159 research outputs found

    Post-melting encapsulation of glass microwires for multipath light waveguiding within phosphate glasses

    Full text link
    Glass waveguides remain the fundamental component of advanced photonic circuits and with a significant role in other applications such as quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate the feasibility of a simple, low-temperature, post-melting encapsulation procedure for the development of advanced glass waveguides. Namely, silver iodide phosphate glass microwires (MWs) are drawn from typical splat-quenched samples. Following this, the MWs are incorporated in a controlled manner within previously prepared transparent silver phosphate glass rectangular prisms. The composition of the employed glasses is chosen so that the host phosphate glass has a lower refractive index than the embedded MWs. In such case, the waveguide mechanism relies on the propagation of light inside the encapsulated higher refractive index MWs. Moreover, the presence of silver nanoparticles within the MWs enhances the light transmission due to scattering effects. Waveguide devices with either one or two incorporated MWs were fabricated. Remarkably, in the latter case, the transmission of light of different colors and in multipath direction is possible, rendering the developed waveguides outstanding candidates for various photonic circuits, optoelectronic, and smart sign glass applications

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    X-ray Evidence of the Common Envelope Phase of V471 Tauri

    Full text link
    Chandra Low Energy Transmission Grating Spectrograph observations of the pre-cataclysmic binary V471 Tau have been used to estimate the C/N abundance ratio of the K dwarf component for the first time. While the white dwarf component dominates the spectrum longward of 50 AA, at shorter wavelengths the observed X-ray emission is entirely due to coronal emission from the K dwarf. The H-like resonance lines of C and N yield an estimate of their logarithmic abundance ratio relative to the Sun of [C/N]=-0.38+/-0.15 - half of the currently accepted solar value. We interpret this result as the first clear observational evidence for the presumed common envelope phase of this system, during which the surface of the K dwarf was contaminated by CN-cycle processed material dredged up into the red giant envelope. We use the measured C/N ratio to deduce that 0.015-0.04 Msun was accreted by the K dwarf while engulfed, and show that this is consistent with a recent tentative detection of 13C in the K dwarf photosphere, and with the measured Li abundance in the scenario where the red giant companion was Li-rich during the common envelope phase.Comment: 6 pages, 2 figures, ApJL accepte

    Fundamental Parameters of He-Weak and He-Strong Stars

    Get PDF
    We carried out low resolution spectroscopic observations in the wavelength range 3400-4700 A of 20 He-weak and 8 He-strong stars to determine their fundamental parameters by means of the Divan-Chalonge-Barbier (BCD) spectrophotometric system. For a few He-weak stars we also estimate the effective temperatures and the angular diameters by integrating absolute fluxes observed over a wide spectral range. Non-LTE model calculations are carried out to study the influence of the He/H abundance ratio on the emergent radiation of He-strong stars and on their Teff determination. We find that the effective temperatures, surface gravities and bolometric absolute magnitudes of He-weak stars estimated with the BCD system and the integrated flux method are in good agreement between each other, and they also agree with previous determinations based on several different methods. The mean discrepancy between the visual absolute magnitudes derived using the Hipparcos parallaxes and the BCD values is on average 0.3 mag for He-weak stars, while it is 0.5 mag for He-strong stars. For He-strong stars, we note that the BCD calibration, based on stars in the solar environment, leads to overestimated values of Teff. By means of model atmosphere calculations with enhanced He/H abundance ratios we show that larger He/H ratios produce smaller BD which naturally explains the Teff overestimation. We take advantage of these calculations to introduce a method to estimate the He/H abundance ratio in He-strong stars. The BD of HD 37479 suggests that the Teff of this star remains fairly constant as the star spectrum undergoes changes in the intensity of H and He absorption lines. Data for the He-strong star HD 66765 are reported for the first time.Comment: Accepted for publication in A&

    The Carina-Near Moving Group

    Get PDF
    We identify a group of ~20 co-moving, mostly southern hemisphere, ~200 Myr old stars near Earth. Of the stars likely to be members of this Carina-Near Moving Group, in either its nucleus (~30 pc from Earth) or surrounding stream, all but 3 are plausible members of a multiple star system. The nucleus is (coincidentally) located quite close to the nucleus of the AB Doradus moving group notwithstanding that the two groups have substantially different ages and Galactic space motions, UVW.Comment: 9 pages, 1 table, 2 figures. Accepted in ApJ

    Coronal X-Ray Emission from the Stellar Companions to Transiently Accreting Black Holes

    Get PDF
    Observations of soft X-ray transients (SXTs) in quiescence have found that the binaries harboring black holes are fainter than those that contain a neutron star. Narayan and collaborators postulated that the faint X-ray emission from black hole binaries was powered by an advection dominated accretion flow (ADAF). We explore an alternative explanation for the quiescent X-ray emission from the black hole systems: coronal emission from the rapidly rotating optical companion. This is commonly observed and well studied in other tidally locked binaries, such as the RS CVns. We show that two of the three X-ray detected black hole binaries (A0620-00 and GRO J1655-40) exhibit X-ray fluxes entirely consistent with coronal emission. The X-ray spectra of these objects should be best fit with thermal Raymond-Smith models rich in lines when coronal emission predominates. One black hole system (V404 Cyg) is too X-ray bright to be explained as coronal emission. The quiescent X-ray emission from the neutron star binaries is far too bright for coronal emission. It might be that all SXT's have variable accretion rates in quiescence and that the basal quiescent X-ray flux is set by either coronal emission from the companion or -- when present -- by thermal emission from the neutron star. We also show that the lithium abundances in the black hole systems are comparable to those in the RS CVns, reducing the need for production mechanisms that involve the compact object.Comment: ApJ, accepted (v541; Oct 1, 2000); Changes to figures and tables, minor modifications to text. Uses emulateapj.sty. 14 pages, 3 figure

    The rapidly pulsating sdO star, SDSS J160043.6+074802.9

    Full text link
    A spectroscopic analysis of SDSS J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields Teff = 70 000 +/- 5000 K and log g = 5.25 +/- 0.30, together with a most likely type of K3V for the secondary star. We compare our results with atmospheric parameters derived by Fontaine et al. (2008) and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. It therefore seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having log g > 5.3 to be more likely to be unstable and capable of driving pulsation in the observed frequency range.Comment: 14 pages, 12 figures, accepted for publication in MNRAS, 2009 September
    corecore