105 research outputs found

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    Sharing data from molecular simulations

    Get PDF
    Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 (https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations

    Community guidelines for GPCR ligand bias: IUPHAR review 32

    Get PDF
    GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This ‘biased signalling’ paradigm requires that we now characterize physiological signalling not just by receptors but by ligand–receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models

    The antioxidant resveratrol acts as a non-selective adenosine receptor agonist

    Get PDF
    Resveratrol (RSV) is a natural polyphenolic antioxidant with a proven protective role in several human diseases involving oxidative stress, although the molecular mechanism underlying this effect remains unclear. The present work tried to elucidate the molecular mechanism of RSV's role on signal transduction modulation. Our biochemical analysis, including radioligand binding, real time PCR, western blotting and adenylyl cyclase activity, and computational studies provide insights into the RSV binding pathway, kinetics and the most favored binding pose involving adenosine receptors, mainly A2A subtype. In this study, we show that RSV target adenosine receptors (AdoRs), affecting gene expression, receptor levels, and the downstream adenylyl cyclase (AC)/PKA pathway. Our data demonstrate that RSV activates AdoRs. Moreover, RSV activate A2A receptors by directly binding to the classical orthosteric binding site. Intriguingly, RSV-induced receptor activation can stimulate or inhibit AC activity depending on concentration and exposure time. Such subtle and multifaceted regulation of the AdoRs/AC/PKA pathway might contribute to the protective role of RSV. Our findings suggest that RSV molecular action is mediated, at least in part, by activation of adenosine receptors and create the opportunity to interrogate the therapeutic use of RSV in pathological conditions involving AdoRs, such as Alzheimer
    • …
    corecore