51 research outputs found

    Structural evaluation of candidate designs for the large space telescope primary mirror

    Get PDF
    Structural performance analyses were conducted on two candidate designs (Itek and Perkin-Elmer designs) for the large space telescope three-meter mirror. The mirror designs and the finite-element models used in the analyses evaluation are described. The results of the structural analyses for several different types of loading are presented in tabular and graphic forms. Several additional analyses are also reported: the evaluation of a mirror design concept proposed by the Boeing Co., a study of the global effects of local cell plate deflections, and an investigation of the fracture mechanics problems likely to occur with Cervit and ULE. Flexibility matrices were obtained for the Itek and Perkin-Elmer mirrors to be used in active figure control studies. Summary, conclusions, and recommendations are included

    Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Sciences Congress at Rostock University, Germany, 19-22 March 2007

    Get PDF
    The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions

    Long-term dynamics of soil, tree stem and ecosystem methane fluxes in a riparian forest

    Get PDF
    Funding Information: This study was supported by the Ministry of Education and Science of Estonia (SF0180127s08 grant), the Estonian Research Council (IUT2-16, PRG-352, and MOBERC20), the Czech Science Foundation (17-18112Y), SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797), the Ministry of Education, Youth and Sports of Czech Republic within the National Sustainability Program I (NPU I, grant number LO1415), the EU through the European Regional Development Fund (ENVIRON and EcolChange Centres of Excellence, Estonia, and MOBTP101 returning researcher grant by the Mobilitas Pluss programme), the European Social Fund (Doctoral School of Earth Sciences and Ecology). This work was also supported by Academy of Finland (294088, 288494), from the European Research Council (ERC) under the European Union?s Horizon 2020 research and innovation programme under grant agreement No [757695], and a Department of Energy (DOE) grant to JPM (DE-SC0008165). Funding Information: This study was supported by the Ministry of Education and Science of Estonia ( SF0180127s08 grant), the Estonian Research Council ( IUT2-16 , PRG-352 , and MOBERC20 ), the Czech Science Foundation ( 17-18112Y ), SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions ( CZ.02.1.01/0.0/0.0/16_019/0000797 ), the Ministry of Education, Youth and Sports of Czech Republic within the National Sustainability Program I (NPU I, grant number LO1415 ), the EU through the European Regional Development Fund (ENVIRON and EcolChange Centres of Excellence, Estonia, and MOBTP101 returning researcher grant by the Mobilitas Pluss programme), the European Social Fund (Doctoral School of Earth Sciences and Ecology). This work was also supported by Academy of Finland ( 294088 , 288494 ), from the European Research Council (ERC) under the European Union‘s Horizon 2020 research and innovation programme under grant agreement No [ 757695 ], and a Department of Energy (DOE) grant to JPM ( DE-SC0008165 ). Publisher Copyright: © 2021 Elsevier B.V.The carbon (C) budgets of riparian forests are sensitive to climatic variability. Therefore, riparian forests are hot spots of C cycling in landscapes. Only a limited number of studies on continuous measurements of methane (CH4) fluxes from riparian forests is available. Here, we report continuous high-frequency soil and ecosystem (eddy-covariance; EC) measurements of CH4 fluxes with a quantum cascade laser absorption spectrometer for a 2.5-year period and measurements of CH4 fluxes from tree stems using manual chambers for a 1.5 year period from a temperate riparian Alnus incana forest. The results demonstrate that the riparian forest is a minor net annual sink of CH4 consuming 0.24 kg CH4-C ha−1 y−1. Soil water content is the most important determinant of soil, stem, and EC fluxes, followed by soil temperature. There were significant differences in CH4 fluxes between the wet and dry periods. During the wet period, 83% of CH4 was emitted from the tree stems while the ecosystem-level emission was equal to the sum of soil and stem emissions. During the dry period, CH4 was substantially consumed in the soil whereas stem emissions were very low. A significant difference between the EC fluxes and the sum of soil and stem fluxes during the dry period is most likely caused by emission from the canopy whereas at the ecosystem level the forest was a clear CH4 sink. Our results together with past measurements of CH4 fluxes in other riparian forests suggest that temperate riparian forests can be long-term CH4 sinks.Peer reviewe

    Forest canopy mitigates soil N2O emission during hot moments

    Get PDF
    Riparian forests are known as hot spots of nitrogen cycling in landscapes. Climate warming speeds up the cycle. Here we present results from a multi-annual high temporal-frequency study of soil, stem, and ecosystem (eddy covariance) fluxes of N2O from a typical riparian forest in Europe. Hot moments (extreme events of N2O emission) lasted a quarter of the study period but contributed more than half of soil fluxes. We demonstrate that high soil emissions of N2O do not escape the ecosystem but are processed in the canopy. Rapid water content change across intermediate soil moisture was a major determinant of elevated soil emissions in spring. The freeze-thaw period is another hot moment. However, according to the eddy covariance measurements, the riparian forest is a modest source of N2O. We propose photochemical reactions and dissolution in canopy-space water as reduction mechanisms.Peer reviewe

    Forest canopy mitigates soil N2O emission during hot moments

    Get PDF
    Funding Information: This study was supported by the Ministry of Education and Science of Estonia (SF0180127s08 grant), the Estonian Research Council (IUT2-16, PRG-352, and MOBERC20), the Czech Science Foundation (17-18112Y) and project SustES— Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797), the EU through the European Regional Development Fund (Centres of Excellence ENVIRON, grant number TK-107, EcolChange, grant number TK-131, and the MOBTP101 returning researcher grant by the Mobilitas Pluss program) and the European Social Fund (Doctoral School of Earth Sciences and Ecology). This work was also supported by the Academy of Finland (294088, 288494), and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No [757695]. We would like to thank Marek Jakubík for his technical support. Publisher Copyright: © 2021, The Author(s).Peer reviewedPublisher PD

    Glucose-Dependent Regulation of NR2F2 Promoter and Influence of SNP-rs3743462 on Whole Body Insulin Sensitivity

    Get PDF
    Background: The Nuclear Receptor 2F2 (NR2F2/COUP-TFII) heterozygous knockout mice display low basal insulinemia and enhanced insulin sensitivity. We previously established that insulin represses NR2F2 gene expression in pancreatic β-cells. The cis-regulatory region of the NR2F2 promoter is unknown and its influence on metabolism in humans is poorly understood. The present study aimed to identify the regulatory regions that control NR2F2 gene transcription and to evaluate the effect of NR2F2 promoter variation on glucose homeostasis in humans. Methodology/Principal Findings: Regulation of the NR2F2 promoter was assessed using gene reporter assays, ChIP and gel shift experiments. The effects of variation at SNP rs3743462 in NR2F2 on quantitative metabolic traits were studied in two European prospective cohorts. We identified a minimal promoter region that down-regulates NR2F2 expression by attenuating HNF4α activation in response to high glucose concentrations. Subjects of the French DESIR population, who carried the rs3743462 T-to-C polymorphism, located in the distal glucose-responsive promoter, displayed lower basal insulin levels and lower HOMA-IR index. The C-allele at rs3743462 was associated with increased NR2F2 binding and decreased NR2F2 gene expression. Conclusions/Significance: The rs3743462 polymorphism affects glucose-responsive NR2F2 promoter regulation and thereby may influence whole-body insulin sensitivity, suggesting a role of NR2F2 in the control of glucose homeostasis in humans. © 2012 Boutant et al

    Functional Diversity of Human Basic Helix-Loop-Helix Transcription Factor TCF4 Isoforms Generated by Alternative 5′ Exon Usage and Splicing

    Get PDF
    BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms

    Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    Get PDF
    BACKGROUND: Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS: To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE: Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV

    GHG balance in drained organic forest soils – data revisited

    Get PDF
    The study is part of the SNS-120 project ‘Anthropogenic greenhouse gas emissions from organic forest soils: improved inventories and implications for sustainable management’ funded by Nordic Forest Research. http://dev.nordicforestresearch.org/sns-120/201
    corecore