334 research outputs found

    Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The G119S mutation responsible for insensitive acetylcholinesterase resistance to organophosphate and carbamate insecticides has recently been reported from natural populations of <it>Anopheles gambiae </it>in West Africa. These reports suggest there are costs of resistance associated with this mutation for <it>An. gambiae</it>, especially for homozygous individuals, and these costs could be influential in determining the frequency of carbamate resistance in these populations.</p> <p>Methods</p> <p>Life-history traits of the AcerKis and Kisumu strains of <it>An. gambiae </it>were compared following the manipulation of larval food availability in three separate experiments conducted in an insecticide-free laboratory environment. These two strains share the same genetic background, but differ in being homozygous for the presence or absence of the G119S mutation at the <it>ace-1 </it>locus, respectively.</p> <p>Results</p> <p>Pupae of the resistant strain were significantly more likely to die during pupation than those of the susceptible strain. Ages at pupation were significantly earlier for the resistant strain and their dry starved weights were significantly lighter; this difference in weight remained when the two strains were matched for ages at pupation.</p> <p>Conclusions</p> <p>The main cost of resistance found for <it>An. gambiae </it>mosquitoes homozygous for the G119S mutation was that they were significantly more likely to die during pupation than their susceptible counterparts, and they did so across a range of larval food conditions. Comparing the frequency of G119S in fourth instar larvae and adults emerging from the same populations would provide a way to test whether this cost of resistance is being expressed in natural populations of <it>An. gambiae </it>and influencing the dynamics of this resistance mutation.</p

    Assortative Mating between European Corn Borer Pheromone Races: Beyond Assortative Meeting

    Get PDF
    BACKGROUND: Sex pheromone communication systems may be a major force driving moth speciation by causing behavioral reproductive isolation via assortative meeting of conspecific individuals. The 'E' and 'Z' pheromone races of the European corn borer (ECB) are a textbook example in this respect. 'Z' females produce and 'Z' males preferentially respond to a 'Z' pheromone blend, while the 'E' race communicates via an 'E' blend. Both races do not freely hybridize in nature and their populations are genetically differentiated. A straightforward explanation would be that their reproductive isolation is a mere consequence of "assortative meeting" resulting from their different pheromones specifically attracting males towards same-race females at long range. However, previous laboratory experiments and those performed here show that even when moths are paired in a small box - i.e., when the meeting between sexual partners is forced - inter-race couples still have a lower mating success than intra-race ones. Hence, either the difference in attractivity of E vs. Z pheromones for males of either race still holds at short distance or the reproductive isolation between E and Z moths may not only be favoured by assortative meeting, but must also result from an additional mechanism ensuring significant assortative mating at close range. Here, we test whether this close-range mechanism is linked to the E/Z female sex pheromone communication system. METHODOLOGY/PRINCIPAL FINDINGS: Using crosses and backcrosses of E and Z strains, we found no difference in mating success between full-sisters emitting different sex pheromones. Conversely, the mating success of females with identical pheromone types but different coefficients of relatedness to the two parental strains was significantly different, and was higher when their genetic background was closer to that of their male partner's pheromone race. CONCLUSIONS/SIGNIFICANCE: We conclude that the close-range mechanism ensuring assortative mating between the E and Z ECB pheromone races is unrelated to the difference in female sex pheromone. Although the nature of this mechanism remains elusive, our results show that it is expressed in females, acts at close range, segregates independently of the autosome carrying Pher and of both sex chromosomes, and is widely distributed since it occurs both in France and in the US

    Hereditary cataract in the Bengal cat in Poland

    Get PDF
    Background: This paper reports the significant prevalence of a presumed hereditary cataract in the Bengal cat breed in Poland. The nuclear part of the lens is affected and previous reports from Sweden and France for this type of feline cataract suggest that a recessive mode of inheritance is probably involved. Results: Presumed congenital or neonatal cataract involving the posterior nuclear part of each lens was initially diagnosed in a 12 month old male Bengal cat. As both parents and a sibling were also affected with cataract, a group of 18 related and 11 non-related cats was then subsequently examined. Eight related cats and one non- related cat were found to be similarly affected. A breed survey was then completed using an additional five centres across Poland and a further 190 related cats were examined. A total of 223 cats have been involved in this study, with 75 (33%) being affected with several types of cataract and 67 (30%) being specifically affected with the same or similar nuclear lesions. Eight cats (3.6%) presented with other cataract types and a prominence of the posterior lens suture lines was recorded in 65 cats unaffected with cataract (29%). There were no demonstrable vision problems. Neither age nor coat colour was significantly associated with the nuclear cataract, but the nuclear cataract group had a higher proportion of females than the unaffected group. Pedigree analysis has indicated probable inheritance as a recessive trait. Conclusions: These findings suggest that a presumably inherited nuclear cataract is present in the Bengal cat breed in Poland. It is considered to be either congenital or of very early onset, probably being inherited as a recessive trait. Although the lesion has no noticeable effect on vision, breeders in Poland and worldwide should be aware of the disease and clinical examination of young breeding stock prior to reproduction is advisable

    Evidence of Introgression of the ace-1R Mutation and of the ace-1 Duplication in West African Anopheles gambiae s. s

    Get PDF
    Background: The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s. Methods and Results: To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression. Conclusions: These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa

    Genetic hitchhiking and resistance evolution to transgenic Bt toxins: insights from the African stalk borer Busseola fusca (Noctuidae)

    Get PDF
    Since transgenic crops expressing Bacillus thuringiensis (Bt) toxins were first released, resistance evolution leading to failure in control of pests populations has been observed in a number of species. Field resistance of the moth Busseola fusca was acknowledged 8 years after Bt maize was introduced in South Africa. Since then, field resistance of this corn borer has been observed at several locations, raising questions about the nature, distribution and dynamics of the resistance trait. Using genetic markers, our study identified four outlier loci clearly associated with resistance. In addition, genetic structure at neutral loci reflected extensive gene flow among populations. A realistically parameterised model suggests that resistance could travel in space at speed of several kilometres a year. Markers at outlier loci delineated a geographic region associated with resistance spread. This was an area of approximately 100 km radius, including the location where resistance was first reported. Controlled crosses corroborated these findings and showed significant differences of progeny survival on Bt plants depending on the origin of the resistant parent. Last, our study suggests diverse resistance mutations, which would explain the widespread occurrence of resistant larvae in Bt fields across the main area of maize production in South Africa

    FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    Get PDF
    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) and is provided to help the physician and physicist to assist to carrying out, interpret, and document quantitative FDG PET/CT examinations, but will concentrate on the optimisation of diagnostic quality and quantitative information

    A theoretical entropy score as a single value to express inhibitor selectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.</p> <p>Results</p> <p>Here we propose a new theoretical entropy score that can be calculated from a set of IC<sub>50 </sub>data. In contrast to previous measures such as the 'selectivity score', Gini score, or partition index, the entropy score is non-arbitary, fully exploits IC<sub>50 </sub>data, and is not dependent on a reference enzyme. In addition, the entropy score gives the most robust values with data from different sources, because it is less sensitive to errors. We apply the new score to kinase and nuclear receptor profiling data, and to high-throughput screening data. In addition, through analyzing profiles of clinical compounds, we show quantitatively that a more selective kinase inhibitor is not necessarily more drug-like.</p> <p>Conclusions</p> <p>For quantifying selectivity from panel profiling, a theoretical entropy score is the best method. It is valuable for studying the molecular mechanisms of selectivity, and to steer compound progression in drug discovery programs.</p

    Molecular Evolution of Ultraspiracle Protein (USP/RXR) in Insects

    Get PDF
    Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (dN/dS), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that dS is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand

    Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species

    Get PDF
    The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlationβ€Š=β€ŠβˆΌ0.6) with the intrinsic metabolic capacities of a speciesβ€”higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets
    • …
    corecore