273 research outputs found

    Characterization of sediment dynamics in an estuary environment using acoustic techniques

    Get PDF
    In recent years, acoustic-based methods have been developed to characterize the dynamical behavior of loose sediments and bed deposits in very shallow water environments. In this paper, we present preliminary results on the estimation of the dynamic changes in an estuarine environment using data from dual-frequency echosounding at high resolution and contemporaneous hydrological measurements including suspended matter concentration, density subbottom profiling, and data assimilation based on a sediment transport model. Those measurements are being conducted in the lower estuary of the Scheldt (Belgium) at the Sint Anna site where strong tide and season-dependent phenomena can be observed. This allows us to construct a ground-truthed, time-dependent geoacoustic model of the environment, i.e., a characterization of sound speed, density, and attenuation in function of time and depth. Synthetic acoustic data generated by that model will then be used to test inversion methods for monitoring sediment dynamics in real time

    A Realistic Validation Study of a New Nitrogen Multiple-Breath Washout System

    Get PDF
    Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values

    Depairing currents in the superconductor/ferromagnet proximity system Nb/Fe

    Get PDF
    We have investigated the behaviour of the depairing current J_{dp} in ferromagnet/superconductor/ferromagnet (F/S/F) trilayers as function of the thickness d_s of the superconducting layers. Theoretically, J_{dp} depends on the superconducting order parameter or the pair density function, which is not homogeneous across the film due to the proximity effect. We use a proximity effect model with two parameters (proximity strength and interface transparency), which can also describe the dependence of the superconducting transition temperature T_c on d_s. We compare the computations with the experimentally determined zero-field critical current J_{c0} of small strips (typically 5~ \mu m wide) of Fe/Nb/Fe trilayers with varying thickness d_{Nb} of the Nb layer. Near T_c the temperature dependence J_{c0}(T) is in good agreement with the expected behaviour, which allows extrapolation to T = 0. Both the absolute values of J_{c0}(0) and the dependence on d_{Nb} agree with the expectations for the depairing current. We conclude that J_{dp} is correctly determined, notwithstanding the fact that the strip width is larger than both the superconducting penetration depth and the superconducting coherence length, and that J_{dp}(d_s) is correctly described by the model.Comment: 10 pages, 5 figures, submitted to PR

    Cryptoferromagnetic state in superconductor-ferromagnet multilayers

    Full text link
    We study a possibility of a non-homogeneous magnetic order (cryptoferromagnetic state) in heterostructures consisting of a bulk superconductor and a ferromagnetic thin layer that can be due to the influence of the superconductor. The exchange field in the ferromagnet may be strong and exceed the inverse mean free time. A new approach based on solving the Eilenberger equations in the ferromagnet and the Usadel equations in the superconductor is developed. We derive a phase diagram between the cryptoferromagnetic and ferromagnetic states and discuss the possibility of an experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur

    Theory of proximity effect in superconductor/ferromagnet heterostructures

    Full text link
    We present a microscopic theory of proximity effect in the ferromagnet/superconductor/ferromagnet (F/S/F) nanostructures where S is s-wave low-T_c superconductor and F's are layers of 3d transition ferromagnetic metal. Our approach is based on the solution of Gor'kov equations for the normal and anomalous Green's functions together with a self-consistent evaluation of the superconducting order parameter. We take into account the elastic spin-conserving scattering of the electrons assuming s-wave scattering in the S layer and s-d scattering in the F layers. In accordance with the previous quasiclassical theories, we found that due to exchange field in the ferromagnet the anomalous Green's function F(z) exhibits the damping oscillations in the F-layer as a function of distance z from the S/F interface. In the given model a half of period of oscillations is determined by the length \xi_m^0 = \pi v_F/E_ex, where v_F is the Fermi velocity and E_ex is the exchange field, while damping is governed by the length l_0 = (1/l_{\uparrow} + 1/l_{\downarrow})^{-1} with l_{\uparrow} and l_{\downarrow} being spin-dependent mean free paths in the ferromagnet. The superconducting transition temperature T_c(d_F) of the F/S/F trilayer shows the damping oscillations as a function of the F-layer thickness d_F with period \xi_F = \pi/\sqrt{m E_ex}, where m is the effective electron mass. We show that strong spin-conserving scattering either in the superconductor or in the ferromagnet significantly suppresses these oscillations. The calculated T_c(d_F) dependences are compared with existing experimental data for Fe/Nb/Fe trilayers and Nb/Co multilayers.Comment: 13 pages, REVTeX4, 8 PS-figures; improved version, submitted to PR

    Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3 / YBa2Cu3O7 superlattices

    Get PDF
    We study the interplay between magnetism and superconductivity in high quality YBa2Cu3O7 (YBCO) / La0.7Ca0.3MnO3(LCMO)superlattices. We find evidence for the YBCO superconductivity depression in presence of the LCMO layers. We show that due to its short coherence length superconductivity survives in the YBCO down to much smaller thickness in presence of the magnetic layer than in low Tc superconductors. We also find that for a fixed thickness of the superconducting layer, superconductivity is depressed over a thickness interval of the magnetic layer in the 100 nm range. This is a much longer length scale than that predicted by the theory of ferromagnetic/superconducting proximity effect.Comment: 10 pages + 5 figures, submitted to Phys. Rev.

    Proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet-d-wave superconductor junctions

    Full text link
    The proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet--d-wave superconductor junctions with {110}-oriented interface are studied by solving self-consistently the Bogoliubov-de Gennes equations within an extended Hubbard model. It is found that the proximity induced order parameter oscillates in the ferromagnetic region. The modulation period is shortened with the increased exchange field while the oscillation amplitude is depressed by the interfacial scattering. With the determined superconducting energy gap, a transfer matrix method is proposed to compute the subgap conductance within a scattering approach. Many novel features including the zero-bias conductance dip and splitting are exhibited with appropriate values of the exchange field and interfacial scattering strength. The conductance spectrum can be influenced seriously by the spin-flip interfacial scattering. In addition, a sizable local magnetic moment near the {110}-oriented surface of the d-wave superconductor is discussed.Comment: 10 pages, 16 ps-figures, to appear in Phys. Rev.

    Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and Closure in Injured Lung

    Get PDF
    OBJECTIVES:: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN:: Experimental animal study. SETTING:: International synchrotron radiation laboratory. SUBJECTS:: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS:: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS:: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS:: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage

    Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis

    Get PDF
    INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI

    Bronchial Responsiveness Is Related to Increased Exhaled NO (FENO) in Non-Smokers and Decreased FENO in Smokers

    Get PDF
    Rationale Both atopy and smoking are known to be associated with increased bronchial responsiveness. Fraction of nitric oxide (NO) in the exhaled air (FENO), a marker of airways inflammation, is decreased by smoking and increased by atopy. NO has also a physiological bronchodilating and bronchoprotective role. Objectives To investigate how the relation between FENO and bronchial responsiveness is modulated by atopy and smoking habits. Methods Exhaled NO measurements and methacholine challenge were performed in 468 subjects from the random sample of three European Community Respiratory Health Survey II centers: Turin (Italy), Gothenburg and Uppsala (both Sweden). Atopy status was defined by using specific IgE measurements while smoking status was questionnaire-assessed. Main Results Increased bronchial responsiveness was associated with increased FENO levels in non-smokers (p = 0.02) and decreased FENO levels in current smokers (p = 0.03). The negative association between bronchial responsiveness and FENO was seen only in the group smoking less &lt;10 cigarettes/day (p = 0.008). Increased bronchial responsiveness was associated with increased FENO in atopic subjects (p = 0.04) while no significant association was found in non-atopic participants. The reported interaction between FENO and smoking and atopy, respectively were maintained after adjusting for possible confounders (p-values&lt;0.05). Conclusions The present study highlights the interactions of the relationship between FENO and bronchial responsiveness with smoking and atopy, suggesting different mechanisms behind atopy- and smoking-related increases of bronchial responsiveness
    • …
    corecore