7,233 research outputs found
The Sensitivity of Auditory-Motor Representations to Subtle Changes in Auditory Feedback While Singing
Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback
Testing for Network and Spatial Autocorrelation
Testing for dependence has been a well-established component of spatial
statistical analyses for decades. In particular, several popular test
statistics have desirable properties for testing for the presence of spatial
autocorrelation in continuous variables. In this paper we propose two
contributions to the literature on tests for autocorrelation. First, we propose
a new test for autocorrelation in categorical variables. While some methods
currently exist for assessing spatial autocorrelation in categorical variables,
the most popular method is unwieldy, somewhat ad hoc, and fails to provide
grounds for a single omnibus test. Second, we discuss the importance of testing
for autocorrelation in network, rather than spatial, data, motivated by
applications in social network data. We demonstrate that existing tests for
autocorrelation in spatial data for continuous variables and our new test for
categorical variables can both be used in the network setting
Integrated geophysical-petrological modeling of lithosphere-asthenosphere boundary in central Tibet using electromagnetic and seismic data
We undertake a petrologically driven approach to jointly model magnetotelluric (MT) and seismic surface wave dispersion (SW) data from central Tibet, constrained by topographic height. The approach derives realistic temperature and pressure distributions within the upper mantle and characterizes mineral assemblages of given bulk chemical compositions as well as water content. This allows us to define a bulk geophysical model of the upper mantle based on laboratory and xenolith data for the most relevant mantle mineral assemblages and to derive corresponding predicted geophysical observables. One-dimensional deep resistivity models were derived for two groups of MT stations. One group, located in the Lhasa Terrane, shows the existence of an electrically conductive upper mantle layer and shallower conductive upper mantle layer for the other group, located in the Qiangtang Terrane. The subsequent one-dimensional integrated petrological-geophysical modeling suggests a lithosphere-asthenosphere boundary (LAB) at a depth of 80¿120 km with a dry lithosphere for the Qiangtang Terrane. In contrast, for the Lhasa Terrane the LAB is located at about 180 km but the presence of a small amount of water in the lithospheric mantle (<0.02 wt%) is required to fit the longest period MT responses. Our results suggest two different lithospheric configurations beneath the southern and central Tibetan Plateau. The model for the Lhasa Terrane implies underthrusting of a moderately wet Indian plate. The model for the Qiangtang Terrane shows relatively thick and conductive crust and implies thin and dry Tibetan lithosphere.Peer Reviewe
Absolute frequency measurement of the magnesium intercombination transition
We report on a frequency measurement of the clock
transition of Mg on a thermal atomic beam. The intercombination
transition has been referenced to a portable primary Cs frequency standard with
the help of a femtosecond fiber laser frequency comb. The achieved uncertainty
is which corresponds to an increase in accuracy of six
orders of magnitude compared to previous results. The measured frequency value
permits the calculation of several other optical transitions from to
the -level system for Mg, Mg and Mg. We describe in
detail the components of our optical frequency standard like the stabilized
spectroscopy laser, the atomic beam apparatus used for Ramsey-Bord\'e
interferometry and the frequency comb generator and discuss the uncertainty
contributions to our measurement including the first and second order Doppler
effect. An upper limit of in one second for the short term
instability of our optical frequency standard was determined by comparison with
a GPS disciplined quartz oscillator.Comment: 8 pages, 8 figure
Development and feasibility of a telemedicine tool for patients with recurrent urinary tract infection:myRUTIcoach
INTRODUCTION AND HYPOTHESIS: Patients with recurrent urinary tract infection (rUTI) have limited knowledge of preventive strategies to lower the risk of UTI. We aimed to develop and test the feasibility of an eHealth system for women with rUTI, named myRUTIcoach, and explored the facilitators and barriers related to its adoption.METHODS: We developed myRUTIcoach in a structured iterative process and tested its feasibility among 25 women with rUTI over 2 months. Subsequent questionnaires covered satisfaction, accessibility, and experiences with myRUTIcoach. A random selection of participants and relevant stakeholders took part in semi-structured interviews to explore adoption. Data were analyzed and elaborated using inductive and deductive approaches using the Non-adoption, Abandonment, Spread, Scale-up, and Sustainability (NASSS) framework.RESULTS: MyRUTIcoach was not only widely accepted but also facilitated communication with health care professionals (HCPs) and contributed to greater knowledge of rUTI. Women graded the system a mean of 8.0 (±0.6) out of 10, with 89% stating that they would recommend it to others. Patients indicated that self-management skills were the major facilitators and barriers related to adoption, whereas HCPs stated that the disconnect between myRUTIcoach and electronic health care records (EHRs) was the major barrier.CONCLUSIONS: This research describes the development and testing of myRUTIcoach for women with rUTI. Patients and HCPs reported high satisfaction and compliance with myRUTIcoach. However, adoption by the intended users is complex and influenced by all examined domains of the NASSS framework. We have already improved linkage to EHRs, but further optimization to meet patient needs may improve the effectiveness of this self-management tool for rUTI.</p
Biophysical Parameters Can Induce Epithelial-to-Mesenchymal Phenotypic and Genotypic Changes in HT-29 Cells: A Preliminary Study
Epithelial to mesenchymal transition (EMT) in cancer is the process described where cancer epithelial cells acquire mesenchymal properties which can lead to enhanced invasiveness. Three-dimensional cancer models often lack the relevant and biomimetic microenvironment parameters appropriate to the native tumour microenvironment thought to drive EMT. In this study, HT-29 epithelial colorectal cells were cultivated in different oxygen and collagen concentrations to investigate how these biophysical parameters influenced invasion patterns and EMT. Colorectal HT-29 cells were grown in physiological hypoxia (5% O2) and normoxia (21% O2) in 2D, 3D soft (60 Pa), and 3D stiff (4 kPa) collagen matrices. Physiological hypoxia was sufficient to trigger expression of markers of EMT in the HT-29 cells in 2D by day 7. This is in contrast to a control breast cancer cell line, MDA-MB-231, which expresses a mesenchymal phenotype regardless of the oxygen concentration. In 3D, HT-29 cells invaded more extensively in a stiff matrix environment with corresponding increases in the invasive genes MMP2 and RAE1. This demonstrates that the physiological environment can directly impact HT-29 cells in terms of EMT marker expression and invasion, compared to an established cell line, MDA-MB-231, which has already undergone EMT. This study highlights the importance of the biophysical microenvironment to cancer epithelial cells and how these factors can direct cell behaviour. In particular, that stiffness of the 3D matrix drives greater invasion in HT-29 cells regardless of hypoxia. It is also pertinent that some cell lines (already having undergone EMT) are not as sensitive to the biophysical features of their microenvironment
From Teamchef Arminius to Hermann Junior: glocalised discourse about a national foundation myth
If for much of the nineteenth and twentieth centuries, the ‘Battle of the Teutoburg Forest’, fought in 9 CE between Roman armies and Germanic tribes, was predominantly a reference point for nationalist and chauvinist discourses in Germany, the first decade of the twenty-first century has seen attempts to link public remembrance with local/regional identities on the one hand and international/intercultural contact on the other. In the run up to and during the ‘anniversary year’ of 2009, German media, sports institutions and various other official institutions articulating tourist, economic and political interests attempted to create a new ‘glocalised’ version of the public memory of the Teutoburg battle. Combining methods of Cognitive Linguistics and Critical Discourse Analysis, the paper analyses the narrative and argumentative topoi employed in this re-orientation of public memory, with a special emphasis on hybrid, post-national identity-construction. Das zweitausendjährige Gedenkjahr der „Schlacht im Teutoburger Wald“ im Jahr 2009 bot eine günstige Gelegenheit, die bis in die zweite Hälfte des 20. Jahrhunderts dominante Tradition nationalistisch–chauvinistischer Deutungen des Sieges von germanischen Stämmen über drei römische Legionen zu korrigieren und zu überwinden. Der Aufsatz analysiert mit Hilfe diskurslinguistischer Methoden die Anstrengungen regionaler Institutionen und Medien, die nationale Vereinnahmung des historischen Gedenkens kritisch zu thematisieren sowie neue, zum eine lokal situierte, zum andern international orientierte Identifikationsangebote anzubieten. Die Analyse zeigt, dass solche „de-nationalisierten“ Identifikationsangebote zwar teilweise auch früher verwendet wurden, aber heutzutage rekontextualisiert und auf innovative Weise in den Vordergrund gestellt werden
Characterization of a submicro-X-ray fluorescence setup on the B16 beamline at Diamond Light Source
An X-ray fluorescence setup has been tested on the B16 beamline at the Diamond Light Source synchrotron with two different excitation energies (12.7 and 17 keV). This setup allows the scanning of thin samples (thicknesses up to several micrometers) with a sub-micrometer resolution (beam size of 500 nm × 600 nm determined with a 50 µm Au wire). Sensitivities and detection limits reaching values of 249 counts s−1 fg−1 and 4 ag in 1000 s, respectively (for As Kα excited with 17 keV), are presented in order to demonstrate the capabilities of this setup. Sample measurements of a human bone and a single cell performed at B16 are presented in order to illustrate the suitability of the setup in biological applications.</jats:p
Stimulus - response curves of a neuronal model for noisy subthreshold oscillations and related spike generation
We investigate the stimulus-dependent tuning properties of a noisy ionic
conductance model for intrinsic subthreshold oscillations in membrane potential
and associated spike generation. On depolarization by an applied current, the
model exhibits subthreshold oscillatory activity with occasional spike
generation when oscillations reach the spike threshold. We consider how the
amount of applied current, the noise intensity, variation of maximum
conductance values and scaling to different temperature ranges alter the
responses of the model with respect to voltage traces, interspike intervals and
their statistics and the mean spike frequency curves. We demonstrate that
subthreshold oscillatory neurons in the presence of noise can sensitively and
also selectively be tuned by stimulus-dependent variation of model parameters.Comment: 19 pages, 7 figure
- …