6,024 research outputs found
The eclipsing bursting X-ray binary EXO 0748-676 revisited by XMM-Newton
The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been
observed at several occasions by XMM-Newton during the initial calibration and
performance verification (CAL/PV) phase. We present here the results obtained
from observations with the EPIC cameras. Apart from several type-I X-ray
bursts, the source shows a high degree of variability with the presence of soft
flares. The wide energy coverage and high sensitivity of XMM-Newton allows for
the first time a detailed description of the spectral variability.
The source is found to be the superposition of a central (~2 10^8 cm)
Comptonized emission, most probably a corona surrounding the inner edge of an
accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a
typical temperature of ~0.6 keV with an indication of non-solar abundances.
Most of the variations of the source can be accounted for by a variable
absorption affecting only the central comptonized component and reaching up to
NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found
compatible with an irradiated atmosphere of an accretion disc which intercepts
the central emission due to the system high inclination.Comment: 6 pages, 4 figures, accepted for publication in A&A Letters, XMM
special issu
QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs
A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails
Reducing the Number of Sputum Samples Examined and Thresholds for Positivity: An Opportunity to Optimise Smear Microscopy.
SETTING: Urban health clinic, Nairobi. OBJECTIVE: To evaluate the impact on tuberculosis (TB) case detection and laboratory workload of reducing the number of sputum smears examined and thresholds for diagnosing positive smears and positive cases. DESIGN: In this prospective study, three Ziehl-Neelsen stained sputum smears from consecutive pulmonary TB suspects were examined blind. The standard approach (A), > or = 2 positive smears out of 3, using a cut-off of 10 acid-fast bacilli (AFB)/100 high-power fields (HPF), was compared with approaches B, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3, one of which is > or = 10 AFB/100 HPF; C, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3; D, > or = 1 positive smear (> or = 10 AFB/100 HPF) out of 2; and E, > or = 1 positive smear (> or = 4 AFB/100 HPF) out of 2. The microscopy gold standard was detection of at least one positive smear (> or = 4 AFB/100 HPF) out of 3. RESULTS: Among 644 TB suspects, the alternative approaches detected from 114 (17.7%) (approach B) to 123 cases (19.1%) (approach E) compared to 105 cases (16.3%) for approach A (P < 0.005). Sensitivity ranged between 82.0% (105/128) for A and 96.1% (123/128) for E. The single positive smear approaches reduced the number of smears by 36% compared to approach A. CONCLUSION: Reducing the number of specimens and the positivity threshold to define a positive case increased the sensitivity of microscopy and reduced laboratory workload
Structural relationship between link proteins and proteoglycan monomers
AbstractStructural homologies between link proteins and proteoglycan monomers are demonstrated. A possible redundancy in the proteoglycan monomers structure is discussed and the link proteins domains homologous to other proteins are specified
Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies
We present an analysis of multifragmentation events observed in central Xe+Sn
reactions at Fermi energies. Performing a comparison between the predictions of
the Stochastic Mean Field (SMF) transport model and experimental data, we
investigate the impact of the compression-expansion dynamics on the properties
of the final reaction products. We show that the amount of radial collective
expansion, which characterizes the dynamical stage of the reaction, influences
directly the onset of multifragmentation and the kinematic properties of
multifragmentation events. For the same set of events we also undertake a shape
analysis in momentum space, looking at the degree of stopping reached in the
collision, as proposed in recent experimental studies. We show that full
stopping is achieved for the most central collisions at Fermi energies.
However, considering the same central event selection as in the experimental
data, we observe a similar behavior of the stopping power with the beam energy,
which can be associated with a change of the fragmentation mechanism, from
statistical to prompt fragment emission.Comment: 15 page
Memory Effects in the Standard Model for Glasses
The standard model of glasses is an ensemble of two-level systems interacting
with a thermal bath. The general origin of memory effects in this model is a
quasi-stationary but non-equilibrium state of a single two-level system, which
is realized due to a finite-rate cooling and very slow thermally activated
relaxation. We show that single particle memory effects, such as negativity of
the specific heat under reheating, vanish for a sufficiently disordered
ensemble. In contrast, a disordered ensemble displays a collective memory
effect [similar to that described by Kovacs for glassy polymers], where
non-equilibrium features of the ensemble are monitored via a macroscopic
observable. An experimental realization of the effect can be used to further
assess the consistency of the model.Comment: 4 pages, 6 figure
Added value of bleach sedimentation microscopy for diagnosis of tuberculosis: a cost-effectiveness study.
SETTING: Bleach sedimentation is a method used to increase the diagnostic yield of sputum microscopy for countries with a high prevalence of human immunodeficiency virus (HIV) infection and limited resources. OBJECTIVES: To compare the relative cost-effectiveness of different microscopy approaches in diagnosing tuberculosis (TB) in Kenya. METHODS: An analytical decision tree model including cost and effectiveness measures of 10 combinations of direct (D) and overnight bleach (B) sedimentation microscopy was constructed. Data were drawn from the evaluation of the bleach sedimentation method on two specimens (first on the spot [1] and second morning [2]) from 644 TB suspects in a peripheral health clinic. Incremental cost per smear-positive detected case was measured. Costs included human resources and materials using a micro-costing evaluation. RESULTS: All bleach-based microscopy approaches detected significantly more cases (between 23.3% for B1 and 25.9% for B1+B2) than the conventional D1+D2 approach (21.0%). Cost per tested case ranged between respectively euro 2.7 and euro 4.5 for B1 and B1+D2+B2. B1 and B1+B2 were the most cost-effective approaches. D1+B2 and D1+B1 were good alternatives to avoid using approaches exclusively based on bleach sedimentation microscopy. CONCLUSIONS: Among several effective microscopy approaches used, including sodium hypochlorite sedimentation, only some resulted in a limited increase in the laboratory workload and would be most suitable for programmatic implementation
- …