18,297 research outputs found

    Negotiating property and state: post-socialist struggles over Albanian and Romanian forests

    Get PDF

    Calculation of electrostatic fields using quasi-Green's functions: application to the hybrid Penning trap.

    Get PDF
    Penning traps offer unique possibilities for storing, manipulating and investigating charged particles with high sensitivity and accuracy. The widespread applications of Penning traps in physics and chemistry comprise e.g. mass spectrometry, laser spectroscopy, measurements of electronic and nuclear magnetic moments, chemical sample analysis and reaction studies. We have developed a method, based on the Green's function approach, which allows for the analytical calculation of the electrostatic properties of a Penning trap with arbitrary electrodes. The ansatz features an extension of Dirichlet's problem to nontrivial geometries and leads to an analytical solution of the Laplace equation. As an example we discuss the toroidal hybrid Penning trap designed for our planned measurements of the magnetic moment of the (anti)proton. As in the case of cylindrical Penning traps, it is possible to optimize the properties of the electric trapping fields, which is mandatory for high-precision experiments with single charged particles. Of particular interest are the anharmonicity compensation, orthogonality and optimum adjustment of frequency shifts by the continuous SternGerlach effect in a quantum jump spectrometer. The mathematical formalism developed goes beyond the mere design of novel Penning traps and has potential applications in other fields of physics and engineering

    Department of Corporations

    Get PDF

    Department of Corporations

    Get PDF

    SN 2005 gj: Evidence for LBV supernovae progenitors?

    Full text link
    There has been mounting observational evidence in favour of Luminous Blue Variables (LBVs) being the direct progenitors of supernovae. Here we present possibly the most convincing evidence yet for such progenitors. We find multiple absorption component P-Cygni profiles of hydrogen and helium in the spectrum of SN 2005gj, which we interpret as being an imprint of the progenitors mass-loss history. Such profiles have previously only been detected in Luminous Blue Variables. This striking resemblance of the profiles, along with wind velocities and periods consistent with LBV's leads us to connect SN 2005gj to an LBV progenitor.Comment: Accepted as a letter to A&A, 4 pages,3 figure

    Dust Formation and He II 4686 emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc

    Full text link
    We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered an LBV-like outburst just 2 yr earlier, and we propose that the dust formation is a consequence of the SN blast wave overtaking that LBV-like shell. The key evidence for dust formation is (a) the appearance of a red/near-IR continuum source fit by 1600 K graphite grains, and (b) fading of the redshifted sides of He I emission lines, yielding progressively more asymmetric blueshifted lines as dust obscures receding material. This provides the strongest case yet for dust formation in any SN Ib/c. Both developments occurred between 51 and 75 d after peak, while other SNe observed to form dust did so after a few hundred days. Geometric considerations indicate that dust formed in the dense swept-up shell between the forward and reverse shocks, and not in the freely expanding SN ejecta. Rapid cooling leading to dust formation may have been aided by extremely high shell densities, as indicated by He I line ratios. The brief epoch of dust formation is accompanied by He II 4686 emission and enhanced X-ray emission. These clues suggest that the unusual dust formation in this object was not due to properties of the SN itself, but instead -- like most peculiarities of SN 2006jc -- was a consequence of the dense environment created by an LBV-like eruption 2 yr before the SN.Comment: ApJ, accepted. added some discussion and 2 figures, better title, conclusions same as previous version. 12 pages, 4 color fig

    Research experience from the use of different additives in wood-fuel pellet production

    Full text link
    The use of wood-fuel pellets has increased significantly worldwide in recent years, especially in the United Kingdom. If wood-fuel pellets should continue to be a successful biofuel at the energy market, the pellet production industry has to reduce the production cost, since it is a low-margin business. Further, improved pellets regarding storability and strength of the pellets are crucial to manage the overseas transportation that causes material losses. In addition, the industry tries to produce pellets from a broader raw material base and at the same time satisfy the customer requirements while producing a sustainable product. The wood-fuel pellet industry has the possibility to meet all these criteria; however, it also has the potential for improvements. Using additives in pellet production is one way to meet the criteria. In conclusion, it is necessary to do the research that systematically investigates the consequences of using additives for wood-fuel pellets, and this work presents a compilation of results and experiences from more than 20 different additive studies and the test bed for pellet production research at Karlstad University– a pellet production unit adapted for additives studies. Additives, with an admixture of up to 2% (wt.), have been tested in the NewDeP (New Development for Pellet Technology) pilot plant for pellet production at Karlstad University. The research has focused on the electricity consumption, the physical and mechanical properties of the pellets, and the CO2 equivalents emitted during production. The results showed that the additives Wetland grass, Algae, Turpentine and Lignin decreased the electricity consumption in the pellet press but unfortunately also decreased the durability. The additives Resins, Molasses, White sugar, Native potato starch and Oxidized potato starch increased the durability of the pellet but showed almost no change in the electricity consumption. However, Oxidized corn starch, Spent sulphite liquor and Native wheat starch as additives increased the mechanical properties while it decreases both the electricity consumption and the climate impact, hence a Win-Win-Win situation

    Johnson Space Center's regenerative life support systems test bed

    Get PDF
    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies

    How well do meteorological indicators represent agricultural and forest drought across Europe?

    Get PDF
    Drought monitoring and early warning (M&EW) systems are an important component of agriculture/silviculture drought risk assessment. Many operational information systems rely mostly on meteorological indicators, a few incorporate vegetation state information. However, the relationships between meteorological drought indicators and agricultural/silvicultural drought impacts vary across Europe. The details of this variability have not been elucidated sufficiently on a continental scale in Europe to inform drought risk management at administrative scales. The objective of this study is to fill this gap and evaluate how useful the variety of meteorological indicators are to assess agricultural/silvicultural drought across Europe. The first part of the analysis systematically linked meteorological drought indicators to remote sensing based vegetation indices (VIs) for Europe at NUTs3 administrative regions scale using correlation analysis for crops and forests. In a second step, a stepwise multiple linear regression model was deployed to identify variables explaining the spatial differences observed. Finally, corn crop yield in Germany was chosen as a case study to verify VIs representativeness of agricultural drought impacts. Results show that short accumulation periods of SPI and SPEI are best linked to crop vegetation stress in most cases, which further validates the use of SPI3 in existing operational drought monitors. However, large regional differences in correlations are also revealed. Climate (temperature and precipitation) explained the largest proportion of variance, suggesting that meteorological indices are less informative of agricultural/silvicultural drought in colder/wetter parts of Europe. These findings provide important context for interpreting meteorological indices on widely used national to continental M&EW systems, leading to a better understanding of where/when such M&EW tools can be indicative of likely agricultural stress and impacts

    Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the Luminous Blue Variable R71

    Get PDF
    To better understand the LBV phenomenon, we analyze multi-epoch and multi-wavelength spectra and photometry of R71. Pre-outburst spectra are analyzed with the radiative transfer code CMFGEN to determine the star's fundamental stellar parameters. During quiescence, R71 has an effective temperature of Teff=15 500 KT_\mathrm{{eff}} = 15\,500~K and a luminosity of log(L∗/L⊙)(L_*/L_{\odot}) = 5.78 and is thus a classical LBV, but at the lower luminosity end of this group. We determine its mass-loss rate to 4.0×10−6 M⊙ 4.0 \times 10^{-6}~M_{\odot}~yr−1^{-1}. We present R71's spectral energy distribution from the near-ultraviolet to the mid-infrared during its present outburst. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. Semi-regular oscillatory variability in the star's light curve is observed during the current outburst. Absorption lines develop a second blue component on a timescale twice that length. The variability may consist of one (quasi-)periodic component with P ~ 425/850 d with additional variations superimposed. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles.Comment: 18 pages, 14 figures, submitted to A&
    • 

    corecore