674 research outputs found

    Multiple-symbol parallel decoding for variable length codes

    Full text link

    Contextual information influences diagnosis accuracy and decision making in simulated emergency medicine emergencies

    Get PDF
    Background: It is well documented that adaptations in cognitive processes with increasing skill levels support decision making in multiple domains. We examined skill-based differences in cognitive processes in emergency medicine physicians, and whether performance was significantly influenced by the removal of contextual information related to a patient's medical history. Method: Skilled (n=9) and less skilled (n=9) emergency medicine physicians responded to high-fidelity simulated scenarios under high- and low-context information conditions. Results: Skilled physicians demonstrated higher diagnostic accuracy irrespective of condition, and were less affected by the removal of context-specific information compared with less skilled physicians. The skilled physicians generated more options, and selected better quality options during diagnostic reasoning compared with less skilled counterparts. These cognitive processes were active irrespective of the level of context-specific information presented, although high-context information enhanced understanding of the patients' symptoms resulting in higher diagnostic accuracy. Conclusions: Our findings have implications for scenario design and the manipulation of contextual information during simulation training

    An efficient hardware architecture for a neural network activation function generator

    Get PDF
    This paper proposes an efficient hardware architecture for a function generator suitable for an artificial neural network (ANN). A spline-based approximation function is designed that provides a good trade-off between accuracy and silicon area, whilst also being inherently scalable and adaptable for numerous activation functions. This has been achieved by using a minimax polynomial and through optimal placement of the approximating polynomials based on the results of a genetic algorithm. The approximation error of the proposed method compares favourably to all related research in this field. Efficient hardware multiplication circuitry is used in the implementation, which reduces the area overhead and increases the throughput

    Investigation of intracellular signals generated by γ-interferon and IL-4 leading to the induction of class II antigen expression

    Get PDF
    Signal transduction plays a vital role in cellular behaviour as cells respond to various stimuli in different ways and utilize diverse pathways for accomplishing their task. Determination of the pathway followed by various cytokines can be achieved using specific inhibitors which include theophylline (TPH), TMB-8 and W7 that hinder calmodulin binding to Ca2+; sphingosine (SPH), H7 and staurosporine that inhibit protein kinase C (PKC) activation; and mevalonate (MEV) or the anti-p21ras antibody which block G-proteins. This study shows that the immunologically important class II antigens in human cells are up-regulated predominately via the same pathway after gamma-interferon (γ-IFN) treatment, whereas murine cells are activated by other signalling routes. Thus, the calcium/calmodulin (Ca2+/Cam) pathway is preferentially selected for human cells whereas the PKC pathway is more often chosen for murine cells. These findings are firmly supported by other reports and show, in addition, a unique action exerted by γ-IFN, since IL-4, another inducer of class II antigen expression, uses different pathways. This diversity of activation reveals the existence of a previously unknown complicated network of intracellular interactions able to regulate the same phenotype or cellular event. As major histocompatibility complex antigens (MHC) or human leukocyte antigens (HLA), are important in immune recognition and response, the results show that for human cells a more coherent method of HLA-DR antigen induction is followed after γ-IFN administration, as calcium participation seems to be the first step in signal transduction. The same T-cell derived lymphokine, however, follows a totally different route when applied to murine cells

    Chemical evolution of the Small Magellanic Cloud based on planetary nebulae

    Full text link
    We investigate the chemical evolution of the Small Magellanic Cloud (SMC) based on abundance data of planetary nebulae (PNe). The main goal is to investigate the time evolution of the oxygen abundance in this galaxy by deriving an age-metallicity relation. Such a relation is of fundamental importance as an observational constraint of chemical evolution models of the SMC. We have used high quality PNe data in order to derive the properties of the progenitor stars, so that the stellar ages could be estimated. We collected a large number of measured spectral fluxes for each nebula, and derived accurate physical parameters and nebular abundances. New spectral data for a sample of SMC PNe obtained between 1999 and 2002 are also presented. These data are used together with data available in the literature to improve the accuracy of the fluxes for each spectral line. We obtained accurate chemical abundances for PNe in the Small Magellanic Cloud, which can be useful as tools in the study of the chemical evolution of this galaxy and of Local Group galaxies. We present the resulting oxygen versus age diagram and a similar relation involving the [Fe/H] metallicity based on a correlation with stellar data. We discuss the implications of the derived age-metallicity relation for the SMC formation, in particular by suggesting a star formation burst in the last 2-3 Gyr.Comment: 11 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Third Dredge-up in Low Mass Stars: Solving the LMC Carbon Star Mystery

    Full text link
    A long standing problem with asymptotic giant branch (AGB) star models has been their inability to produce the low-luminosity carbon stars in the Large and Small Magellanic Clouds. Dredge-up must begin earlier and extend deeper. We find this for the first time in our models of LMC metallicity. Such features are not found in our models of SMC metallicity. The fully implicit and simultaneous stellar evolution code STARS has been used to calculate the evolution of AGB stars with metallicities of Z=0.008 and Z=0.004, corresponding to the observed metallicities of the Large and Small Magellanic Clouds, respecitively. Third dredge-up occurs in stars of 1Msol and above and carbon stars were found for models between 1Msol and 3Msol. We use the detailed models as input physics for a population synthesis code and generate carbon star luminosity functions. We now find that we are able to reproduce the carbon star luminosity function of the LMC without any manipulation of our models. The SMC carbon star luminosity function still cannot be produced from our detailed models unless the minimum core mass for third dredge-up is reduced by 0.06Msol.Comment: 6 pages, 5 figures. Accepted for publication in MNRA

    Striving towards Near Real-Time Data Integration for Data Warehouses

    Full text link
    Abstract. The amount of information available to large-scale enterprises is growing rapidly. While operational systems are designed to meet well-specified (short) response time requirements, the focus of data warehouses is generally the strategic analysis of business data integrated from heterogeneous source systems. The decision making process in traditional data warehouse environments is often delayed because data cannot be propagated from the source system to the data warehouse in time. A real-time data warehouse aims at decreasing the time it takes to make business decisions and tries to attain zero latency between the cause and effect of a business decision. In this paper we present an architecture of an ETL environment for real-time data warehouses, which supports a continual near real-time data propagation. The architecture takes full advantage of existing J2EE (Java 2 Platform, Enterprise Edition) technology and enables the implementation of a distributed, scalable, near real-time ETL environment. Instead of using vendor proprietary ETL (extraction, transformation, loading) solutions, which are often hard to scale and often do not support an optimization of allocated time frames for data extracts, we propose in our approach ETLets (spoken “et-lets”) and Enterprise Java Beans (EJB) for the ETL processing tasks. 1

    Spectral index of the H2O-maser emitting planetary nebula IRAS 17347-3139

    Full text link
    We present radio continuum observations of the planetary nebula (PN) IRAS 17347-3139 (one of the only two known to harbour water maser emission), made to derive its spectral index and the turnover frequency of the emission. The spectrum of the source rises in the whole frequency range sampled, from 2.4 to 24.9 GHz, although the spectral index seems to decrease at the highest frequencies (0.79+-0.04 between 4.3 and 8.9 GHz, and 0.64+-0.06 between 16.1 and 24.9 GHz). This suggests a turnover frequency around 20 GHz (which is unusual among PNe, whose radio emission usually becomes optically thin at frequencies < 10 GHz), and a relatively high emission measure (1.5 x 10^9 cm^{-6} pc). The radio continuum emission has increased by a factor of ~1.26 at 8.4 GHz in 13 years, which can be explained as expansion of the ionized region by a factor of ~1.12 in radius with a dynamical age of ~120 yr and at an expansion velocity of ~5-40 km/s. These radio continuum characteristics, together with the presence of water maser emission and a strong optical extinction suggest that IRAS 17347-3139 is one of the youngest PNe known, with a relatively massive progenitor star.Comment: Five pages, 2 figures, accepted by MNRA

    Programmatic ETL

    Get PDF
    corecore