759 research outputs found

    Selective readout and back-action reduction for wideband acoustic gravitational wave detectors

    Full text link
    We present the concept of selective readout for broadband resonant mass gravitational wave detectors. This detection scheme is capable of specifically selecting the signal from the contributions of the vibrational modes sensitive to the gravitational waves, and efficiently rejecting the contribution from non gravitationally sensitive modes. Moreover this readout, applied to a dual detector, is capable to give an effective reduction of the back-action noise within the frequency band of interest. The overall effect is a significant enhancement in the predicted sensitivity, evaluated at the standard quantum limit for a dual torus detector. A molybdenum detector, 1 m in diameter and equipped with a wide area selective readout, would reach spectral strain sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.Comment: 9 pages, 4 figure

    Non-Vascular Ceramic Sherds Coming from Two Italian Etruscan Settlements: Peculiarities and Interpretation of Their Possible Use

    Get PDF
    Peculiar non-vascular ceramic slabs of uncertain use were found in two different Etruscan settlements of the Po Delta region (San Basilio di Ariano nel Polesine and Adria, North-East Italy) dated back to the first millennium BC. Different interpretations concerning the primary role of these fragments have been suggested by previous scholars. To bring to light an understanding of the construction processes that appear to be unique to the San Basilio and Adria settlements, a multi-analytical approach has been carried out. Macroscopic observations enabled these materials to be preliminary subdivided into groups based on chromatic features, followed by the identification of their chemical composition through FTIR-ATR spectroscopy. Moreover, the open porosity was estimated by the total water absorption test, and the superficial morphology and elemental composition of specific samples were analyzed using SEM-EDS. Furthermore, the firing temperature of a few selected fragments was evaluated by the TGA-DSC technique in order to investigate ancient production techniques. The results of the research lead us to consider the role of these peculiar non-vascular ceramic slabs as building materials due to their specific protective properties, considering the environmental conditions of the Po Delta region

    Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature

    Full text link
    We apply a feedback cooling technique to simultaneously cool the three electromechanical normal modes of the ton-scale resonant-bar gravitational wave detector AURIGA. The measuring system is based on a dc Superconducting Quantum Interference Device (SQUID) amplifier, and the feedback cooling is applied electronically to the input circuit of the SQUID. Starting from a bath temperature of 4.2 K, we achieve a minimum temperature of 0.17 mK for the coolest normal mode. The same technique, implemented in a dedicated experiment at subkelvin bath temperature and with a quantum limited SQUID, could allow to approach the quantum ground state of a kilogram-scale mechanical resonator.Comment: 4 pages, 4 figure

    Robust vetoes for gravitational-wave burst triggers using known instrumental couplings

    Get PDF
    The search for signatures of transient, unmodelled gravitational-wave (GW) bursts in the data of ground-based interferometric detectors typically uses `excess-power' search methods. One of the most challenging problems in the burst-data-analysis is to distinguish between actual GW bursts and spurious noise transients that trigger the detection algorithms. In this paper, we present a unique and robust strategy to `veto' the instrumental glitches. This method makes use of the phenomenological understanding of the coupling of different detector sub-systems to the main detector output. The main idea behind this method is that the noise at the detector output (channel H) can be projected into two orthogonal directions in the Fourier space -- along, and orthogonal to, the direction in which the noise in an instrumental channel X would couple into H. If a noise transient in the detector output originates from channel X, it leaves the statistics of the noise-component of H orthogonal to X unchanged, which can be verified by a statistical hypothesis testing. This strategy is demonstrated by doing software injections in simulated Gaussian noise. We also formulate a less-rigorous, but computationally inexpensive alternative to the above method. Here, the parameters of the triggers in channel X are compared to the parameters of the triggers in channel H to see whether a trigger in channel H can be `explained' by a trigger in channel X and the measured transfer function.Comment: 14 Pages, 8 Figures, To appear in Class. Quantum Gra

    Correlation between Gamma-Ray bursts and Gravitational Waves

    Get PDF
    The cosmological origin of γ\gamma-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \bbox{hRMS1.5×1018h_{\text{RMS}} \leq 1.5 \times 10^{-18}} on the averaged amplitude of gravitational waves associated with γ\gamma-ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    ON-LINE CONSISTENCY TESTS FOR BAR DETECTORS

    Get PDF
    In order to detect gravitational wave signals with resonant bar detectors using Wiener–Kolmogorov (WK) filters, both a model for the power spectrum density (PSD) of the noise and a signal template should be provided. As the analysis is not meant to handle non-gaussian data, we have to discriminate (and constrain to) time periods where the noise follows a quasi-stationary gaussian model. Within these periods, candidate events are selected in the WK filter output, and their fundamental parameters (time of arrival and amplitude) are computed. A necessary and sufficient condition for the reliability of such estimates is the consistency of the signal shape with the template. This is done performing a goodness-of-the-fit test

    Wideband dual sphere detector of gravitational waves

    Get PDF
    We present the concept of a sensitive AND broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures one approaches the Standard Quantum Limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector of overall size of 2 m, would reach spectral strain sensitivities of 2x10^-23/Sqrt{Hz} between 1000 Hz and 3000 Hz.Comment: 4 pages, 3 figures. Changed content. To appear in Phys. Rev. Let

    General relativistic Sagnac formula revised

    Full text link
    The Sagnac effect is a time or phase shift observed between two beams of light traveling in opposite directions in a rotating interferometer. We show that the standard description of this effect within the framework of general relativity misses the effect of deflection of light due to rotational inertial forces. We derive the necessary modification and demonstrate it through a detailed analysis of the square Sagnac interferometer rotating about its symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac interferometer in the synchronization procedure of remote clocks as well as its analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure

    Testing of optimal filters for gravitational wave signals: An experimental implementation

    Get PDF
    We have implemented likelihood testing of the performance of an optimal filter within the online analysis of AURIGA, a sub-Kelvin resonant-bar gravitational wave detector. We demonstrate the effectiveness of this technique in discriminating between impulsive mechanical excitations of the resonant-bar and other spurious excitations. This technique also ensures the accuracy of the estimated parameters such as the signal-to-noise ratio. The efficiency of the technique to deal with non-stationary noise and its application to data from a network of detectors are also discussed
    corecore