325 481
100 100 61.01 193.21 870 1459 520 792
125 100 387.63 882.87 1344 2161 772 1001

Table 2: Results for the class (ii) instances.

An astonishing but very convenient phenomenon was that the linear pro
gramming solution turned out to be integral for each instance: OPT = 100

19

n OPT ACT MCT ACOL MCOL ALP MLP
10 100 0.13 0.21 33 52 15 27
25 100 2.16 4.28 122 195 64 102
50 100 38.70 55.24 358 513 193 254
75 100 166.22 1169.10 1100 1409 591 783
100 100 627.16 870.73 1357 1811 763 1048

Table 3: Results for the class (iii) instances.

n OPT ACT MCT ACOL MCOL ALP MLP
10 100 0.21 0.31 37 38 17 23
25 100 4.66 5.13 170 203 100 113
50 100 47.53 62.37 429 528 225 304
75 100 226.26 282.00 854 1075 442 562

100 100 823.83 928.71 1538 1669 760 815

Table 4: Results for the class (iv) instances.

for all n and all instance classes. What is more, the solution of each inter
mediate linear programming problem was always integral as well - and we
have solved millions of these. This raises the question whether integrality
of the optimal solution of the linear programming relaxation is a structural
property. It is not, as was shown by a counterexample with only 5 jobs in
Van den Akker et ai. (1996).

Since the pricing algorithm requires pseudo-polynomial time, we can ex
pect beforehand that the performance of our algorithm deteriorates with the
size of the processing times of the jobs. Indeed, the class (ii) instances, with
smaller processing times, are easier to solve than the class (i) instances. Fur
thermore, as expected, our algorithm has much more difficulty in solving the
class (iii) and (iv) instances. These are indeed hard instances, for two rea
sons: the jobs are very similar, since they all have weight to processing time
ratios close to one, and the cost difference between an early position and a
tardy position is very small for all jobs. One effect is that the sensitivity
analysis to try and fix a job to either the early or the tardy set is then less
effective.

As a whole, our computational results show that using our algorithm we
can solve larger problems to optimality than before: we solve instances with

20

up to 125 jobs, while De et al. (1994) went no further than 40 jobs, and the
two purely column generation algorithm by Chen and Powell (1997) and Van
den Akker et ai. (1996) can solve class (i) and class (ii) instances with up to
60 jobs only. We note that these algorithms were not tested out on class (iii)
and (iv) instances, which are much more difficult to solve.

5 Concluding remarks

We have presented an effective column generation approach combined with
Lagrangean relaxation elements for solving the problem of scheduling jobs
around a large common due date with asymmetric weights. Using this
method, we were able to solve instances with up to 125 jobs to optimality
by solving the linear programming relaxation of a set covering formulation
of the problem - branch-and-bound was never required for our randomly
generated instances. The integrality gap can be positive, unbounded even,
however. Note that, if necessary, our lower bounding approach can easily
be used in a branch-and-bound algorithm in which we partition by putting
some Jj either in the early, or in the tardy schedule; we have discussed the
consequences of such a job fixing in Section 3.3.

The performance of our algorithm marks quite a computational progress
for this problem; after all, two purely column generation algorithms could
solve instances with up to only 60 jobs to optimality. The contribution of
this paper is the structured way in which Lagrangean relaxation is embed
ded in the column generation algorithm. Before, the Lagrangean bound was
primarily used to try and fathom nodes in a branch-and-price tree. In this
paper, we have shown that there are more effective methods to use the La
grangean bound; indeed, these methods not only speed up convergence but
also speed up the pricing algorithms.

We believe that such a combination of column generation and Lagrangean
relaxation, where the Lagrangean bound is used for other and more effec
tive purposes than just fathoming nodes in a branch-and-price algorithm,
is promising for other applications as well. Indeed, Gademann and Van de
Velde (1998) show how Lagrangean relaxation can be embedded in a col
umn generation algorithm for an order batching problem in a parallel-aisle
warehouse.

The phenomenon that the randomly generated instances are easy in prac-

21

tice in the sense that the linear programming solution always seems to give an
integral solution is intriguing. Hoogeveen et al. (1994) showed why randomly
generated instances of the symmetric earliness-tardiness problem with unit
penalty weights, which is NP-hard in general, can be expected to be compu
tationally easy for large instances. For minimizing total weighted completion
time on identical parallel machines, Chan et al. (1995) proved that the linear
programming solution value of a set covering formulation of the problem is,
under mild conditions, asymptotically optimal. But it is still an open ques
tion why randomly generated instances of the earliness-tardiness problem
under study are computationally relatively easy.

Acknowledgement. The second and third author were supported by a
grant from INTAS (Project INTAS-93-257 and INTAS-93-257-Ext).

References

[1] J.M. VAN DEN AKKER, J.A. HOOGEVEEN, AND S.L. VAN DE VELDE
(1995). Parallel machine scheduling by column generation. Operations
Research, to appear.

[2] J .M. VAN DEN AKKER, J .A. HOOGEVEEN, AND S.L. VAN DE VELDE
(1996). A column generation algorithm for common due date schedul
ing, Working Paper LPOM-96-13, Faculty of Mechanical Engineering,
University of Twente, Enschede, The Netherlands.

[3] K.R. BAKER AND G.D. SCUDDER (1989). On the assignment of
optimal due dates. Journal of the Operational Research Society 40, 93
95.

[4] K.R. BAKER AND G.D. SCUDDER (1990). Sequencing with earliness
and tardiness penalties: a review. Operations Research 38, 22-36.

[5] C. BARNHART, E.L. JOHNSON, G.L. NEMHAUSER, M.W.P.
SAVELSBERGH, AND P .H. VANCE (1994). Branch-and-price: column
generation for solving huge integer programs. Operations Research, to
appear.

[6] L.M.A. CHAN, P. KAMINSKY, A. MURIEL, AND D. SIMCHI-LEVI
(1995). Machine scheduling, linear programming and list scheduling

22

heuristics, Manuscript, Department of Industrial Engineering, North
western University, Evanston.

[7] Z.L. CHEN AND W.P. POWELL (1995). Solving parallel machine total
weighted completion time problems by column generation, Manuscript,
Department of Civil Engineering and Operations Research, Princeton
University.

[8] Z.L. CHEN AND W.P. POWELL (1997). A decomposition approach
for a parallel machine just-in-time scheduling problem, Working Paper,
Department of Civil Engineering & Operations Research, Princeton
University.

[9] CPLEX OPTIMIZATION, INC. (1990). Using the CPLEX™ Linear Op
timizer.

[10] P. DE, J. GHOSH, AND C.E. WELLS (1994). Solving a general
ized model for CON due-date assignment and scheduling. International
Journal of Production Economics, 179-185.

[11] M. DESROCHERS, J. DESROSIERS, AND M. SOLOMON (1992). A
new optimization algorithm for the vehicle routing problem with time
windows. Operations Research, 40, 432-354.

[12] J. DESROSIERS, Y. DUMAS, M.M. SALOMON, AND F. SOUMIS
(1995). Time constrained routing and scheduling. Handbooks in Oper
ations Research and Management Science 8, Volume on Network Rout
ing, Elsevier, 35-139.

[13] R. FRELING (1997). Models and techniques for integrating vehicle
and crew scheduling, PhD Thesis, Erasmus University, Rotterdam, The
Netherlands.

[14] R. FRELING, S.L. VAN DE VELDE, AND A. WAGELMANS (1998).
Column generation for dummies: a practical guide. European Journal
of Operational Research, to appear.

[15] A.J .R.M. GADEMANN AND S.L. VAN DE VELDE (1998). A column
generation algorithm for batch order picking in a parallel-aisle ware
house. In preparation.

23

[16] N.G. HALL AND M.E. POSNER (1991). Earliness-tardiness schedul
ing problems, I: Weighted deviation of completion times about a com
mon due date. Operations Research 39, 836-846.

[17] N .G. HALL AND C. SRISKANDARAJAH (1990). The earliness
tardiness problem with asymmetric weights. Presented at the
TIMSjORSA Joint National Meeting, Las Vegas.

[18] J .A. HOOGEVEEN, H. OOSTERHOUT, AND S.L. VAN DE VELDE
(1994). New lower and upper bounds for scheduling around a small
common due date. Operations Research 42, 102-110.

[19] A. MEHROTRA AND M.A. TRICK (1997). A column generation ap
proach for graph coloring. INFORMS Journal on Computing 8, 344
354.

[20] P.M. PARDALOS AND G.P. RODGERS (1990). Computational as
pects of a branch-and-bound algorithm for zero-one programming.
Computing 45, 131-144.

[21] M.A. QUADDUS (1987). A generalized model of optimal due date
assignment by linear programming. Journal of the Operational Research
Society 38, 353-359.

[22] M.W.P. SAVELSBERGH (1997). A branch-and-price algorithm for the
generalized assignment problem. Operations Research 45, 831-84l.

[23] F. SOUMIS (1997). Decomposition and column generation, Chap
ter 8 in Annotated Bibliography of Combinatorial Optimization (eds.
M. DELL'AMICO, F. MAFFIOLI, AND S. MARTELLO), Wiley, Chich
ester.

[24] F. VANDERBECK (1998). On Dantzig-Wolfe decomposition in integer
programming and ways to perform branching in a branch-and-price
algorithm. Operations Research, to appear.

[25] F. VANDERBECK AND L.A. WOLSEY (1996). An exact algorithm for
IP Column generation. Operations Research Letters 19, 151-159.

24

