942 research outputs found

    Relation between trees of fragmenting granules and supergranulation evolution

    Full text link
    Context: The determination of the underlying mechanisms of the magnetic elements diffusion over the solar surface is still a challenge. Understanding the formation and evolution of the solar network (NE) is a challenge, because it provides a magnetic flux over the solar surface comparable to the flux of active regions at solar maximum. Aims: We investigate the structure and evolution of interior cells of solar supergranulation. From Hinode observations, we explore the motions on solar surface at high spatial and temporal resolution. We derive the main organization of the flows inside supergranules and their effect on the magnetic elements. Method: To probe the superganule interior cell, we used the Trees of Fragmenting Granules (TFG) evolution and their relations to horizontal Results: Evolution of TFG and their mutual interactions result in cumulative effects able to build horizontal coherent flows with longer lifetime than granulation (1 to 2 hours) over a scale up to 12\arcsec. These flows clearly act on the diffusion of the intranetwork (IN) magnetic elements and also on the location and shape of the network. Conclusions: From our analysis during 24 hours, TFG appear as one of the major elements of the supergranules which diffuse and advect the magnetic field on the Sun's surface. The strongest supergranules contribute the most to magnetic flux diffusion in the solar photosphere.Comment: 13 pages, 17 figures, accepted in Astronomy and Astrophysics movie : http://www.lesia.obspm.fr/perso/jean-marie-malherbe/Hinode2007/hinode2007.htm

    Management zone delineation using a modified watershed algorithm

    Get PDF
    Le zonage intra-parcellaire est une méthode couramment utilisée pour gérer la variabilité intra-parcellaire. Ce concept consiste à partitionner une parcelle en zones de management selon une ou plusieurs caractéristiques du sol et/ou du couvert végétal de cette parcelle. Cet article propose une méthode de zonage originale, basée sur l'utilisation d'une méthode de segmentation d'image puissante et rapide : l'algorithme de ligne de partage des eaux. Cet algorithme d'analyse d'image a été adapté aux spécificités de l'agriculture de précision. Les performances de notre méthodes ont été testées sur des cartes biophysiques haute résolution de plusieurs champs de blé situés en Bourgogne. / Site-specific management (SSM) is a common way to manage within-field variability. This concept divides fields into site-specific management zones (SSMZ) according to one or several soil or crop characteristics. This paper proposes an original methodology for SSMZ delineation which is able to manage different kinds of crop and/or soil images using a powerful segmentation tool: the watershed algorithm. This image analysis algorithm was adapted to the specific constraints of precision agriculture. The algorithm was tested on high-resolution bio-physical images of a set of fields in France.ZONAGE;PARCELLE;TELEDETECTION;BLE;SEGMENTATION D'IMAGE;AGRICULTURE DE PRECISION;FRANCE;BOURGOGNE;PRECISION AGRICULTURE;MANAGEMENT ZONES;REMOTE SENSING;IMAGE ANALYSIS;WATERSHED SEGMENTATION

    On mesogranulation, network formation and supergranulation

    Get PDF
    We present arguments which show that in all likelihood mesogranulation is not a true scale of solar convection but the combination of the effects of both highly energetic granules, which give birth to strong positive divergences (SPDs) among which we find exploders, and averaging effects of data processing. The important role played by SPDs in horizontal velocity fields appears in the spectra of these fields where the scale ∌\sim4 Mm is most energetic; we illustrate the effect of averaging with a one-dimensional toy model which shows how two independent non-moving (but evolving) structures can be transformed into a single moving structure when time and space resolution are degraded. The role of SPDs in the formation of the photospheric network is shown by computing the advection of floating corks by the granular flow. The coincidence of the network bright points distribution and that of the corks is remarkable. We conclude with the possibility that supergranulation is not a proper scale of convection but the result of a large-scale instability of the granular flow, which manifests itself through a correlation of the flows generated by SPDs.Comment: 10 pages, 11 figures, to appear in Astronomy and Astrophysic

    The Role of Subsurface Flows in Solar Surface Convection: Modeling the Spectrum of Supergranular and Larger Scale Flows

    Get PDF
    We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolomogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large scale radiative hydrodynamic simulations. We reach two primary conclusions: 1. The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. 2. Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic equation of state. This adds to other recent evidence suggesting that the amplitudes of large scale convective motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with observational data on the simulation output, we show that the observed low wavenumber power can be reproduced in hydrodynamic models if the amplitudes of large scale modes in the deep layers are artificially reduced. Since the large scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important to convective heat flux even in the deep layers, suggesting that small scale convective correlations are maintained through the bulk of the solar convection zone.Comment: 36 pages, 6 figure

    Mesoscale dynamics on the Sun's surface from HINODE observations

    Full text link
    Aims: The interactions of velocity scales on the Sun's surface, from granulation to supergranulation are still not understood, nor are their interaction with magnetic fields. We thus aim at giving a better description of dynamics in the mesoscale range which lies between the two scales mentioned above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun photosphere at the disk center obtained with the Solar Optical Telescope onboard Hinode. The observations, which have a field of view of 100 \arcsec×\times 100 \arcsec, typically contain four supergranules. We monitor in detail the motion and evolution of granules as well as those of the radial magnetic field. Results: This analysis allows us to better characterize Trees of Fragmenting Granules issued from repeated fragmentation of granules, especially their lifetime statistics. Using floating corks advected by measured velocity fields, we show their crucial role in the advection of the magnetic field and in the build up of the network. Finally, thanks to the long duration of the time series, we estimate that the turbulent diffusion coefficient induced by horizontal motion is approximately 430km2s−1430 \mathrm{km}^2 \mathrm{s}^{-1}. Conclusions: These results demonstrate that the long living families contribute to the formation of the magnetic network and suggest that supergranulation could be an emergent length scale building up as small magnetic elements are advected and concentrated by TFG flows. Our estimate for the magnetic diffusion associated with this horizontal motion might provide a useful input for mean-field dynamo models.Comment: to appear in A&A - 8 pages, 13 figures (degraded quality) - Full resolution version available @ http://www.ast.obs-mip.fr/users/rincon/hinode_roudier_aa09.pd
    • 

    corecore