6,405 research outputs found

    The platinum nuclei: concealed configuration mixing and shape coexistence

    Get PDF
    The role of configuration mixing in the Pt region is investigated. For this chain of isotopes, the nature of the ground state changes smoothly, being spherical around mass A174A\sim 174 and A192A\sim 192 and deformed around the mid-shell N=104 region. This has a dramatic effect on the systematics of the energy spectra as compared to the systematics in the Pb and Hg nuclei. Interacting Boson Model with configuration mixing calculations are presented for gyromagnetic factors, α\alpha-decay hindrance factors, and isotope shifts. The necessity of incorporating intruder configurations to obtain an accurate description of the latter properties becomes evident.Comment: Accepted in Physical Review

    Phase diagram for a Cubic Consistent-Q Interacting Boson Model Hamiltonian: signs of triaxiality

    Get PDF
    An extension of the Consistent-Q formalism for the Interacting Boson Model that includes the cubic QxQxQ term is proposed. The potential energy surface for the cubic quadrupole interaction is explicitly calculated within the coherent state formalism using the complete chi-dependent expression for the quadrupole operator. The Q-cubic term is found to depend on the asymmetry deformation parameter gamma as a linear combination of cos(3gamma) and cos^2(3\gamma) terms, thereby allowing for triaxiality. The phase diagram of the model in the large N limit is explored, it is described the order of the phase transition surfaces that define the phase diagram, and moreover, the possible nuclear equilibrium shapes are established. It is found that, contrary to expectations, there is only a very tiny region of triaxiality in the model, and that the transition from prolate to oblate shapes is so fast that, in most cases, the onset of triaxiality might go unnoticed.Comment: 18 pages, 19 figure

    Anharmonic double-phonon excitations in the interacting boson model

    Get PDF
    Double-γ\gamma vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple extension of the original version of the model towards higher-order interactions is required to explain the observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the moments of inertia of ground- and γ\gamma-bands, and on the relative position of single-γ\gamma and double-γ\gamma bands is studied in detail. As an example of a realistic calculation, spectra and transitions of the highly γ\gamma-anharmonic nuclei 164^{164}Dy, 166^{166}Er, and 168^{168}Er are interpreted in this approach.Comment: 38 pages, TeX (ReVTeX). 15 ps figures. Submitted to Phys. Rev.

    Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling

    Full text link
    Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts

    Low X-Ray Luminosity Galaxy Clusters: Main goals, sample selection, photometric and spectroscopic observations

    Get PDF
    We present the study of nineteen low X-ray luminosity galaxy clusters (LX_X \sim 0.5--45 ×\times 104310^{43} erg s1^{-1}), selected from the ROSAT Position Sensitive Proportional Counters (PSPC) Pointed Observations (Vikhlinin et al. 1998) and the revised version of Mullis et al. (2003) in the redshift range of 0.16 to 0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. With the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogues contain the PSF and aperture magnitudes of galaxies within the 90\% completeness limit. They are used together with structural parameters to study the galaxy morphology and to estimate photometric redshifts. With the spectroscopy, the derived galaxy velocity dispersion of our clusters ranged from 507 km~s1^{-1} for [VMF98]022 to 775 km~s1^{-1} for [VMF98]097 with signs of substructure. Cluster membership has been extensively discussed taking into account spectroscopic and photometric redshift estimates. In this sense, members are the galaxies within a projected radius of 0.75 Mpc from the X-ray mission peak and with cluster centric velocities smaller than the cluster velocity dispersion or 6000 km~s1^{-1}, respectively. These results will be used in forthcoming papers to study, among the main topics, the red cluster sequence, blue cloud and green populations; the galaxy luminosity function and cluster dynamics.Comment: 13 pages, 6 tables, 9 figures. Uses emulateapj. Accepted for publication in The Astronomical Journal. Some formatting errors fixe

    Improved procedural workflow for catheter ablation of paroxysmal AF with high-density mapping system and advanced technology: Rationale and study design of a multicenter international study

    Full text link
    The antral region of pulmonary veins (PV)s seems to play a key role in a strategy aimed at preventing atrial fibrillation (AF) recurrence. Particularly, low-voltage activity in tissue such as the PV antra and residual potential within the antral scar likely represent vulnerabilities in antral lesion sets, and ablation of these targets seems to improve freedom from AF. The aim of this study is to validate a structured application of an approach that includes the complete abolition of any antral potential achieving electrical quiescence in antral regions.The improveD procEdural workfLow for cathETEr ablation of paroxysmal AF with high density mapping system and advanced technology (DELETE AF) study is a prospective, single-arm, international post-market cohort study designed to demonstrate a low rate of clinical atrial arrhythmias recurrence with an improved procedural workflow for catheter ablation of paroxysmal AF, using the most advanced point-by-point RF ablation technology in a multicenter setting. About 300 consecutive patients with standard indications for AF ablation will be enrolled in this study. Post-ablation, all patients will be monitored with ambulatory event monitoring, starting within 30 days post-ablation to proactively detect and manage any recurrences within the 90-day blanking period, as well as Holter monitoring at 3, 6, 9, and 12 months post-ablation. Healthcare resource utilization, clinical data, complications, patients' medical complaints related to the ablation procedure and patient's reported outcome measures will be prospectively traced and evaluated.The DELETE AF trial will provide additional knowledge on long-term outcome following a structured ablation workflow, with high density mapping, advanced algorithms and local impedance technology, in an international multicentric fashion. DELETE AF is registered at ClinicalTrials.gov (NCT05005143).© 2022 The Authors. Clinical Cardiology published by Wiley Periodicals LLC

    Characterization of scintillator screens under irradiation of low energy 133Cs ions

    Get PDF
    An imaging heavy ion beam probe (i-HIBP) diagnostic, for the simultaneous measurement of plasma density, magnetic field and electrostatic potential in the plasma edge, has been installed at ASDEX Upgrade. Unlike standard heavy ion beam probes, in the i-HIBP the probing (heavy) ions are collected by a scintillator detector, creating a light pattern or strike-line, which is then imaged by a camera. Therefore, a good characterization of the scintillator response is needed. Previous works focused on the scintillator behaviour against irradiation with light ions such as hydrogen and alpha particles. In this work we present the characterization of several scintillator screens — TG-Green (SrGa2S4:Eu2+), YAG-Ce (Y3Al5O12:Ce3+) and P11 (ZnS:Ag) — against irradiation with 133Cs+ ions, in an energy range between 5 and 70 keV and ion currents between 105 and 107ions/(s·cm2). Three main properties of the scintillators have been studied: the ionolumenescence efficiency or yield, the linearity and the degradation as a function of the fluence. The highest yield was delivered by the TG-Green scintillator screen with > 8·103 photons/ion at 50 keV. All the samples showed a linear response with increasing incident ion flux. The degradation was quantified in terms of the fluence F1/2, which leads to a reduction of the emissivity by a factor of 2. TG-Green showed the lowest degradation with F1/2= 5.4·1014ions/cm2. After the irradiation the samples were analyzed by Scanning Electron Microscopy (SEM), Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE). No trace of Cs was found in the irradiated regions. These results indicate that, among the tested materials, TG-Green is the best candidate for the i-HIBP detector.European Union’s Horizon 2020 (grant agreement No. 805162)Helmholtz Association VHNG-1350Spanish Ministry of Science and Innovation FJC2019-041092-I

    Integration of PV Distributed Generators into Electrical Networks for Investment and Energy Purchase Costs Reduction by Using a Discrete–Continuous Parallel PSO

    Get PDF
    The problem of optimally integrating PV DGs into electrical networks to reduce annual costs (which include energy purchase and investment costs) was addressed in this research by presenting a new solution methodology. For such purpose, we used a Discrete–Continuous Parallel Particle Swarm Optimization method (DCPPSO), which considers both the discrete and continuous variables associated with the location and sizing of DGs in an electrical network and employs a parallel processing tool to reduce processing times. The optimization parameters of the proposed solution methodology were tuned using an external optimization algorithm. To validate the performance of DCPPSO, we employed the 33- and 69-bus test systems and compared it with five other solution methods: the BONMIN solver of the General Algebraic Modeling System (GAMS) and other four discrete–continuous methodologies that have been recently proposed. According to the findings, the DCPPSO produced the best results in terms of quality of the solution, processing time, and repeatability in electrical networks of any size, since it showed a better performance as the size of the electrical system increased. © 2022 by the authors
    corecore