460 research outputs found
Short-time critical dynamics of the Baxter-Wu model
We study the early time behavior of the Baxter-Wu model, an Ising model with
three-spin interactions on a triangular lattice. Our estimates for the dynamic
exponent are compatible with results recently obtained for two models which
belong to the same universality class of the Baxter-Wu model: the
two-dimensional four-state Potts model and the Ising model with three-spin
interactions in one direction. However, our estimates for the dynamic exponent
of the Baxter-Wu model are completely different from the values
obtained for those models. This discrepancy could be related to the absence of
a marginal operator in the Baxter-Wu model.Comment: 7 pages, 11 figures, accepted for publication in Phys. Rev.
The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth
One of the most interesting sources of gravitational waves (GWs) for LISA is
the inspiral of compact objects on to a massive black hole (MBH), commonly
referred to as an "extreme-mass ratio inspiral" (EMRI). The small object,
typically a stellar black hole (bh), emits significant amounts of GW along each
orbit in the detector bandwidth. The slowly, adiabatic inspiral of these
sources will allow us to map space-time around MBHs in detail, as well as to
test our current conception of gravitation in the strong regime. The event rate
of this kind of source has been addressed many times in the literature and the
numbers reported fluctuate by orders of magnitude. On the other hand, recent
observations of the Galactic center revealed a dearth of giant stars inside the
inner parsec relative to the numbers theoretically expected for a fully relaxed
stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or
only a very shallow cusp) adds substantial uncertainty to the estimates. Having
this timely question in mind, we run a significant number of direct-summation
body simulations with up to half a million particles to calibrate a much
faster orbit-averaged Fokker-Planck code. We then investigate the regime of
strong mass segregation (SMS) for models with two different stellar mass
components. We show that, under quite generic initial conditions, the time
required for the growth of a relaxed, mass segregated stellar cusp is shorter
than a Hubble time for MBHs with
(i.e. nuclei in the range of LISA). SMS has a significant impact boosting the
EMRI rates by a factor of for our fiducial models of Milky Way type
galactic nuclei.Comment: Accepted by CQG, minor changes, a bit expande
Statistical classification of road pavements using near field vehicle rolling noise measurements
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models
Carnian (Late Triassic) C-isotope excursions, environmental changes, and biotic turnover: a global perturbation of the Earth's surface system
Here we present the second part of the special thematic issue on the Carnian Pluvial Episode (CPE). In this issue, two works on terrestrial sedimentological and floral changes linked to the CPE, and new carbon isotope records from Oman and China are presented. The papers published in this issue complement those contained in volume 175 issue 6; they altogether give an almost complete vision of the state-of-the-art about the CPE, including the many conundrums
Using Pilot Systems to Execute Many Task Workloads on Supercomputers
High performance computing systems have historically been designed to support
applications comprised of mostly monolithic, single-job workloads. Pilot
systems decouple workload specification, resource selection, and task execution
via job placeholders and late-binding. Pilot systems help to satisfy the
resource requirements of workloads comprised of multiple tasks. RADICAL-Pilot
(RP) is a modular and extensible Python-based pilot system. In this paper we
describe RP's design, architecture and implementation, and characterize its
performance. RP is capable of spawning more than 100 tasks/second and supports
the steady-state execution of up to 16K concurrent tasks. RP can be used
stand-alone, as well as integrated with other application-level tools as a
runtime system
A hybrid MLS technique for room impulse response estimation
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved
Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: potential to improve skin structure and preserve dermal matrix components
The use of natural products in skin care formulations gained interest as a concern for modern societies. The undesirable side effects of synthetic compounds, as well as the associated environmental hazards, have driven investigation on photosynthetic organisms as sustainable sources of effective and environmentally friendly ingredients. The use of natural extracts in cosmetics has been highlighted and, along with plants and algae, cyanobacteria have come into focus. Due to their low culture demands, high grow rates and ability to produce a wide variability of bioactive metabolites, cyanobacteria emerged as an economic and sustainable base for the cosmetic industry. In this study, we evaluated the potential of ethanol extracts of picocyanobacteria strains of the genera Cyanobium and Synechocystis and filamentous strains of the genera Nodosilinea, Phormidium and Tychonema for skin applications, with focus in the field of anti-aging. The extracts were analyzed for their pigment profile, phenolic content, antioxidant potential, cytotoxicity against keratinocytes (HaCat), fibroblasts (3T3L1), endothelial cells (hCMEC/D3) and capacity to inhibit hyaluronidase (HAase). The total carotenoid content ranged from 118.69 to 383.89 μg g−1 of dry biomass, and the total phenolic content from 1.07 to 2.45 mg GAE g−1. Identified carotenoids consisted of zeaxanthin, lutein, canthaxanthin, echinenone and β-carotene, with zeaxanthin and lutein being the most representative (49.82 and 79.08 μg g−1, respectively). The highest antioxidant potential was found for Phormidium sp. LEGE 05292 and Tychonema sp. LEGE 07196 for superoxide anion radical (O2•−) scavenging (IC50 of 822.70 and 924 μg mL−1, respectively). Low or no cytotoxicity were registered. Regarding HAase inhibition, Tychonema sp. LEGE 07196 and Cyanobium sp. LEGE 07175 showed the best IC50 (182.74 and 208.36 μg mL−1, respectively). In addition, an increase in fibroblast proliferation was registered with these same strains. From this work, the ethanol extracts of the species Tychonema sp. and Cyanobium sp. are particularly interesting for their potential application in anti-aging formulations, once they stimulated fibroblast proliferation and inhibit hyaluronic acid digestion.This work was done in the framework of the projects: BLUEHUMAN-BLUE biotechnology as a road for innovation on HUMAN’s health aiming smart growth in Atlantic Area-EAPA_151/2016 of the Interreg Atlantic Area Programme funded by the European Regional Development Fund; EnhanceMicroAlgae - High added-value industrial opportunities for microalgae in the Atlantic Area (EAPA_338/2016) of the Interreg Atlantic Area Programme funded by the European Regional Development Fund; ALGAVALOR - MicroALGAs: integrated production and valorization of biomass and its various applications - SI I&DT no. 352234-supported by the PORTUGAL 2020 through the European Regional Development Fund; and supported by the FCT Projects UIDB/04423/2020 and UIDP/04423/2020. The authors acknowledge the support and the use of resources of EMBRC-ERIC, specifically of the Portuguese infrastructure node of the European Marine Biological Resource Centre (EMBRC-PT) CIIMAR–PINFRA/22121/2016–ALG-01-0145-FEDER-022121, financed by the European Regional Development Fund (ERDF) through COMPETE2020-Operational Programme for Competitiveness and Internationalisation (POCI) and national funds through FCT/MCTES
Intermittent chaos driven by nonlinear Alfvén waves
International audienceWe investigate the relevance of chaotic saddles and unstable periodic orbits at the onset of intermittent chaos in the phase dynamics of nonlinear Alfvén waves by using the Kuramoto-Sivashinsky (KS) equation as a model for phase dynamics. We focus on the role of nonattracting chaotic solutions of the KS equation, known as chaotic saddles, in the transition from weak chaos to strong chaos via an interior crisis and show how two of these unstable chaotic saddles can interact to produce the plasma intermittency observed in the strongly chaotic regimes. The dynamical systems approach discussed in this work can lead to a better understanding of the mechanisms responsible for the phenomena of intermittency in space plasmas
- …