386 research outputs found
Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons
The role of invariance and consequences for bipartite entanglement of
neutral (K) mesons are discussed. A relaxation of leads to a modification
of the entanglement which is known as the effect. The relaxation of
assumptions required to prove the theorem are examined within the context
of models of space-time foam. It is shown that the evasion of the EPR type
entanglement implied by (which is connected with spin statistics) is
rather elusive. Relaxation of locality (through non-commutative geometry) or
the introduction of decoherence by themselves do not lead to a destruction of
the entanglement. So far we find only one model which is based on non-critical
strings and D-particle capture and recoil that leads to a stochastic
contribution to the space-time metric and consequent change in the neutral
meson bipartite entanglement. The lack of an omega effect is demonstrated for a
class of models based on thermal like baths which are generally considered as
generic models of decoherence
Decoherence and CPT Violation in a Stringy Model of Space-Time Foam
I discuss a model inspired from the string/brane framework, in which our
Universe is represented as a three brane, propagating in a bulk space time
punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the
bulk, the D-particles cross it, and from an effective observer on D3 the
situation looks like a ``space-time foam'' with the defects ``flashing'' on and
off (``D-particle foam''). The open strings, with their ends attached on the
brane, which represent matter in this scenario, can interact with the
D-particles on the D3-brane universe in a topologically non-trivial manner,
involving splitting and capture of the strings by the D0-brane defects. Such
processes are described by logarithmic conformal field theories on the
world-sheet. Physically, they result in effective decoherence of the string
matter on the D3 brane, and as a result, of CPT Violation, but of a type that
implies an ill-defined nature of the effective CPT operator. Due to electric
charge conservation, only electrically neutral (string) matter can exhibit such
interactions with the D-particle foam. This may have unique, experimentally
detectable, consequences for electrically-neutral entangled quantum matter
states on the brane world, in particular the modification of the pertinent EPR
Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro
Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions
Data taken with the ALEPH detector at LEP1 have been used to search for gamma
gamma production of the glueball candidates f0(1500) and fJ(1710) via their
decay to pi+pi-. No signal is observed and upper limits to the product of gamma
gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have
been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) <
0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV
at 95% confidence level.Comment: 10 pages, 3 figure
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Constraints on anomalous QGC's in interactions from 183 to 209 GeV
The acoplanar photon pairs produced in the reaction e(+) e(-) - â vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
- âŠ