703 research outputs found

    Ferromagnetic (Ga,Mn)N epilayers versus antiferromagnetic GaMn3_3N clusters

    Full text link
    Mn-doped wurtzite GaN epilayers have been grown by nitrogen plasma-assisted molecular beam epitaxy. Correlated SIMS, structural and magnetic measurements show that the incorporation of Mn strongly depends on the conditions of the growth. Hysteresis loops which persist at high temperature do not appear to be correlated to the presence of Mn. Samples with up to 2% Mn are purely substitutional Ga1x_{1-x}Mnx_xN epilayers, and exhibit paramagnetic properties. At higher Mn contents, precipitates are formed which are identified as GaMn3_3N clusters by x-ray diffraction and absorption: this induces a decrease of the paramagnetic magnetisation. Samples co-doped with enough Mg exhibit a new feature: a ferromagnetic component is observed up to Tc175T_c\sim175 K, which cannot be related to superparamagnetism of unresolved magnetic precipitates.Comment: Revised versio

    Probing exciton localization in non-polar GaN/AlN Quantum Dots by single dot optical spectroscopy

    Full text link
    We present an optical spectroscopy study of non-polar GaN/AlN quantum dots by time-resolved photoluminescence and by microphotoluminescence. Isolated quantum dots exhibit sharp emission lines, with linewidths in the 0.5-2 meV range due to spectral diffusion. Such linewidths are narrow enough to probe the inelastic coupling of acoustic phonons to confined carriers as a function of temperature. This study indicates that the carriers are laterally localized on a scale that is much smaller than the quantum dot size. This conclusion is further confirmed by the analysis of the decay time of the luminescence

    Optical Study of GaAs quantum dots embedded into AlGaAs nanowires

    Full text link
    We report on the photoluminescence characterization of GaAs quantum dots embedded into AlGaAs nano-wires. Time integrated and time resolved photoluminescence measurements from both an array and a single quantum dot/nano-wire are reported. The influence of the diameter sizes distribution is evidenced in the optical spectroscopy data together with the presence of various crystalline phases in the AlGaAs nanowires.Comment: 5 page, 5 figure

    Некоторые робастные решения в условиях риска и неопределенности

    Get PDF
    Обсуждаются проблемы построения робастных решений в условиях риска и неопределенности. Рассматриваются две модели распределения средств для минимизации потенциальных рисков. Проблемы поиска их робастных решений сведены к соответствующим задачам линейного программирования.Обговорюються проблеми побудови робастних рішень в умовах ризику та невизначеності. Розглядаються дві моделі розподілу коштів для мінімізації потенційних ризиків. Проблеми пошуку їх робастних рішень зведено до відповідних задач лінійного програмування.Problems of constructing robust decisions in conditions of risk and uncertainty are discussed. Two fund distribution models for minimization of potential risks are considered. Problems of searching their robust decisions are reduced to appropriate linear programming problems

    Pathophysiology of acute respiratory syndrome coronavirus 2 infection: a systematic literature review to inform EULAR points to consider

    Get PDF
    BACKGROUND: The SARS-CoV-2 pandemic is a global health problem. Beside the specific pathogenic effect of SARS-CoV-2, incompletely understood deleterious and aberrant host immune responses play critical roles in severe disease. Our objective was to summarise the available information on the pathophysiology of COVID-19. METHODS: Two reviewers independently identified eligible studies according to the following PICO framework: P (population): patients with SARS-CoV-2 infection; I (intervention): any intervention/no intervention; C (comparator): any comparator; O (outcome) any clinical or serological outcome including but not limited to immune cell phenotype and function and serum cytokine concentration. RESULTS: Of the 55 496 records yielded, 84 articles were eligible for inclusion according to question-specific research criteria. Proinflammatory cytokine expression, including interleukin-6 (IL-6), was increased, especially in severe COVID-19, although not as high as other states with severe systemic inflammation. The myeloid and lymphoid compartments were differentially affected by SARS-CoV-2 infection depending on disease phenotype. Failure to maintain high interferon (IFN) levels was characteristic of severe forms of COVID-19 and could be related to loss-of-function mutations in the IFN pathway and/or the presence of anti-IFN antibodies. Antibody response to SARS-CoV-2 infection showed a high variability across individuals and disease spectrum. Multiparametric algorithms showed variable diagnostic performances in predicting survival, hospitalisation, disease progression or severity, and mortality. CONCLUSIONS: SARS-CoV-2 infection affects both humoral and cellular immunity depending on both disease severity and individual parameters. This systematic literature review informed the EULAR 'points to consider' on COVID-19 pathophysiology and immunomodulatory therapies

    Comparison of Zn_{1-x}Mn_xTe/ZnTe multiple-quantum wells and quantum dots by below-bandgap photomodulated reflectivity

    Full text link
    Large-area high density patterns of quantum dots with a diameter of 200 nm have been prepared from a series of four Zn_{0.93}Mn_{0.07}Te/ZnTe multiple quantum well structures of different well width (4 nm, 6 nm, 8 nm and 10 nm) by electron beam lithography followed by Ar+ ion beam etching. Below-bandgap photomodulated reflectivity spectra of the quantum dot samples and the parent heterostructures were then recorded at 10 K and the spectra were fitted to extract the linewidths and the energy positions of the excitonic transitions in each sample. The fitted results are compared to calculations of the transition energies in which the different strain states in the samples are taken into account. We show that the main effect of the nanofabrication process is a change in the strain state of the quantum dot samples compared to the parent heterostructures. The quantum dot pillars turn out to be freestanding, whereas the heterostructures are in a good approximation strained to the ZnTe lattice constant. The lateral size of the dots is such that extra confinement effects are not expected or observed.Comment: 23 pages, LaTeX2e (amsmath, epsfig), 7 EPS figure

    Hematopoietic upstream stimulating factor 1 deficiency is associated with increased atherosclerosis susceptibility in LDL receptor knockout mice

    Get PDF
    Total body upstream stimulatory factor 1 (USF1) deficiency in mice is associated with brown adipose tissue activation and a marked protection against the development of obesity and atherosclerotic lesions. Functional expression of USF1 has also been detected in monocytes and monocyte-derived macrophages. In the current study we therefore tested whether selective hematopoietic USF1 deficiency can also beneficially impact the development of atherosclerosis. For this purpose, LDL receptor knockout mice were transplanted with bone marrow from USF1 knockout mice or their wild-type littermate controls and subsequently fed a Western-type diet for 20 weeks to stimulate atherosclerotic lesion development. Strikingly, absence of USF1 function in bone marrow-derived cells was associated with exacerbated blood leukocyte (+ 100%; P < 0.01) and peritoneal leukocyte (+ 50%; P < 0.05) lipid loading and an increased atherosclerosis susceptibility (+ 31%; P < 0.05). These effects could be attributed to aggravated hyperlipidemia, i.e. higher plasma free cholesterol (+ 33%; P < 0.001) and cholesteryl esters (+ 39%; P < 0.001), and the development of hepatosteatosis. In conclusion, we have shown that hematopoietic USF1 deficiency is associated with an increased atherosclerosis susceptibility in LDL receptor knockout mice. These findings argue against a contribution of macrophage-specific USF1 deficiency to the previously described beneficial effect of total body USF1 deficiency on atherosclerosis susceptibility in mice.Peer reviewe

    Serum IL-33, a new marker predicting response to rituximab in rheumatoid arthritis

    Get PDF
    Background. Recent works have suggested a possible link between IL-33 and B-cell biology. We aimed to study in different cohorts and with an accurate ELISA assay the possible association between serum IL-33 detection and response to rituximab (RTX) in rheumatoid arthritis (RA) patients. Method. Serum IL-33, rheumatoid factor (RF), anti-citrullinated cyclic peptide antibodies (anti-CCP), high serum IgG level were assessed in 111 RA patients receiving a first course of 2 grams RTX (cohort 1) in an observational study and in 74 RA patients treated with the same schedule in routine care (cohort 2). Uni and multivariate analyzes identified factors associated with a European League Against Rheumatism response at 24 weeks. Results. At week 24, 84/111 (76%) and 54/74 (73%) patients reached EULAR response in the cohorts 1 and 2, respectively. Serum IL-33 was detectable in only 33,5% of the patients. In the combined cohorts, presence of RF or anti-CCP (OR 3.27, 95%CI [1.13-9.46]; p=0.03), high serum IgG (OR 2.32, 95%CI [1.01-5.33]; p=0.048) and detectable serum IL-33 (OR 2.40, 95%CI [1.01-5.72]; p=0.047) were all associated with RTX response in multivariate analysis. Combination of these 3 factors increased the likelihood to response to RTX. When serum IL-33 detection was added to seropositivity and serum IgG level, 100% of the patients with the 3 risk factors (corresponding to 9% of the population) responded to RTX (OR versus patients with none of the 3 risk factors = 29.61; 95% CI [1.30-674.79] p=0.034) Conclusion. Detectable serum IL-33 may predict clinical response to RTX, independently of and synergistically with autoantibodies and serum IgG level
    corecore