5,827 research outputs found

    Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model

    Get PDF
    We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ\lambda, in all models where this coupling depends only on phonon momentum qq. In the SSH model the coupling also depends on the electron momentum kk; we find it has a sharp transition, at a critical coupling strength λc\lambda_c, between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λc\lambda = \lambda_c, except the average number of phonons in the polaronic cloud. This result is representative of all polarons with coupling depending on kk and qq, and will have important experimental consequences (eg., in ARPES and conductivity experiments)

    Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices

    Full text link
    The magnetic and electronic modifications induced at the interfaces in (SrMnO3_{3})n_{n}/(LaMnO3_{3})2n_{2n} superlattices have been investigated by linear and circular magnetic dichroism in the Mn L2,3_{2,3} x-ray absorption spectra. Together with theoretical calculations, our data demonstrate that the charge redistribution across interfaces favors in-plane ferromagnetic (FM) order and eg(x2y2)e_{g}(x^{2}-y^{2}) orbital occupation, in agreement with the average strain. Far from interfaces, inside LaMnO3_3, electron localization and local strain favor antiferromagnetism (AFM) and eg(3z2r2)e_{g}(3z^{2}-r^{2}) orbital occupation. For n=1n=1 the high density of interfacial planes ultimately leads to dominant FM order forcing the residual AFM phase to be in-plane too, while for n5n \geq 5 the FM layers are separated by AFM regions having out-of-plane spin orientation.Comment: accepted for publication as a Rapid Communication in Physical Review

    Measuring the Three-Dimensional Structure of Galaxy Clusters. II. Are clusters of galaxies oblate or prolate?

    Get PDF
    The intrinsic shape of galaxy clusters can be obtained through a combination of X-ray and Sunyaev-Zeldovich effect observations once cosmological parameters are assumed to be known. In this paper we discuss the feasibility of modelling galaxy clusters as either prolate or oblate ellipsoids. We analyze the intra-cluster medium distribution for a sample of 25 X-ray selected clusters, with measured Sunyaev-Zeldovich temperature decrements. A mixed population of prolate and oblate ellipsoids of revolution fits the data well, with prolate shapes preferred on a 60-76% basis. We observe an excess of clusters nearly aligned along the line of sight, with respect to what is expected from a randomly oriented cluster population, which might imply the presence of a selection bias in our sample. We also find signs that a more general triaxial morphology might better describe the morphology of galaxy clusters. Additional constraints from gravitational lensing could disentangle the degeneracy between an ellipsoidal and a triaxial morphology, and could also allow an unbiased determination of the Hubble constant.Comment: 9 pages, 8 figures, accepted for publication in Astrophys.

    CMS Monte Carlo production in the WLCG computing Grid

    Get PDF
    Monte Carlo production in CMS has received a major boost in performance and scale since the past CHEP06 conference. The production system has been re-engineered in order to incorporate the experience gained in running the previous system and to integrate production with the new CMS event data model, data management system and data processing framework. The system is interfaced to the two major computing Grids used by CMS, the LHC Computing Grid (LCG) and the Open Science Grid (OSG). Operational experience and integration aspects of the new CMS Monte Carlo production system is presented together with an analysis of production statistics. The new system automatically handles job submission, resource monitoring, job queuing, job distribution according to the available resources, data merging, registration of data into the data bookkeeping, data location, data transfer and placement systems. Compared to the previous production system automation, reliability and performance have been considerably improved. A more efficient use of computing resources and a better handling of the inherent Grid unreliability have resulted in an increase of production scale by about an order of magnitude, capable of running in parallel at the order of ten thousand jobs and yielding more than two million events per day

    Effects of SO(10) D-Term on Yukawa Unification and Unstable Minima of the Supersymmetric Scalar Potential

    Full text link
    We study the effects of SO(10) D-terms on the allowed parameter space (APS) in models with tbτt - b - \tau and bτb - \tau Yukawa unifiction. The former is allowed only for moderate values of the D-term, if very precise (\le 5%) unification is required. Next we constrain the parameter space by looking for different dangerous directions where the scalar potential may be unbounded from below (UFB1 and UFB3). The common trilinear coupling A0A_0 plays a significant role in constraing the APS. For very precise tbτt - b - \tau Yukawa unification, m16<orA0<orm16-m_{16} < or \approx A_0 < or \approx m_{16} can be probed at the LHC, where m16m_{16} is the common soft breaking mass for the sfermions. Moreover, an interesting mass hierarchy with very heavy sfermions but light gauginos, which is strongly disfavoured in models without D-terms, becomes fairly common in the presence of the D-terms. The APS exhibits interesting characteristics if m16m_{16} is not the same as the soft breaking mass m10m_{10} for the Higgs sector. In bτb - \tau unification models with D-terms, the APS consistent with Yukawa unification and radiative electroweak symmetry breaking, increases as the UFB1 constraint becomes weaker. However for A00A_0 \leq 0, a stronger UFB3 condition still puts, for a given m16m_{16}, a stringent upper bound on the common gaugino mass (m1/2m_{1/2}) and a lower bound on m16m_{16} for a given m1/2m_{1/2}. The effects of sign of μ\mu on Yukawa unification and UFB constraints are also discussed.Comment: Plain Latex, 22 pages, 11 figures. Small changes in the abstract, the pattern of discussion changed signifiantly, no change in the figures and results, a few new references added, version published in JP

    Free energy of the Fr\"ohlich polaron in two and three dimensions

    Full text link
    We present a novel Path Integral Monte Carlo scheme to solve the Fr\"ohlich polaron model. At intermediate and strong electron-phonon coupling, the polaron self-trapping is properly taken into account at the level of an effective action obtained by a preaveraging procedure with a retarded trial action. We compute the free energy at several couplings and temperatures in three and two dimensions. Our results show that the accuracy of the Feynman variational upper bound for the free energy is always better than 5% although the thermodynamics derived from it is not correct. Our estimates of the ground state energies demonstrate that the second cumulant correction to the variational upper bound predicts the self energy to better than 1% at intermediate and strong coupling.Comment: RevTeX 7 pages 3 figures, revised versio

    AC 114: a cluster with a soft X-ray tail

    Full text link
    We present Chandra observations of the galaxy cluster AC114, which shows a strongly irregular morphology, with signs of multiple merging activity. We report the discovery of a soft X-ray filament originating close to the core of the cluster. We confirm that X-ray emission is associated with two of three mass concentrations identified in previous gravitational lensing studies of this object. These two mass concentrations are located at opposite ends of the soft filament, evidence for interaction between them. In the northern part, the cluster shows two sharp discontinuities, both in surface brightness and in temperature, evincing another, more recent merger event which took place in, or close, to the cluster core. In spite of the merger activity, a combined mass and lensing analysis shows remarkably good agreement between lensing and X-ray masses. We therefore advocate for the robustness of the X-ray mass estimates, and conclude that the assumption of hydrostatic equilibrium can yield accurate mass estimates even in clusters as dynamically active as AC 114, once the gas density distribution is properly mapped.Comment: 11 pages; to appear in ApJ 10 August 2004 issu

    Charge dynamics of doped holes in high Tc cuprates - A clue from optical conductivity

    Get PDF
    The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the mid-infrared band.Comment: 4 pages, 4 figures. Accepted to Phys. Rev. Letter

    Interplay between electron-phonon and Coulomb interactions in cuprates

    Full text link
    Evidence for strong electron-phonon coupling in high-Tc cuprates is reviewed, with emphasis on the electron and phonon spectral functions. Effects due to the interplay between the Coulomb and electron-phonon interactions are studied. For weakly doped cuprates, the phonon self-energy is strongly reduced due to correlation effects, while there is no corresponding strong reduction for the electron self-energy. Polaron formation is studied, focusing on effects of Coulomb interaction and antiferromagnetic correlations. It is argued that experimental indications of polaron formation in undoped cuprates are due to a strong electron-phonon interaction for these systems.Comment: 43 pages and 22 figure
    corecore