The search for signatures of transient, unmodelled gravitational-wave (GW)
bursts in the data of ground-based interferometric detectors typically uses
`excess-power' search methods. One of the most challenging problems in the
burst-data-analysis is to distinguish between actual GW bursts and spurious
noise transients that trigger the detection algorithms. In this paper, we
present a unique and robust strategy to `veto' the instrumental glitches. This
method makes use of the phenomenological understanding of the coupling of
different detector sub-systems to the main detector output. The main idea
behind this method is that the noise at the detector output (channel H) can be
projected into two orthogonal directions in the Fourier space -- along, and
orthogonal to, the direction in which the noise in an instrumental channel X
would couple into H. If a noise transient in the detector output originates
from channel X, it leaves the statistics of the noise-component of H orthogonal
to X unchanged, which can be verified by a statistical hypothesis testing. This
strategy is demonstrated by doing software injections in simulated Gaussian
noise. We also formulate a less-rigorous, but computationally inexpensive
alternative to the above method. Here, the parameters of the triggers in
channel X are compared to the parameters of the triggers in channel H to see
whether a trigger in channel H can be `explained' by a trigger in channel X and
the measured transfer function.Comment: 14 Pages, 8 Figures, To appear in Class. Quantum Gra