510 research outputs found

    Caenorhabditis elegans Muscleblind homolog mbl-1 functions in neurons to regulate synapse formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequestration of Muscleblind splicing regulators results in myotonic dystrophy. Previous work on Muscleblind has largely focused on its roles in muscle development and maintenance due to the skeletal and cardiac muscle degeneration phenotype observed in individuals with the disorder. However, a number of reported nervous system defects suggest that Muscleblind proteins function in other tissues as well.</p> <p>Results</p> <p>We have identified a mutation in the <it>Caenorhabditis elegans </it>homolog of Muscleblind, <it>mbl-1</it>, that is required for proper formation of neuromuscular junction (NMJ) synapses. <it>mbl-1 </it>mutants exhibit selective loss of the most distal NMJ synapses in a <it>C. elegans </it>motorneuron, DA9, visualized using the vesicle-associated protein RAB-3, as well as the active zone proteins SYD-2/liprin-α and UNC-10/Rim. The proximal NMJs appear to have normal pre- and postsynaptic specializations. Surprisingly, expressing a <it>mbl-1 </it>transgene in the presynaptic neuron is sufficient to rescue the synaptic defect, while muscle expression has no effect. Consistent with this result, <it>mbl-1 </it>is also expressed in neurons.</p> <p>Conclusions</p> <p>Based on these results, we conclude that in addition to its functions in muscle, the Muscleblind splice regulators also function in neurons to regulate synapse formation.</p

    The Rest-frame Submillimeter Spectrum of High-redshift, Dusty, Star-forming Galaxies

    Get PDF
    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of ^(12)CO, [C I], and H_2O, we also detect several faint transitions of ^(13)CO, HCN, HNC, HCO^+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the ^(13)CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which ^(13)CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO^+, and CN is consistent with a warm, dense medium with T_(kin) ~ 55 K and n_H_2 ≳ 10^(5.5) cm^(–3). High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations

    ALMA observations of atomic carbon in z~4 dusty star-forming galaxies

    Get PDF
    We present ALMA [CI](101-0) (rest frequency 492 GHz) observations for a sample of 13 strongly-lensed dusty star-forming galaxies originally discovered at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these new data with available [CI] observations from the literature, allowing a study of the ISM properties of 30\sim 30 extreme dusty star-forming galaxies spanning a redshift range 2<z<52 < z < 5. Using the [CI] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6×10106.6 \times 10^{10} M_{\odot}. This is in tension with gas masses derived via low-JJ 12^{12}CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2_2 conversion factor for our sample of αCO2.5\alpha_{\rm CO} \sim 2.5 and a gas-to-dust ratio 200\sim200, or (b) an high carbon abundance XCI7×105X_{\rm CI} \sim 7\times10^{-5}. Using observations of a range of additional atomic and molecular lines (including [CI], [CII], and multiple transitions of CO), we use a modern Photodissociation Region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength, and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterised by dense gas permeated by strong UV fields. We note that previous efforts to characterise PDR regions in DSFGs may have significantly underestimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA

    SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7

    Get PDF
    We present Chandra ACIS-S and ATCA radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at zz = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, APEX, and the VLT. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (\sim 4500 M_{\sun} yr1^{-1}) and star formation rate surface density ΣSFR\Sigma_{\rm SFR} (\sim 2000 M_{\sun} {yr^{-1}} {kpc^{-2}}) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The {\it Chandra} upper limit shows that SPT0346-52 is consistent with being star-formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ±\pm 0.3) ×\times 1013^{13} L_{\sun} originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ±\pm 0.03 kpc, SPT0346-52 is confirmed to have one of the highest ΣSFR\Sigma_{SFR} of any known galaxy. This high ΣSFR\Sigma_{SFR}, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.Comment: 8 pages, 6 figures, accepted for publication in Ap

    Scientific Value of a Saturn Atmospheric Probe Mission

    Get PDF
    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1]

    The Rest-Frame Submillimeter Spectrum of High-Redshift, Dusty, Star-Forming Galaxies

    Get PDF
    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.Comment: 19 pages, 10 figures (2 in appendices); accepted for publication in Ap

    The redshift distribution of dusty star forming galaxies from the SPT survey

    Full text link
    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3mm spectral scans between 84-114GHz for 15 galaxies and targeted ALMA 1mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI] , [NII] , H_2O and NH_3. We further present APEX [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new mm/submm line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z=3.9+/-0.4, and the highest-redshift source in our sample is at z=5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4mm-selected sources with a median redshift of z=3.1+/-0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution

    Observations of neutral carbon in 29 high-z lensed dusty star forming galaxies and the comparison of gas mass tracers

    Full text link
    The nature and evolution of high-redshift dusty star-forming galaxies (high-z DSFGs) remain an open question. Their massive gas reservoirs play an important role in driving the intense star-formation rates hosted in these galaxies. We aim to estimate the molecular gas content of high-z DSFGs by using various gas mass tracers such as the [CI], CO, [CII] emission lines and the dust content. These tracers need to be well calibrated as they are all limited by uncertainties on factors such as aCO, XCI, aCII and GDR, thereby affecting the determination of the gas mass accurately. The main goal of our work is to check the consistency between the gas mass tracers and cross-calibrate the uncertain factors. We observe the two [CI] line transitions for 29 SPT-SMGs with the ALMA-ACA. Additionally, we also present new APEX observations of [CII] line for 9 of these galaxies. We find a nearly linear relation between the infrared luminosity and [CI] luminosity if we fit the starbursts and main-sequence galaxies separately. We measure a median [CI]-derived excitation temperature of 34.5+/-2.1 K. We probe the properties of the interstellar medium (ISM) such as density and radiation field intensity using [CI] to mid- or high-J CO lines and [CI] to infrared luminosity ratio, and find similar values to the SMG populations in literature. Finally, the gas masses estimated from [CI], CO, dust, and [CII] do not exhibit any significant trend with the infrared luminosity or the dust temperature. We provide the various cross-calibrations between these tracers. Our study confirms that [CI] is a suitable tracer of the molecular gas content, and shows an overall agreement between all the classical gas tracers used at high redshift. However, their absolute calibration and thus the gas depletion timescale measurements remain uncertain.Comment: Accepted for publication in A&A, 25 pages, 11 figures, 6 table
    corecore