108 research outputs found

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Proton radiography

    No full text

    The Impact of Blue Light Cystoscopy with Hexaminolevulinate (HAL) on Progression of Bladder Cancer - A New Analysis

    No full text
    Background: The International Bladder Cancer Group (IBCG) recently proposed a new definition of disease progression in non-muscle invasive bladder cancer (NMIBC), including change in T-stage, change to T2 or higher or change from low to high grade. Objective: To establish whether blue light cystoscopy with hexaminolevulinate (HAL) impacts the rate of progression and time to progression using the revised definition. Methods: An earlier long-term follow-up of a controlled Phase III study reported outcomes following blue light cystoscopy with HAL (255 patients) or white light (WL) cystoscopy (261 patients) in NMIBC patients. The data was re-analysed according to the new definition. Results: In the original analysis, after 4.5 years (median), eight HAL and 16 WL patients were deemed to have progressed (transition from NMIBC to muscle invasive bladder cancer, (T2-4)). According to the new definition, additional patients in both groups were found to have progressed: 31 (12.2%) HAL vs 46 (17.6%) WL (p = 0.085) with four (1.6%) HAL and 11 (4.2%) WL patients progressing from Ta to CIS. Time to progression was longer in the HAL group (p = 0.05). Conclusions: Applying the new IBCG definition there was a trend towards a lower rate of progression in HAL patients, particularly in those progressing from Ta to CIS. Time to progression was significantly prolonged. This suggests that patients should receive blue light cystoscopy with HAL rather than WL at resection. Adoption of the new definition could allow more patients at risk of progression to be treated appropriately earlier
    corecore