590 research outputs found
BVDV alters uterine prostaglandin production during pregnancy recognition in cows
Embryonic mortality in cows is at least in part caused by failure of pregnancy recognition (PR). Evidence has shown that bovine viral diarrhoea virus (BVDV) infection can disrupt pregnancy. Prostaglandins (PG) play important roles in many reproductive processes, such as implantation. The aim of this study was to investigate the effect of BVDV infection on uterine PG production and PR using an in vitro PR model. Bovine uterine endometrial cells isolated from ten BVDV-free cows were cultured and treated with 0 or 100ng/mL interferon-τ (IFNT) in the absence or presence of non-cytopathic BVDV (ncpBVDV). PGF2α and PGE2 concentrations in the spent medium were measured using radioimmunoassays, and in the treated cells expression of the genes associated with PG production and signalling was quantified using qPCR. The results showed that the IFNT challenge significantly stimulated PTGS1 and PTGER3 mRNA expression and PGE2 production; however, these stimulatory effects were neutralised in the presence of ncpBVDV infection. ncpBVDV infection significantly increased PTGS1 and mPGES1 mRNA expression and decreased AKR1B1 expression, leading to increased PGE2 and decreased PGF2α concentrations and an increased PGE2:PGF2α ratio. The other tested genes, including PGR, ESR1, OXTR, PTGS2, PTGER2 and PTGFR, were not significantly altered by IFNT, ncpBVDV or their combination. Our study suggests that BVDV infection may impair PR by (1) inhibiting the effect of IFNT on uterine PG production and (2) inducing an endocrine switch of PG production from PGF2α to PGE2 to decrease uterine immunity, thereby predisposing the animals to uterine disease
Recommended from our members
Hematopoietic stem cell gene therapy for brain metastases using myeloid cell-specific gene promoters
Background:
Brain metastases (BrM) develop in 20-40% of cancer patients and represent an unmet clinical need. Limited access of drugs into the brain due to the blood-brain barrier is at least partially responsible for therapeutic failure, necessitating improved drug delivery systems.
Methods:
Green fluorescent protein (GFP)-transduced murine and non-transduced human hematopoietic stem cells (HSCs) were administered into mice (n = 10 and 3). The HSC progeny in mouse BrM and in patient-derived BrM tissue (n = 6) was characterized by flow cytometry and immunofluorescence. Promoters driving gene expression, specifically within the BrM-infiltrating HSC progeny, were identified through differential gene expression analysis and subsequent validation of a series of promoter-GFP-reporter constructs in mice (n = 5). One of the promoters was used to deliver TNF-related apoptosis-inducing ligand (TRAIL) to BrM in mice (n = 17/21 for TRAIL versus control group).
Results:
HSC progeny (consisting mostly of macrophages) efficiently homed to macrometastases (37.6% [SD = 7.2%] of all infiltrating cells for murine HSC progeny; 27.9% [SD = 4.9%] of infiltrating CD45+ hematopoietic cells for human HSC progeny) and micrometastases in mice (19.3-53.3% of all macrophages for murine HSCs). Macrophages were also abundant in patient-derived BrM tissue (8.8%, SD = 7.8%). Collectively, this provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. MMP14 promoter emerged as the strongest promoter construct capable of limiting gene expression to BrM-infiltrating myeloid cells in mice TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (19.0 [SD = 3.4] versus 15.0 [SD = 2.0] days for TRAIL versus control group; two-sided p = 0.006), demonstrating therapeutic and translational potential of our approach.
Conclusions:
Our study establishes HSC gene therapy using a myeloid cell-specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions
Evaluation of a commercial E(rns)-capture ELISA for detection of BVDV in routine diagnostic cattle serum samples
BACKGROUND: Bovine viral diarrhoea virus (BVDV) is an important pathogen in cattle. The ability of the virus to cross the placenta during early pregnancy can result in the birth of persistently infected (PI) calves. These calves shed the virus during their entire lifespan and are the key transmitters of infection. Consequently, identification (and subsequent removal) of PI animals is necessary to rapidly clear infected herds from the virus. The objective of this study was to evaluate the suitability of a commercial E(rns)-capture ELISA, in comparison to the indirect immunoperoxidase test (IPX), for routine diagnostic detection of BVDV within a control programme. In addition, the effect of passive immunity and heat-inactivation of the samples on the performance of the ELISA was studied. METHODS: In the process of virus clearance within the Swedish BVDV control programme, all calves born in infected herds are tested for virus and antibodies. From such samples, sent in for routine diagnostics to SVA, we selected 220 sera collected from 32 beef herds and 29 dairy herds. All sera were tested for BVDV antigen using the E(rns )ELISA, and the results were compared to the results from the IPX used within the routine diagnostics. RESULTS: All 130 samples categorized as virus negative by IPX were tested negative in the ELISA, and all 90 samples categorized as virus positive were tested positive, i.e. the relative sensitivity and specificity of the ELISA was 100% in relation to IPX, and the agreement between the tests was perfect. CONCLUSION: We can conclude that the E(rns )ELISA is a valid alternative that has several advantages compared to IPX. Our results clearly demonstrate that it performs well under Swedish conditions, and that its performance is comparable with the IPX test. It is highly sensitive and specific, can be used for testing of heat-inactivated samples, precolostral testing, and probably to detect PI animals at an earlier age than the IPX
Practitioner accounts and knowledge production: an analysis of three marketing discourses
Responding to repeated calls for marketing academicians to connect with marketing actors, we offer an empirically-sourced discourse analysis of the ways in which managers portray their practices. Focusing on the micro-discourses and narratives that marketing actors draw upon to represent their work we argue that dominant representations of marketing knowledge production present a number of critical concerns for marketing theory and marketing education. We also evidence that the often promoted idea of a need to close the gap between theory - as a dominant discourse - and practice, as a way of doing marketing, is problematic to pursue. We suggest that a more fruitful agenda resides in the development of a range of polyphonic and creative micro-discourses of management, promoting context, difference and individual meaning in marketing knowledge production
Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress
Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects
Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model
Patients with glioblastoma (GBM) have a poor prognosis, and inefficient delivery of drugs to tumors represents a major therapeutic hurdle. Hematopoietic stem cell (HSC)-derived myeloid cells efficiently home to GBM and constitute up to 50% of intratumoral cells, making them highly appropriate therapeutic delivery vehicles. Because myeloid cells are ubiquitously present in the body, we recently established a lentiviral vector containing matrix metalloproteinase 14 (MMP14) promoter, which is active specifically in tumor-infiltrating myeloid cells as opposed to myeloid cells in other tissues, and resulted in a specific delivery of transgenes to brain metastases in HSC gene therapy. Here, we used this novel approach to target transforming growth factor beta (TGFβ) as a key tumor-promoting factor in GBM. Transplantation of HSCs transduced with lentiviral vector expressing green fluorescent protein (GFP) into lethally irradiated recipient mice was followed by intracranial implantation of GBM cells. Tumor-infiltrating HSC progeny was characterized by flow cytometry. In therapy studies, mice were transplanted with HSCs transduced with lentiviral vector expressing soluble TGFβ receptor II–Fc fusion protein under MMP14 promoter. This TGFβ-blocking therapy was compared with the targeted tumor irradiation, the combination of the two therapies, and control. Tumor growth and survival were quantified (statistical significance determined by t-test and log-rank test). T cell memory response was probed through a repeated tumor challenge. Myeloid cells were the most abundant HSC-derived population infiltrating GBM. TGFβ-blocking HSC gene therapy in combination with irradiation significantly reduced tumor burden as compared with monotherapies and the control, and significantly prolonged survival as compared with the control and TGFβ-blocking monotherapy. Long-term protection from GBM was achieved only with the combination treatment (25% of the mice) and was accompanied by a significant increase in CD8+ T cells at the tumor implantation site following tumor rechallenge. We demonstrated a preclinical proof-of-principle for tumor myeloid cell-specific HSC gene therapy in GBM. In the clinic, HSC gene therapy is being successfully used in non-cancerous brain disorders and the feasibility of HSC gene therapy in patients with glioma has been demonstrated in the context of bone marrow protection. This indicates an opportunity for clinical translation of our therapeutic approach
mir-181A/B-1 controls thymic selection of treg cells and tunes their suppressive capacity
The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1–deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte–associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function
Resistance to TGFβ suppression and improved anti-tumor responses in CD8⁺ T cells lacking PTPN22
Transforming growth factor β (TGFβ) is important in maintaining self-tolerance and inhibits T cell reactivity. We show that CD8⁺ T cells that lack the tyrosine phosphatase Ptpn22, a major predisposing gene for autoimmune disease, are resistant to the suppressive effects of TGFβ. Resistance to TGFβ suppression, while disadvantageous in autoimmunity, helps Ptpn22‾/‾ T cells to be intrinsically superior at clearing established tumors that secrete TGFβ. Mechanistically, loss of Ptpn22 increases the capacity of T cells to produce IL-2, which overcomes TGFβ-mediated suppression. These data suggest that a viable strategy to improve anti-tumor adoptive cell therapy may be to engineer tumor-restricted T cells with mutations identified as risk factors for autoimmunity
- …