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Abstract

Site-specific management (SSM) is a common way to manage within-field variability. This
concept divides fields into site-specific management zones (SSMZ) according to one or
several soil or crop characteristics. This paper proposes an original methodology for SSMZ
delineation which is able to manage different kinds of crop and/or soil images using a
powerful segmentation tool: the watershed algorithm. This image analysis algorithm was
adapted to the specific constraints of precision agriculture. The algorithm was tested on
high-resolution bio-physical images of a set of fields in France.
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Introduction

Within-field variability is a well-known phenomenon in agriculture, and its study
is at the centre of precision agriculture (PA). The most common method to manage
this phenomenon is the site-specific management (SSM) concept (Plant, 2001). The
principle of this concept is to manage areas within a field with variable rates of input
(Godwin et al., 2003). Site-specific management zones (SSMZ) can be defined in
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a given field in order to manage within-field variability. A management zone is a
sub-region of a field which is defined by a relative homogeneity of crops and/or soil
parameters (Doerge, 1999), and for which a specific rate of inputs is needed. This
within-field heterogeneity management method represents a major development for
decision support systems (DSS, McBratney et al., 2005).

Farmstar (Coquil and Bordes, 2005) is a DSS based on remote-sensing data which
is proposed in France by Infoterra and Arvalis. This service, which has been op-
erational for six years in most of the significant cereal-growing regions, provides
farmers with a series of recommendations to monitor crops at the within-field level.
Farmstar combines satellite imagery, agronomic models and meteorological data,
and was used in France by more than 9,000 farmers for 350,000 ha in 2007. This
study aims at finding suitable SSMZ delineation strategies for a widespread DSS
like Farmstar.

In the PA literature, various methodologies for SSMZ delineation can be found. A
majority of the existing methods are based on unsupervised clustering algorithms
(Vrindts et al., 2005). Fraisse et al. (1999) used an ISODATA clustering algorithm.
Several authors proposed to use the k-means algorithm (Taylor et al., 2003; Whelan
and McBratney, 2003; Hornung et al., 2006). Finally, the fuzzy c-means algorithm
is now widely applied (Lark and Stafford, 1997; Fridgen et al., 2000; Vrindts et al.,
2005; Li et al., 2007). The expansion of the latter approach has been made easier
for researchers with the release of user-friendly software like Management Zone
Analyst (Fridgen et al., 2004). The choice of the data layers that are processed
by the clustering algorithm has been widely discussed (for more detail, the reader
can refer to Jaynes et al., 2005; Miao et al., 2005). Despite their success, some
authors noticed that a major drawback of the existing approaches is the resulting
fragmentation of the zones. This fragmentation is due to the fact that no spatial in-
formation is taken into account in the clustering algorithms (Ping and Dobermann,
2003; Simbahan and Dobermann, 2006; Frogbrook and Oliver, 2007). This effect
may be reduced by applying a spatial filter on the result of a fuzzy c-means cluster-
ing (Ping and Dobermann, 2003; Lark, 1998). Li et al. (2005) presented a modified
version of the k-means clustering algorithm so that it considers both spatial rela-
tionships and similarities among pixels. Khosla et al. (2002) proposed to include
user-defined polygons alongside crop and soil information layers. Simbahan and
Dobermann (2006) and Frogbrook and Oliver (2007) proposed to introduce a spa-
tial constraint through the variogram parameters. This overview of the literature
on SSMZ delineation tools shows that existing approaches (i) rarely consider DSS
mass-production constraints, and (ii) are mostly classification-based.

Implementing SSMZ support in a production context implies finding new tech-
niques for SSMZ definition. A mass-production context defines new constraints and
legitimizes a specific research effort. Robustness is an important point (McBratney
et al., 2005), because (i) the delineation method has to be suitable for a wide range
of agro-meteorological conditions, and (ii) the method should also be suitable for

2

ha
l-0

04
53

89
8,

 v
er

si
on

 1
 - 

5 
Fe

b 
20

10



different kinds of data layer. Due to the large amount of data to be processed, spe-
cific constraints appear, mostly automation and computing efficiency. One should
also consider that only remotely-sensed data is processed, i.e. data on a regular
grid. In this study, an original approach for SSMZ delineation, using a segmen-
tation tool instead of classification methods, is proposed. An innovative method
has been built to address the drawbacks of classification-based methods: spatial
fragmentation, control of the resulting number of patches, operations on the mor-
phological characteristics of the patches. Specific constraints presented above like
automation, robustness and computing-time are considered. An adaptation of an
efficient image-processing segmentation tool to the requirements presented above
is proposed. In-field experiments have been carried out on a set of fields in the Bur-
gundy region, France, and show promising results for segmentation-based SSMZ
delineation methods.

Theory

Presentation of the watershed segmentation algorithm

SSMZ delineation methods are mostly based on classification tools (Vrindts et al.,
2005). In this paper, a segmentation method for SSMZ definition is proposed. Clas-
sification gathers the similar pixels of an image according to their radiometrical
value, whereas segmentation aims at defining homogeneous zones, and is based on
how the values are spatially structured (i.e. topology of the dataset): classification
defines classes, i.e. groups of individuals presenting similar properties, and seg-
mentation defines regions, i.e. the expression of those groups in space and/or time
(McBratney et al., 2005). The proposed method is based on the detection of the
boundaries of the SSMZ in the processed images.

Mathematical morphology (Serra, 1982) proposes an efficient segmentation me-
thod, i.e. the watershed algorithm. This is a low-level segmentation method initially
proposed by Beucher and Lantuejoul (1979) and formalized later by Vincent and
Soille (1991). This algorithm is fast and generates closed contours. It has been
used on various kinds of images. It is based on an analysis of the magnitude of the
gradient image: effective contours correspond to high gradient values. The gradient
image can be seen as a hilly landscape, the edges of the hills being the contours
of the objects to segment. An iterative flooding of this landscape from the local
minima is simulated (Figure 1). The contours of the objects to segment are defined
as the points where different flooding lakes meet. A dam between those different
lakes is built to mark the contours of the objects.

As the method is based on the gradient magnitude image, it is very sensitive to
noise, and over-segmentation of the image is a major drawback of the watershed
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(a) (b)

(c) (d)

Fig. 1. One dimensional illustration of the watershed segmentation. (a) The signal to be
segmented. (b) The corresponding gradient signal. Local minima are plotted in red. (c)
Flooding of the grey levels from each local minima. When two different floods meet, a
dam is built up. Those dams are the resulting contours of the segmentation. (d) Resulting
segmentation of the signal.

segmentation (Najman and Schmitt, 1996). The over-segmentation phenomenon
relates to the creation of small non-representative basins. To solve this problem,
a region-merging algorithm is commonly applied after watershed segmentation
(Haris et al., 1998; Patino, 2005; Pichel et al., 2006). Another way to limit the over-
segmentation phenomenon is to initiate relevant basin seeds (Meyer and Beucher,
1990). Finally, some authors have proposed characterizing the strength of the dif-
ferent detected contours (Grimaud, 1992; Najman and Schmitt, 1996).

Grimaud (1992) proposed selecting the relevant basin seeds using the basin dy-
namic method: for a given local minima k of a basin B, the basin dynamic D is
defined as the difference between the altitude of k and the lowest altitude to be over-
come to gain access to a lower local minimum k (Figure 2). The basin dynamics
hierarchize watershed seed candidates, and the basin dynamics map is thresholded
so that relevant seeds are selected. However, choosing a threshold is an empirical
exercise. The method presented in this paper was inspired from this approach. Here
the basin dynamics method is modified by introducing a variable in the standard
watershed algorithm itself, in order to improve its robustness to over-segmentation
and adapt to the scientific framework of PA. In the PA context, data are often af-
fected by different noise sources (noise due to the sensor and/or the process applied
to the data, nugget effect, etc.). It is important to provide a strategy to reduce the
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Fig. 2. One dimensional illustration of the concept of basin dynamics. In this example, D is
the dynamic of the basin seed k.

incidence of such effects, because they generate an important number of small non-
significant zones using an algorithm like the watershed algorithm. The originality of
our work is to provide a non-parametric method to compute the over-segmentation
regulation variable in order to fit with our production context.

Proposition of a specific watershed algorithm for SSMZ delineation

There are two important steps in watershed segmentation. The first step is “diffu-
sion”, and consists in the propagation of the existing regions pixel by pixel. The
second step is called “labellization”, it involves the creation of a new region. Thus,
over-segmentation is actually the result of over-labellization. In the standard for-
mulation of the algorithm, those two steps are simultaneous. A “flooding lag” ∆ f
is introduced in the standard watershed algorithm between diffusion and labelliza-
tion, so that labellization and diffusion steps are staggered. The objective of this lag
is to maximize the diffusion step, i.e. the spreading of the existing regions, to the
detriment of the creation of non-significant zones (Figure 3).

The algorithm processes a gradient image G and generates an image of watershed
labels WS, initialized at 0. Two lists of pixels are updated at each step k of the
segmentation loop:

ik = {i ∈ G | G(i)≤ k, WS(i) = 0} (1)
iks =

{
i ∈ G

∣∣ G(i) = (k−∆ f ), WS(i) = 0
}

(2)

The ik list is defined as the pixels that can be allocated to the existing basins. This
list groups all the unlabeled pixels whose gradient is smaller or equal to k. The sec-
ond list, iks, is more restrictive. It gathers all the unlabeled pixels whose gradient
equals k−∆ f . Thus, by definition, iks is included in ik. In a given step of the seg-
mentation process, diffusion inside the list ik is computed first. An iterative loop
allows the unlabeled pixels to be allocated to the same label as their neighbour, as
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(a) (b)

(c) (d)

Fig. 3. One dimensional illustration of our approach. Plain line represents the gradient
magnitude, which is used to detect contours, for one spatial dimension (x). (a, c) Iteration k
for the standard watershed algorithm and our approach respectively. (b, d) Iteration k+1 for
the standard watershed algorithm and our approach respectively. Diffusion of the existing
regions takes place in the volume between (k + 1) and (k−∆ f + 1), i.e. between P and P’
(∆ f is the flooding lag). Creation of new regions only occurs on the (k−∆ f +1) plane, i.e.
P’. Over-segmentation due to noisy basins is limited while significant gradient values are
respected.

long as the latter has been labelled itself. If several labels are candidates, the neigh-
bour having the closest value in the initial image is chosen. The processed pixels
are eliminated from the ik list. At the end of the diffusion step, the ik list may or
may not be empty. When all the possibilities of diffusion inside ik have been pro-
cessed, the iks list is generated. All the pixels which have not yet been allocated to
a basin and whose gradient equals k−∆ f are compiled within this list. As it was
not possible to give them a label during ∆ f steps, it was decided to move on to the
next step i.e. creation of new basins, considered to be significant. The first item on
the list is given a new label, thereby creating a new basin. This label is then diffused
among the pixels contained in the ik list. The labelled pixels are then removed from
iks list. The creation of new basins is repeated until iks is empty.

During the two steps of the process (Figure 3), the algorithm compiles two separate
lists of pixels. List ik is the diffusion volume V defined between the plane P of the
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current gradient value k, and the plane P, shifted of ∆ f from P. The iks list is defined
by the unlabeled pixels of plane P. The iks list is the only plane used for the creation
of new basins (labellization step). The treatment of pixels that were not labelled by
simple diffusion is thereby forced.

Assessment of the flooding lag ∆ f

The specificity of our watershed algorithm relies on the introduction of a flooding
lag ∆ f between diffusion and labellization. This limits the over-segmentation effect
by limiting the creation of new regions. ∆ f can be determined by an empirical or
expert method. However, in order to reduce operator interventions and expertise, a
method that gives ∆ f from the intrinsic characteristics of the data to be segmented
is proposed.

On the gradient image to be processed, one should distinguish low spatial frequency
variations, which are due to the border between two significant objects, from high
spatial frequency variations, which can be due to noise. The detection and the es-
timation of this noise can be carried out by studying the local variations of the
variance in the gradient image. Thus, let σN be a measurement of the high spatial
frequency noise on the gradient image. ∆ f is proportional to σN :

∆ f = k×σN , k ∈ R (3)

σN can be estimated using the square root of the average variance of the high spatial
frequency noise on the gradient image. Let V0 be this variance. As the disturbances
that give rise to over-segmentation are local phenomena, V0 can be defined, for a
gradient image G, as the limit of the average variance V on surfaces S when S tends
toward 0:

V0 = lim
S→0

V (G(S)) (4)

σ̂N =
√

V0 (5)

∆ f = k′×
√

V0, k′ ∈ R (6)

Due to the way it is computed (Equation 5), the standard deviation σN is an average
of the image. However, from one case to another, the gradient image for which it
has been computed can present a distribution of high spatial frequency phenomena
which are more or less homogeneous. If those phenomena are not uniformly dis-
tributed over the image —and are thus spatially structured— it means that the areas
with high spatial frequency phenomena may be meaningful (e.g. textured areas). To
avoid under-segmentation of such heterogeneous meaningful structures, it is impor-
tant to take into account the levelling effect of the mean operator. Consequently, in
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the case of heterogeneous noise structuring images, the flooding lag ∆ f must be
reduced to avoid under-segmentation of those areas of the image to be segmented.

Let VT be the total variance of the gradient image. VT can be seen as the mean
variance, on the whole gradient image, for two distant points. In the case of a ho-
mogeneous gradient image, VT ≈V0, the mean variance between two distant points
is similar to the mean variance of two neighbouring points, as noise distribution
is homogeneous. In the case of a heterogeneous gradient image, V0 << VT , two
neighbouring points will on average be closer in value than two distant points, be-
cause the noise distribution is spatially structured. The ratio between V0 and VT can
be used to evaluate the heterogeneity of noise distribution in the gradient image:

• If the gradient image presents a homogeneous distribution of these phenomenon,
then V0 ≈VT and V0/VT → 1. This kind of distribution does not require a decrease
in the flooding lag.

• If the gradient image shows a heterogeneous distribution of these phenomenon,
then V0 <<VT and V0/VT → 0. Such a distribution requires a significant decrease
in the flooding lag to avoid under-segmentation.

A weighting factor k, proportional with a real constant K to the ratio V0/VT can be
proposed. The flooding lag ∆ f is estimated (Equation 3) by:

∆ f = k′×
√

V0

=
(

K× V0

VT

)
×

√
V0, K ∈ R (7)

Thereafter, a constant K = 1 is used.

Material and methods

Study sites and data collection and processing

The study sites were four arable crop-fields located on commercial farms in Bur-
gundy, an important cereal-growing region, near Dijon, France. The soil of those
four fields is a silty loam. In terms of area, the sampled sites included two average
fields, between 15 and 20 ha (Table 1, fields 1 and 2), and two larger fields (Table 1,
fields 3 and 4). The four fields were cropping three different winter wheat (Triticum
æstivum) varieties (Table 1). The data collection on those fields took place in 2003.
For each field, the opportunity index (OI, Pringle et al., 2003) was computed to
qualify the within-field variability. The opportunity index is defined as a function
of the magnitude of the data variation (assessed by CVa), and of the spatial structure
of the data variation (assessed by S).
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Fields characteristics Biomass at flowering (t/ha) Spatial statistics

Field Size (ha) Variety Min. Max. Mean St. Dev. CVa S OI

1 15.3 Apache 3.67 11.25 8.45 1.54 0.18 0.86 0.16

2 17.5 Charger 4 16.21 10.25 3.39 0.34 0.79 0.27

3 30.3 Apache 1.65 13.15 9.67 1.38 0.15 0.68 0.10

4 69.5 Soissons 3.62 11.86 7.27 1.54 0.25 0.69 0.17
Table 1
Details of the four study sites.

The remotely-sensed data used for the experiments were acquired using an airborne
CASI sensor mounted on a jet. 11 spectral bands were used, centred at 444, 487,
555, 623, 668, 693, 716, 738, 783, 852, and 900 nm respectively, with a spatial
resolution of 5m. Acquisitions were done by the Institut Cartogràphic de Catalunya
(ICC), on May 30, 2003, so that the wheat was during the flowering growth stage.
The multi-spectral data were processed in order to obtain biomass data on the four
experimental fields. The process to provide biomass maps was done using the Farm-
star production chain (Poilvé and Coquil, 2003). Table 1 describes field area, wheat
variety and statistics of the estimated biomass values.

Biomass data pre-processing

The gradient operator is the morphological gradient, with a square structural ele-
ment 3×3 (Rivest et al., 1993). For an image I, it is computed as follows:

g(I) = δE(I)− εE(I) (8)

where δ is the dilatation morphological operator and ε the dilatation morphological
operator (Serra, 1982).

Utilisation of the variogram for the determination of ∆ f

The estimation of V0 can be done by studying the local variations of the variance in
the gradient image. Thus, one can estimate V0 using different methods: variographic
analysis, Fourier analysis, wavelets, etc. In this study, the variogram method (Math-
eron, 1963; Journel and Huijbregts, 1978) was chosen to estimate the value of V0 by
the nugget effect C0 of the variogram (Equation 9). This method estimates V0 and
VT by considering the relation between the variance of a set of points and the phys-
ical distance between them. Modelling of the experimental variogram allows the
estimation of the variance for a null distance between two points. The variogram
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model provided two variables C0 and C1. The total variance of the image VT was
obtained through addition of C0 and C1 (Equation 10). Considering relation 7, ∆ f
is computed as presented in relation 11.

V̂0 =C0 (9)
V̂T =C0 +C1 (10)

∆ f ≈
C0

C0 +C1
×

√
C0 (11)

Regularisation of the number of zones

In order to refine the results of the watershed segmentation, a regularisation of the
watershed segmentation result is done. In image processing, regularisation is the
step that aims at improving the results of a segmentation. Indeed, our watershed
implementation keeps a small over-segmentation effect, and needs a region merg-
ing step to reach the suitable number of regions. This corresponds to the under-
segmentation risk management of our approach, which is formulated by the term(

C0
C0+C1

)
in the ∆ f expression (Equation 11).

In this study, a hierarchical tree algorithm was used to drive the regularisation pro-
cess. Figure 4 shows a one-dimensional illustration of this fusion procedure. The
initial state (IS) corresponds to the regions resulting from the segmentation step.
The fusion is only performed between neighbouring regions. All the fusions that
are possible between the neighbouring regions are evaluated. The most favorable
fusion is operated using a fit parameter, which is an energy function. This operation
is repeated until the suitable number of regions is obtained.

The fit parameter considers both morphological and radiometric parameters. For a
given fusion, the fit parameter is a linear combination of compactness (C), regu-
larity (R) and radiometry ρ (Table 2, for more information see Baatz and Schäpe,
2000). For a given region, when several fusions with neighbouring regions are pos-
sible, the one which minimizes the fit parameter is processed.

Determination of the optimum number of zones

The choice of the best number of zones is done for each field. It is based on a
variance analysis of the biomass values inspired from Fraisse et al. (1999). Biomass
variances for each zone were computed (Equation 12):

VINT RA =
N

∑
Z=1

nZ

∑
i=1

(
Bi−BZ

)2 (12)
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Fig. 4. Tree algorithm used to merge regions according to a given fit parameter. In this one
dimensional example, at the initial state (IS), there were eight different regions. The tree
algorithm examines all the possible fusions between the different couples of neighbours.
At each iteration, the best fusion according to the fit parameter is chosen. The process is
repeated until a given number of regions k, or until one region (final state, FS), is obtained.

Parameter Assessed characteristic Formula

Compactedness (C) Morphological C = Pregion√
Sregion

Regularity (R) Morphological R = Pregion
PBBox

Radiometry (ρ) Radiometric ρ =

√
∑[Biomass(k)]2− [∑Biomass(k)]2

Sregion
Sregion

Fit = (k1×C)+(k2×R)+(k3×ρ), k{1,2,3} ∈ R, ∑
3
i=1 ki = 1

Table 2
Composition of the fit parameter within the hierarchical tree algorithm. Pregion is the perime-
ter of the region, Sregion is its surface. PBBox is the perimeter of the bounding box of the
region.

N is the number of zones, nZ the number of cells in the zone Z, Bi the biomass
value for cell i, and BZ the mean of biomass for zone Z. The percentage decrease
in within-zone biomass variance (with reference to the entire field, i.e. one unique
zone) was plotted versus the number of zones (Figure 5). To find the most suit-
able number of zones, the parsimony principle, described by Lark (2001) for PA,
was applied to each plot. According to this principle, the most suitable number of
zones is defined as the number of zones after which the biomass variance reduction
remains more or less constant or declines more slowly.
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Fig. 5. Illustration of the application of the parsimony principle to the choice of the final
number of regions. Biomass variance decrease (%) is plotted versus the number of regions
when dividing the field into 1 to 10 SSMZ. The parsimony principle leads to a choice of
N = 4.

Data analysis

The algorithms proposed in this paper were implemented using the IDL program-
ming language (IDL 6.2, 2005, c© Research Systems, Inc., USA), on a PC platform
running on an Intel Pentium 4 processor at 2.8 Ghz and with 1 Gb RAM. Both expo-
nential and spherical variogram models were used (Webster and Oliver, 1990). Var-
iographic computations were processed with the Vesper software (Minasny et al.,
2005). The performance of the variographic modelling was determined with the
RMSE. A flow chart (Figure 6) summarizes the different steps of our method.

Results

Assessment of the flooding lag

Experimental variograms were computed for each field from the gradient of the
biomass maps. Figure 7 shows the processed gradient data, the corresponding ex-
perimental variograms (dots) and the fitted variogram model (plain line). The pa-
rameters of the models fitted are also shown in Table 3. For each field, stationarity
was obtained for the fitted model.

In the ∆ f assessment method using a variogram model of the gradient data, im-
portant parameters are the nugget effect C0 and sill C1. Within our experimental
fields set, Field 3 is the field with the lowest ∆ f : the nugget effect is low, because
there are few high spatial frequency noise effects. Moreover, the ratio between
C0 and C0 +C1 is low, and thus the ∆ f value is lowered in order to avoid under-
segmentation phenomena. Indeed, this field (Figure 7) shows numerous zones, and
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Fig. 6. Flow chart of the proposed approach. (a) The morphological gradient of the biomass
map to be processed is computed. (b) Flooding lag ∆ f is computed from the morphological
gradient of the biomass map. (c) The biomass map is segmented from its gradient, using
the modified watershed algorithm presented above with the flooding lag ∆ f computed in the
(b) step. (d) The most suitable final number of zones is chosen. (e) The number of zones is
reduced using the regularisation algorithm.

magnitude between zones is not important (Table 1, CVa = 0.15). Conversely, Field
2 shows a high ∆ f value: an important nugget effect allowed us to take no account
of most of the local variations in the gradient map, and the ∆ f value was not lowered
by the C0/(C0 +C1) ratio. Figure 7 shows that this field presents a small number
of wide and well-marked SSMZ.
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Field Model hmax (m) C0 C1 RMSE ∆ f (t/ha)

1 Spherical 550 1364.5 1243.9 121.0 0.56

2 Exponential 650 1769.9 1665.5 121.3 1.02

3 Exponential 800 577.2 1878.2 65.71 0.25

4 Exponential 1000 861.3 705.4 24.64 0.47
Table 3
Results of the ∆ f assessment using a variogram analysis for the 4 experimental fields.

Field 1 Field 2 Field 3 Field 4

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Variograms on the gradient data for the four experimental fields. (a – d) Biomass
maps (t/ha) for fields {1, 2, 3, 4} respectively. (e – h) Gradient of the biomass maps for
fields {1, 2, 3, 4} respectively. (i – l) Variograms of the gradient map for fields {1, 2, 3, 4}
respectively.

Reduction of the over-segmentation using our watershed algorithm

Figure 8 shows the contours of the SSMZ delineated on Field 4 before the regu-
larisation step, using the standard watershed algorithm on the one hand, and our
watershed algorithm improved with flooding lag ∆ f on the other hand. An impor-
tant reduction of the number of zones is observed when using the flooding lag wa-
tershed segmentation method. The latter method delineated wider, more significant
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zones, while the standard algorithm is strongly affected by the over-segmentation
phenomenon. Table 4 compares some quantitative statistics: for the two methods,
the number of delineated zones and the average area of those zones is shown.

(a) (b) (c)

Fig. 8. Comparison of the watershed segmentation results on the experimental field 4. (a)
Biomass values (t/ha). (b) Segmentation results using the standard watershed algorithm. (c)
Segmentation results using our approach.

Number of zones Average area (ha)

Field without ∆ f with ∆ f without ∆ f with ∆ f

1 95 8 0.20 2.44

2 105 25 0.24 1.00

3 161 45 0.23 0.81

4 349 41 0.23 1.94
Table 4
Comparative results of the watershed segmentation step using the standard watershed algo-
rithm and our watershed algorithm with a flooding lag ∆ f : number of delineated zones and
average area of the delineated zones.

Results show that there is an important reduction of the number of delineated zones:
between 72 and 91.6% for the tested fields. Consequently, the average area of the
delineated objects is much more important when using our watershed algorithm.
Those two results correspond to the objective of reduction of the over-segmentation
phenomenon, in order to work on objects containing a significant number of pixels.
As a result, zones given by our algorithm are more relevant, and split the field into
homogeneous regions. However, an over-segmentation effect is still observed, and
corresponds to the under-segmentation risk-management policy of our method.

Figure 9 compares the result of the SSMZ delineation on Field 4, using the stan-
dard watershed algorithm on the one hand and the proposed flooding lag watershed
algorithm on the other hand. The same regularisation step was applied to both seg-
mentation results presented in Figure 8. The SSMZ delineations obtained present
the same number of regions, but the contours of the regions are different depending
on the watershed segmentation algorithm used. When using the standard watershed
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algorithm, contours are tortuous and complex, and follow the finest spatial vari-
ations of the biomass. When using the over-segmentation limitation method, the
result gives a more global and simple view of the within-field variations. Indeed,
the contours are less complex and render the most significant spatial variations of
the biomass. As a result, the latter suits expectations of the project, which is to
provide farmers a simplified visualisation of their field variability. This difference
underlines the necessity to restrict over-segmentation in the first step. In the case of
the standard watershed algorithm, the important initial over-segmentation (Figure
8) implies that the regularisation algorithm processes very small patches, at a scale
closer to the data resolution scale (Table 4). Conversely, the over-segmentation lim-
itation method using a flooding lag allows the regularisation step to process wider
objects: this segmentation algorithm is more efficient in terms of taking into ac-
count spatial characteristics of the data.

(a) (b) (c)

Fig. 9. Comparison of the efficiency of the proposed watershed segmentation using a flood-
ing lag ∆ f : resulting SSMZ contours after regularisation. (a) Biomass values (t/ha). (b)
SSMZ contours after the watershed segmentation step using the standard algorithm. (c)
SSMZ contours after our watershed algorithm.

Those results show the relevance of the over-segmentation limitation method: the
watershed algorithm using a flooding lag delineates wider regions. As a result: (i)
the influence of the regularisation step, which is parametric, is limited in favour of
the segmentation step, which is based on the data ; and (ii) it inserts a real spa-
tial argument in the delineation of the regions, as the regularisation step processes
spatial objects (i.e. a set of neighbouring pixels) instead of individual pixels. The
over-segmentation limitation method appears to be very efficient.

Management zone delineation on the experimental fields

The approach presented was applied to the set of experimental fields. Figure 10
shows the final SSMZ results of the process after regularisation for each experi-
mental field. From a qualitative point of view, it can be seen that main patterns of
the biomass at flowering are identified for each of the four fields.
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Field 1 Field 2 Field 3 Field 4

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Results of the SSMZ delineation using our approach. (a – d) Biomass maps (t/ha)
for fields {1, 2, 3, 4} respectively. (e – h) Resulting SSMZ for fields {1, 2, 3, 4} respectively.

Table 1 shows that Field 2 presented the highest OI (OI = 0.27). Indeed, that field
is characterized by a strong spatial structure and an important magnitude of the
biomass variations (S = 0.79, CVa = 0.34). As a result, SSMZ are clear because
there is a reduced number of zones and an important difference in biomass val-
ues between the zones. On Field 1, the magnitude of the biomass variations is not
important (CVa = 0.18), but there is a very strong spatial structure of the biomass
variations (S = 0.86). The latter facilitate the SSMZ delineation: because of this
important structure of the variations, the algorithm gives satisfying contours. Three
zones are obtained, i.e. one zone of important biomass values on the centre of the
field, with two zones of weak biomass values at each end of the field. Conversely,
Field 4 presents the lowest spatial structure (S = 0.69), and its gradient map (Figure
7.h) presents an important nugget effect. However, the magnitude of the biomass
variations is important (CVa = 0.25). As a result, this field presents some inclusions
of high biomass value areas mixed within smaller biomass value zones, but the
boundaries between zones are clear. Our algorithm succeeds in delineating SSMZ,
as we found a reduced number of zones that embody such inclusions. The result
is satisfactory: SSMZ gave a global view of the within-field variations. Unlike the
other fields, Field 3 does not present sharp boundaries. The within-field variance
is the smallest (CVa = 0.15), and is not well-structured (S = 0.69) compared to the
other fields. The gradient map (Figure 7.g) shows a reduced nugget effect. As a re-
sult, the number of delineated zones is important: our algorithm found six SSMZ.
This is relevant compared to the corresponding biomass map. The boundaries of the
zones are sometimes more complex than they should be: this is due to the smoothed
variations of the biomass values in some parts of the field, as indicated by the low
value of the OI (OI = 0.10). The results of our approach are also satisfactory be-
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cause for both the watershed segmentation step and the regularisation step, com-
puting efficiency of the algorithms allowed us to process the fields in a short time:
for the experimental fields 1 to 4, segmentation time was 0.110, 0.138, 0.172, and
0.240 s respectively.

Figure 11 aims at quantifying the SSMZ delineation results for Field 1. For each
management zone proposed in this field by our approach, a histogram of the bio-
mass values is shown. The means of the biomass values within each zone are shown
with a hashed line. Histograms show that populations within zones 1 and 2 on the
one hand, and from zone 3 on the other hand, are significantly different from each
other. While zone 3 is a wide central zone of high biomass values, biomass values
of zones 1 and 2 overlap: those zones are similar in terms of their values, but are
located on the two sides of the field. Finally, on field 1, we delineate 3 SSMZ
corresponding to 2 different classes of biomass values.

(a) (b)

(c) (d)

Fig. 11. Distribution of the biomass values in the management zones delineated by our
approach for Field 1. (a) Biomass map (t/ha) for field 1. (b) Resulting SSMZ or field 1.
(c) Distribution of the biomass values within the 3 delineated zones. (d) Distribution of the
biomass values within zone 1 and 2 on one hand, zone 3 on the other hand. Mean values of
the biomass data within each zone i are indicated with a hashed line and a m(i) label.
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Next steps

The object-oriented delineation approach presented in this study showed promising
results. The different steps of our approach were validated. However, the tests were
run on a few fields and most of the processing steps were manually supervised.
Several significant problems remain. These problems currently do not allow us to
implement the method as is into the production chain. One of the most significant
drawbacks comes from the variogram modelling before the watershed segmenta-
tion. The variogram is a relevant way to provide an assessment of the flooding
lag ∆ f . However experiments highlighted the necessity to supervise variogram es-
timation, which doesnt fit with the strong automation required in the context of
our application. As said previously, many alternative methods can be considered
(Fourier transform, wavelets, etc.) and could be tested in further experiments.

Another significant remaining problem is the determination of the optimal number
of zones. The solution used in this study is relevant, but once again requires a super-
vision to make sure the optimal number of zones is reached. This method is lacking
robustness to be fully automatable and alternative approaches will have to be inves-
tigated further. Finally, a missing functionality is the awareness of the operational
constraints (e.g. the footprint and work direction of the application machinery).

Unlike the watershed segmentation, which gave satisfactory improvements in SSMZ
delineation and which is not significantly problematic, the regularisation seems to
be the most improvable step of our method. A major evolution of this step could be
to include the notion of technical opportunity (Tisseyre and McBratney, 2008) into
the regularisation for both (i) fusion choices during regularisation (instead of the fit
parameter), and (ii) choice of the optimal number of regions (instead of using the
variance decrease analysis).

Conclusion

This study showed the relevance of an object-oriented approach in SSMZ delin-
eation. The watershed segmentation proved to be a relevant tool considering the
constraints of our specific application. However, before applying this algorithm to
PA data, it has to be modified in order to cope with over-segmentation effects. To
be successfully implemented in production constraints like those of Farmstar (large
databases, large variability in the fields to be processed), algorithms initially devel-
oped for image processing have to be specifically adapted for PA data.
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